共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The strain of Drosophila melanogaster carrying the inversion In(1)w
m4, which juxtaposes the normal w
+ gene to the centromeric heterochromatin, variegates for pigmentation in the eye. This strain was treated with various concentrations of n-butyrate and n-proprionate during the embryonic and larval stages. Concentrations as low as 70mM markedly suppress the variegated eye phenotype. This suggests that non-acetylated histones play a major role in the phenomenon of position-effect variegation.This research was supported by Natural Sciences and Engineering Research Council Canada team grant A-1764 to T.A.G. and D.T. Suzuki, and Natural, Applied & Health Sciences grant 9704 to T.A.G. 相似文献
3.
Laura Fanti Maria Berloco Sergio Pimpinelli 《Molecular genetics and genomics : MGG》1994,244(6):588-595
Carnitine is a well-known naturally occurring compound, very similar to butyrate, with an essential role in intermediary metabolism mainly at the mitochondrial level. Since butyrate inhibits the enzyme histone deacetylase and is capable of suppressing position-effect variegation in Drosophila melanogaster, we tested a further possible function of carnitine in the nucleus, using an assay for the suppression of position-effect variegation. We tested three physiological forms of carnitine (l-carnitine, l-propionylcarnitine, l-acetylcarnitine) for the ability to suppress two different chromosomal rearrangements, inducing variegation of the white + and brown + genes. The results show that the carnitine derivatives are capable of suppressing the position-effect variegation, albeit with different efficiencies. The carnitine derivatives interact lethally with Su-var(2)1 01, a mutation that induces hyperacetylation of histones, whilst hyperacetylated histories accumulated in both the nuclei of HeLa cells and Drosophila polytene chromosomes treated with the same compounds. These results strongly suggest that the carnitine derivatives suppress position-effect variegation by a mechanism similar to that of butyrate. It is suggested that carnitines may have a functional role in the nucleus, probably at the chromatin level. 相似文献
4.
The genetics of position-effect variegation modifying loci in Drosophila melanogaster 总被引:14,自引:0,他引:14
G. Wustmann J. Szidonya H. Taubert G. Reuter 《Molecular & general genetics : MGG》1989,217(2-3):520-527
Summary The dose dependent effects of position-effect variegation (PEV) modifying genes were studied in chromosome arms2L, 2R and3R. Four groups of PEV modifying genes can be distinguished: haplo-abnormal suppressor and enhancer loci with or without a triplo-effect.
using duplications four triplo-abnormal suppressor and four triplo-abnormal enhancer functions were localized. In two cases
we proved that these functions correspond to a converse haplo-abnormal one. Altogether 43 modifier loci were identified. Most
of these loci proved not to display significant triplo-effects (35). The group of haplo-abnormal loci with a triplo-effect
may represent genes which play an important role in heterochromatin packaging. 相似文献
5.
Genomic imprinting is a phenomenon in which the expression of a gene or chromosomal region depends on the sex of the individual transmitting it. The term imprinting was first coined to describe parent-specific chromosome behavior in the dipteran insect Sciara and has since been described in many organisms, including other insects, plants, fish, and mammals. In this article we describe a mini-X chromosome in Drosophila melanogaster that shows genomic imprinting of at least three closely linked genes. The imprinting of these genes is observed as mosaic silencing when the genes are transmitted by the male parent, in contrast to essentially wild-type expression when the same genes are maternally transmitted. We show that the imprint is due to the sex of the parent rather than to a conventional maternal effect, differential mitotic instability of the mini-X chromosome, or an allele-specific effect. Finally, we have examined the effects of classical modifiers of position-effect variegation on the maintenance and the establishment of the imprint. Factors that modify position-effect variegation alter the somatic expression but not the establishment of the imprint. This suggests that chromatin structure is important in maintenance of the imprint, but a separate mechanism may be responsible for its initiation. 相似文献
6.
7.
Position-effect variegation in Drosophila melanogaster is accompanied by compaction of the corresponding chromosomal regions. The compaction can be continuous, so that bands and interbands located distal to the eu-heterochromatic junction fuse into one dense block, or discontinuous, when two or more zones of compaction are separated by morphologically and functionally normal regions. In this work it was found that in both continuous and discontinuous compaction the blocks of dense material contain the immunochemically detectable protein HP1, which has previously been characterized as specific for heterochromatin. The regions undergoing compaction do not contain HP1 when they have a normal banding pattern. Thus, it may be proposed that HP1 is one of the factors involved in compaction. If two different or two identical rearrangements are combined in the same nucleus, they variegate independently. The frequency of compaction of the two rearrangements in the same nucleus corresponds to the product of the frequencies of the compact state of the individual elements. The extent of compaction (i.e. the number of bands involved in heterochromatization) of each rearrangement does not depend on the compaction pattern of the other rearranged element. 相似文献
8.
