首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
DSL proteins are transmembrane ligands of the Notch receptor. They associate with a RING (really interesting new gene) family E3 ubiquitin ligase, either Neuralized (Neur) or Mindbomb 1 (Mib1), as a prerequisite to signaling. Although Neur and Mib1 stimulate internalization of DSL ligands, it is not known how ubiquitylation contributes to signaling. We present a molecular dissection of the intracellular domain (ICD) of Drosophila melanogaster Delta (Dl), a prototype DSL protein. Using a cell-based assay, we detected ubiquitylation of Dl by both Neur and Mib1. The two enzymes use distinct docking sites and displayed different acceptor lysine preferences on the Dl ICD. We generated Dl variants that selectively perturb its interactions with Neur or Mib1 and analyzed their signaling activity in two in vivo contexts. We found an excellent correlation between the ability to undergo ubiquitylation and signaling. Therefore, ubiquitylation of the DSL ICD seems to be a necessary step in the activation of Notch.  相似文献   

2.
Ligands of the Delta/Serrate/Lag2 (DSL) family must normally be endocytosed in signal-sending cells to activate Notch in signal-receiving cells. DSL internalization and signaling are promoted in zebrafish and Drosophila, respectively, by the ubiquitin ligases Mind bomb (Mib) and Neuralized (Neur). DSL signaling activity also depends on Epsin, a conserved endocytic adaptor thought to target mono-ubiquitinated membrane proteins for internalization. Here, we present evidence that the Drosophila ortholog of Mib (Dmib) is required for ubiquitination and signaling activity of DSL ligands in cells that normally do not express Neur, and can be functionally replaced by ectopically expressed Neur. Furthermore, we show that both Dmib and Epsin are required in these cells for some of the endocytic events that internalize DSL ligands, and that the two Drosophila DSL ligands Delta and Serrate differ in their utilization of these Dmib- and Epsin-dependent pathways: most Serrate is endocytosed via the actions of Dmib and Epsin, whereas most Delta enters by other pathways. Nevertheless, only those Serrate and Delta proteins that are internalized via the action of Dmib and Epsin can signal. These results support and extend our previous proposal that mono-ubiquitination of DSL ligands allows them to gain access to a select, Epsin-dependent, endocytic pathway that they must normally enter to activate Notch.  相似文献   

3.
Koo BK  Yoon MJ  Yoon KJ  Im SK  Kim YY  Kim CH  Suh PG  Jan YN  Kong YY 《PloS one》2007,2(11):e1221

Background

The Notch signaling pathway is an evolutionarily conserved intercellular signaling module essential for cell fate specification that requires endocytosis of Notch ligands. Structurally distinct E3 ubiquitin ligases, Neuralized (Neur) and Mind bomb (Mib), cooperatively regulate the endocytosis of Notch ligands in Drosophila. However, the respective roles of the mammalian E3 ubiquitin ligases, Neur1, Neur2, Mib1, and Mib2, in mammalian development are poorly understood.

Methodology/Principal Findings

Through extensive use of mammalian genetics, here we show that Neur1 and Neur2 double mutants and Mib2−/− mice were viable and grossly normal. In contrast, conditional inactivation of Mib1 in various tissues revealed the representative Notch phenotypes: defects of arterial specification as deltalike4 mutants, abnormal cerebellum and skin development as jagged1 conditional mutants, and syndactylism as jagged2 mutants.

Conclusions/Significance

Our data provide the first evidence that Mib1 is essential for Jagged as well as Deltalike ligand-mediated Notch signaling in mammalian development, while Neur1, Neur2, and Mib2 are dispensable.  相似文献   

4.
The interplay between DSL proteins and ubiquitin ligases in Notch signaling   总被引:16,自引:0,他引:16  
Lateral inhibition is a pattern refining process that generates single neural precursors from a field of equipotent cells and is mediated via Notch signaling. Of the two Notch ligands Delta and Serrate, only the former was thought to participate in this process. We now show that macrochaete lateral inhibition involves both Delta and Serrate. In this context, Serrate interacts with Neuralized, a ubiquitin ligase that was heretofore thought to act only on Delta. Neuralized physically associates with Serrate and stimulates its endocytosis and signaling activity. We also characterize a mutation in mib1, a Drosophila homolog of mind bomb, another Delta-targeting ubiquitin ligase from zebrafish. Mib1 affects the signaling activity of Delta and Serrate in both lateral inhibition and wing dorsoventral boundary formation. Simultaneous absence of neuralized and mib1 completely abolishes Notch signaling in both aforementioned contexts, making it likely that ubiquitination is a prerequisite for Delta/Serrate signaling.  相似文献   

5.
The zebrafish gene, mind bomb (mib), encodes a protein that positively regulates of the Delta-mediated Notch signaling. It interacts with the intracellular domain of Delta to promote its ubiquitination and endocytosis. In our search for the mouse homologue of zebrafish mind bomb, we cloned two homologues in the mouse genome: a mouse orthologue (mouse mib1) and a paralogue, named mind bomb-2 (mib2), which is evolutionarily conserved from Drosophila to human. Both Mib1 and Mib2 have an E3 ubiquitin ligase activity in their C-terminal RING domain and interact with Xenopus Delta (XD) via their N-terminal region. Mib2 is also able to ligate ubiquitin to XD and shift the membrane localization of Delta to intracellular vesicles. Importantly, Mib2 rescues both the neuronal and vascular defects in the zebrafish mib(ta52b) mutants. In contrast to the functional similarities between Mib1 and Mib2, mib2 is highly expressed in adult tissues, but almost not at all in embryos, whereas mib1 is abundantly expressed in both embryos and adult tissues. These data suggest that Mib2 has functional similarities to Mib1, but might have distinct roles in Notch signaling as an E3 ubiquitin ligase.  相似文献   

6.
The Delta-Notch signaling pathway is an evolutionarily conserved intercellular signaling mechanism essential for cell fate specification. Mind bomb 1 (Mib1) has been identified as a ubiquitin ligase that promotes the endocytosis of Delta. We now report that mice lacking Mib1 die prior to embryonic day 11.5, with pan-Notch defects in somitogenesis, neurogenesis, vasculogenesis and cardiogenesis. The Mib1-/- embryos exhibit reduced expression of Notch target genes Hes5, Hey1, Hey2 and Heyl, with the loss of N1icd generation. Interestingly, in the Mib1-/- mutants, Dll1 accumulated in the plasma membrane, while it was localized in the cytoplasm near the nucleus in the wild types, indicating that Mib1 is essential for the endocytosis of Notch ligand. In accordance with the pan-Notch defects in Mib1-/- embryos, Mib1 interacts with and regulates all of the Notch ligands, jagged 1 and jagged 2, as well as Dll1, Dll3 and Dll4. Our results show that Mib1 is an essential regulator, but not a potentiator, for generating functional Notch ligands to activate Notch signaling.  相似文献   

7.
Mutations in Drosophila neuralized (Dneur) result in a variety of developmental defects that closely resemble those of Notch mutants and other Notch pathway mutants. However, mice with disrupted neur1 do not show any aberrant cell fate specifications in neurogenesis and somitogenesis. Thus, we speculated that other vertebrate neur homolog(s) might compensate for loss of the neur gene. Here, we report the paralog of mouse Neur1, named Neuralized-2 (Neur2), which is a ubiquitin-protein isopeptide ligase (E3) that interacts with and ubiquitinates Delta. Both murine Neur1 and Neur2 have similar degrees of homology to DNeur, and neur2 is expressed in patterns similar to those of neur1 in embryos, suggesting potential functional redundancy. Interestingly, two distinct classes of E3 ligases, Mind bomb-1 (Mib1) and Neur2, have cooperative but distinct roles in Delta endocytosis to Hrs-positive vesicles, i.e. Mib1 functions in the initial step of Delta endocytosis, and Neur2 is required for targeting endocytosed Delta to Hrs-positive vesicles. Thus, our study provides a new insight into how distinct E3 ligases work together in the endocytic pathways for Notch signaling.  相似文献   

8.
Signaling by the Notch (N) pathway is critical for many developmental processes and requires complex trafficking of both the N receptor and its transmembrane ligands, Delta (Dl) and Serrate. neuralized encodes an E3 ubiquitin ligase required for N ligand internalization. Neuralized (Neur) is conserved from worms to humans and comprises two Neur homology repeat (NHR) domains, NHR1 and NHR2, and a carboxyl-terminal RING domain. We have previously shown that the RING domain is required for ubiquitin ligase activity and that NHR1 mediates binding to Dl, a ubiquitination target. In Drosophila, Neur associates with the plasma membrane and hepatocyte responsive serum phosphoprotein-positive endosomes. Here we demonstrate that Neur also exhibits nuclear envelope localization. We have determined that Neur subcellular localization is regulated by nuclear trafficking and that inhibition of chromosome region maintenance 1, a nuclear export receptor, interferes with Neur nuclear export, trapping Neur in the nucleus. Moreover, we demonstrate that nuclear envelope localization is mediated by the Neur NHR1 domain. Interestingly, Dl expression in Schneider cells is sufficient to inhibit Neur nuclear import and inhibition occurs in an NHR1-dependent manner, suggesting that Neur nuclear localization occurs in contexts where Dl expression is either low or absent. Consistent with this, we found that Neur exhibits nuclear trafficking and associates with the nuclear envelope in the secretory cells of the larval salivary gland and that overexpression of Dl can reduce Neur localization to the nucleus. Altogether, our data demonstrate that Neur localizes to the nuclear envelope and that this localization can be negatively regulated by Dl, suggesting a possible nuclear function for Neur in Drosophila.  相似文献   

9.
Endocytosis of Notch receptor ligands in signaling cells is essential for Notch receptor activation. In Drosophila, the E3 ubiquitin ligase Neuralized (Neur) promotes the endocytosis and signaling activity of the ligand Delta (Dl). In this study, we identify proteins of the Bearded (Brd) family as interactors of Neur. We show that Tom, a prototypic Brd family member, inhibits Neur-dependent Notch signaling. Overexpression of Tom inhibits the endocytosis of Dl and interferes with the interaction of Dl with Neur. Deletion of the Brd gene complex results in ectopic endocytosis of Dl in dorsal cells of stage 5 embryos. This defect in Dl trafficking is associated with ectopic expression of the single-minded gene, a direct Notch target gene that specifies the mesectoderm. We propose that inhibition of Neur by Brd proteins is important for precise spatial regulation of Dl signaling.  相似文献   

10.
Endocytosis of the transmembrane ligands Delta (Dl) and Serrate (Ser) is required for the proper activation of Notch receptors. The E3 ubiquitin ligases Mindbomb1 (Mib1) and Neuralized (Neur) regulate the ubiquitination of Dl and Ser and thereby promote both ligand endocytosis and Notch receptor activation. In this study, we identify the α1,4-N-acetylgalactosaminyltransferase-1 (α4GT1) gene as a gain of function suppressor of Mib1 inhibition. Expression of α4GT1 suppressed the signaling and endocytosis defects of Dl and Ser resulting from the inhibition of mib1 and/or neur activity. Genetic and biochemical evidence indicate that α4GT1 plays a regulatory but nonessential function in Notch signaling via the synthesis of a specific glycosphingolipid (GSL), N5, produced by α4GT1. Furthermore, we show that the extracellular domain of Ser interacts with GSLs in vitro via a conserved GSL-binding motif, raising the possibility that direct GSL–protein interactions modulate the endocytosis of Notch ligands. Together, our data indicate that specific GSLs modulate the signaling activity of Notch ligands.  相似文献   

11.
The Notch pathway plays an integral role in development by regulating cell fate in a wide variety of multicellular organisms. A critical step in the activation of Notch signaling is the endocytosis of the Notch ligands Delta and Serrate. Ligand endocytosis is regulated by one of two E3 ubiquitin ligases, Neuralized (Neur) or Mind bomb. Neur is comprised of a C-terminal RING domain, which is required for Delta ubiquitination, and two Neur homology repeat (NHR) domains. We have previously shown that the NHR1 domain is required for Delta trafficking. Here we show that the NHR1 domain also affects the binding and internalization of Serrate. Furthermore, we show that the NHR2 domain is required for Neur function and that a point mutation in the NHR2 domain (Gly430) abolishes Neur ubiquitination activity and affects ligand internalization. Finally, we provide evidence that Neur can form oligomers in both cultured cells and fly tissues, which regulate Neur activity and, by extension, ligand internalization.  相似文献   

12.
The receptor Notch and its ligands of the Delta/Serrate/LAG2 (DSL) family are the central components in the Notch pathway, a fundamental cell signaling system that regulates pattern formation during animal development. Delta is directly ubiquitinated by Drosophila and Xenopus Neuralized, and by zebrafish Mind bomb, two unrelated RING-type E3 ubiquitin ligases with common abilities to promote Delta endocytosis and signaling activity. Although orthologs of both Neuralized and Mind bomb are found in most metazoan organisms, their relative contributions to Notch signaling in any single organism have not yet been assessed. We show here that a Drosophila ortholog of Mind bomb (D-mib) is a positive component of Notch signaling that is required for multiple Neuralized-independent, Notch-dependent developmental processes. Furthermore, we show that D-mib associates physically and functionally with both Serrate and Delta. We find that D-mib uses its ubiquitin ligase activity to promote DSL ligand activity, an activity that is correlated with its ability to induce the endocytosis and degradation of both Delta and Serrate (see also Le Borgne et al., 2005). We further demonstrate that D-mib can functionally replace Neuralized in multiple cell fate decisions that absolutely require endogenous Neuralized, a testament to the highly similar activities of these two unrelated ubiquitin ligases in regulating Notch signaling. We conclude that ubiquitination of Delta and Serrate by Neuralized and D-mib is an obligate feature of DSL ligand activation throughout Drosophila development.  相似文献   

13.
Notch signaling in Drosophila requires a RING finger (RF) protein encoded by neuralized. Here we show that the Xenopus homolog of neuralized (Xneur) is expressed where Notch signaling controls cell fate choices in early embryos. Overexpressing XNeur or putative dominant-negative forms in embryos inhibits Notch signaling. As expected for a RF protein, we show that XNeur fulfills the biochemical requirements of ubiquitin ligases. We also show that wild-type XNeur decreases the cell surface level of the Notch ligand, XDelta1, while putative inhibitory forms of XNeur increase it. Finally, we provide evidence that XNeur acts as a ubiquitin ligase for XDelta1 in vitro. We propose that XNeur plays a conserved role in Notch activation by regulating the cell surface levels of the Delta ligands, perhaps directly, via ubiquitination.  相似文献   

14.
Mib1 and Mib2 ubiquitin ligases are very similar in their domain construction. They partake in the Notch signaling pathway by ubiquitinating the Notch receptors Delta and Jagged prior to endocytosis. We have created a targeted mutation of Mib2 and show that its phenotype is a variable penetrance, failure to close the cranial neural tube. The penetrance depends on the genetic background but it appears that Mib2 is not completely essential in mouse development.  相似文献   

15.
The Notch signaling pathway is critical for many developmental processes and requires complex trafficking of both Notch receptor and its ligands, Delta and Serrate. In Drosophila melanogaster, the endocytosis of Delta in the signal-sending cell is essential for Notch receptor activation. The Neuralized protein from D. melanogaster (Neur) is a ubiquitin E3 ligase, which binds to Delta through its first neuralized homology repeat 1 (NHR1) domain and mediates the ubiquitination of Delta for endocytosis. Tom, a Bearded protein family member, inhibits the Neur-mediated endocytosis through interactions with the NHR1 domain. We have identified the domain boundaries of the novel NHR1 domain, using a screening system based on our cell-free protein synthesis method, and demonstrated that the identified Neur NHR1 domain had binding activity to the 20-residue peptide corresponding to motif 2 of Tom by isothermal titration calorimetry experiments. We also determined the solution structure of the Neur NHR1 domain by heteronuclear NMR methods, using a 15N/13C-labeled sample. The Neur NHR1 domain adopts a characteristic β-sandwich fold, consisting of a concave five-stranded antiparallel β-sheet and a convex seven-stranded antiparallel β-sheet. The long loop (L6) between the β6 and β7 strands covers the hydrophobic patch on the concave β-sheet surface, and the Neur NHR1 domain forms a compact globular fold. Intriguingly, in spite of the slight, but distinct, differences in the topology of the secondary structure elements, the structure of the Neur NHR1 domain is quite similar to those of the B30.2/SPRY domains, which are known to mediate specific protein-protein interactions. Further NMR titration experiments of the Neur NHR1 domain with the 20-residue Tom peptide revealed that the resonances originating from the bottom area of the β-sandwich (the L3, L5, and L11 loops, as well as the tip of the L6 loop) were affected. In addition, a structural comparison of the Neur NHR1 domain with the first NHR domain of the human KIAA1787 protein, which is from another NHR subfamily and does not bind to the 20-residue Tom peptide, suggested the critical amino acid residues for the interactions between the Neur NHR1 domain and the Tom peptide. The present structural study will shed light on the role of the Neur NHR1 domain in the Notch signaling pathway.  相似文献   

16.
Signaling by the Notch ligands Delta (Dl) and Serrate (Ser) regulates a wide variety of essential cell-fate decisions during animal development. Two distinct E3 ubiquitin ligases, Neuralized (Neur) and Mind bomb (Mib), have been shown to regulate Dl signaling in Drosophila melanogaster and Danio rerio, respectively. While the neur and mib genes are evolutionarily conserved, their respective roles in the context of a single organism have not yet been examined. We show here that the Drosophila mind bomb (D-mib) gene regulates a subset of Notch signaling events, including wing margin specification, leg segmentation, and vein determination, that are distinct from those events requiring neur activity. D-mib also modulates lateral inhibition, a neur- and Dl-dependent signaling event, suggesting that D-mib regulates Dl signaling. During wing development, expression of D-mib in dorsal cells appears to be necessary and sufficient for wing margin specification, indicating that D-mib also regulates Ser signaling. Moreover, the activity of the D-mib gene is required for the endocytosis of Ser in wing imaginal disc cells. Finally, ectopic expression of neur in D-mib mutant larvae rescues the wing D-mib phenotype, indicating that Neur can compensate for the lack of D-mib activity. We conclude that D-mib and Neur are two structurally distinct proteins that have similar molecular activities but distinct developmental functions in Drosophila.  相似文献   

17.
BACKGROUND: Ligand-induced proteolytic cleavage and internalization of the plasma membrane receptor Notch leads to its activation. Ligand-independent, steady-state internalization of Notch, however, does not lead to activation. The mechanism by which downstream effectors discriminate between these bipartite modes of Notch internalization is not understood. Nedd4 is a HECT domain-containing E3 ubiquitin ligase that targets transmembrane receptors containing the PPSY motif for endocytosis. Deltex is a positive Notch signaling regulator that encodes a putative ubiquitin ligase of the ring finger type. RESULTS: We used the Drosophila system to show that Notch is ubiquitinated and destabilized by Nedd4 in a manner requiring the PPSY motif in the Notch intracellular domain. Loss of Nedd4 function dominantly suppresses the Notch and Deltex mutant phenotypes, and its hyperactivation attenuates Notch activity. In tissue culture cells, the dominant-negative form of Nedd4 blocks steady-state Notch internalization and activates Notch signaling independently of ligand binding. This effect was further potentiated by Deltex. Nedd4 destines Deltex for degradation in a Notch-dependent manner. CONCLUSIONS: Nedd4 antagonizes Notch signaling by promoting degradation of Notch and Deltex. This Nedd4 function may be important for protecting unstimulated cells from sporadic activation of Notch signaling.  相似文献   

18.
19.
Signaling by the Notch ligands Delta (Dl) and Serrate (Ser) regulates a wide variety of essential cell-fate decisions during animal development. Two distinct E3 ubiquitin ligases, Neuralized (Neur) and Mind bomb (Mib), have been shown to regulate Dl signaling in Drosophila melanogaster and Danio rerio, respectively. While the neur and mib genes are evolutionarily conserved, their respective roles in the context of a single organism have not yet been examined. We show here that the Drosophila mind bomb (D-mib) gene regulates a subset of Notch signaling events, including wing margin specification, leg segmentation, and vein determination, that are distinct from those events requiring neur activity. D-mib also modulates lateral inhibition, a neur- and Dl-dependent signaling event, suggesting that D-mib regulates Dl signaling. During wing development, expression of D-mib in dorsal cells appears to be necessary and sufficient for wing margin specification, indicating that D-mib also regulates Ser signaling. Moreover, the activity of the D-mib gene is required for the endocytosis of Ser in wing imaginal disc cells. Finally, ectopic expression of neur in D-mib mutant larvae rescues the wing D-mib phenotype, indicating that Neur can compensate for the lack of D-mib activity. We conclude that D-mib and Neur are two structurally distinct proteins that have similar molecular activities but distinct developmental functions in Drosophila.  相似文献   

20.
Fringe O-fucose-beta1,3-N-acetylglucosaminyltransferases modulate Notch signaling by potentiating signaling induced by Delta-like ligands, while inhibiting signaling induced by Serrate/Jagged1 ligands. Based on binding studies, the differential effects of Drosophila fringe (DFng) on Notch signaling are thought to result from alterations in Notch glycosylation that enhance binding of Delta to Notch but reduce Serrate binding. Here, we report that expression of mammalian fringe proteins (Lunatic [LFng], Manic [MFng], or Radical [RFng] Fringe) increased Delta1 binding and activation of Notch1 signaling in 293T and NIH 3T3 cells. Although Jagged1-induced signaling was suppressed by LFng and MFng, RFng enhanced signaling induced by either Delta1 or Jagged1, underscoring the diversity of mammalian fringe glycosyltransferases in regulating signaling downstream of different ligand-receptor combinations. Interestingly, suppression of Jagged1-induced Notch1 signaling did not correlate with changes in Jagged1 binding as found for Delta1. Our data support the idea that fringe glycosylation increases Delta1 binding to potentiate signaling, but we propose that although fringe glycosylation does not reduce Jagged1 binding to Notch1, the resultant ligand-receptor interactions do not effectively promote Notch1 proteolysis required for activation of downstream signaling events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号