9.
Donald A. R. Sinclair Vett K. Lloyd Thomas A. Grigliatti 《Molecular & general genetics : MGG》1989,216(2-3):328-333
Summary Several mutants that enhance the gene inactivation associated with position-effect variegation [E(var) mutants] have been characterized. These include three ethyl methanesulfonate (EMS)-induced lesions and a second chromosome duplication. Each of the EMS mutations maps to a discrete euchromatic site on the third chromosome. One is located within the chromosomal region occupied by a cluster of Su(var) mutations. All four E(var) mutants enhance the inactivation of several different variegators and therefore they appear to influence position-effect variegation generally. However, the enhancement caused by the single site E(var) mutations is less striking than that caused by the duplication or by loss of the Y chromosome. The interaction between the E(var) mutants and selected Su(var) mutations, as well as the effects of extra Y heterochromatin on E(var) expression, have also been investigated. Based on the results of these studies, various hypothetical functions of the E(var)
+ products are suggested. 相似文献
10.
11.
The dominant mutation Su-var(2)1
01
which suppresses position-effect variegation and displays recessive butyrate sensitivity was found to result in significant hyperacetylation of histone H4. This biochemical finding, as well as the genetic properties of this mutation, strongly suggest that the wild-type product of the corresponding locus is involved in histone H4 deacetylation. In larvae containing the suppressor mutation the accessibility of chromatin to endogenous nucleases is significantly increased which might be causally connected with histone H4 hyperacetylation. The suppressor mutation Su-var(2)1
01
has, therefore, to be classified as a chromatin condensation mutation. 相似文献
12.
13.
D A Sinclair N J Clegg J Antonchuk T A Milne K Stankunas C Ruse T A Grigliatti J A Kassis H W Brock 《Genetics》1998,148(1):211-220
Polycomb group (PcG) genes of Drosophila are negative regulators of homeotic gene expression required for maintenance of determination. Sequence similarity between Polycomb and Su(var)205 led to the suggestion that PcG genes and modifiers of position-effect variegation (PEV) might function analogously in the establishment of chromatin structure. If PcG proteins participate directly in the same process that leads to PEV, PcG mutations should suppress PEV. We show that mutations in E(Pc), an unusual member of the PcG, suppress PEV of four variegating rearrangements: In(l)wm4, B(SV), T(2;3)Sb(V) and In(2R)bw(VDe2). Using reversion of a Pelement insertion, deficiency mapping, and recombination mapping as criteria, homeotic effects and suppression of PEV associated with E(Pc) co-map. Asx is an enhancer of PEV, whereas nine other PcG loci do not affect PEV. These results support the conclusion that there are fewer similarities between PcG genes and modifiers of PEV than previously supposed. However, E(Pc) appears to be an important link between the two groups. We discuss why Asx might act as an enhancer of PEV. 相似文献
14.
15.
In Drosophila, heterochromatin causes mosaic silencing of euchromatic genes brought next to it by chromosomal rearrangements. Silencing has been observed to "spread": genes closer to the heterochromatic rearrangement breakpoint are silenced more frequently than genes farther away. We have examined silencing of the white and roughest genes in the variegating rearrangements In(1)w(m4), In(1)w(mMc), and In(1)w(m51b). Eleven stocks bearing these chromosomes differ widely in the strength of silencing of white and roughest. Stock-specific differences in the relative frequencies of inactivation of white and roughest were found that map to the white-roughest region or the adjacent heterochromatin. Most stock-specific differences did not correlate with gross differences in the heterochromatic content of the rearranged chromosomes; however, two stocks, In(1)w(m51b) and In(1)w(mMc), were found to have anomalous additional heterochromatin that may act in trans to suppress variegating alleles. In comparing different stocks, the frequency of silencing of the roughest gene, which is more distant from heterochromatin, does not correlate with the frequency of silencing of the more proximal white gene on the same chromosome, in contradiction to the expectation of models of continuous linear propagation of silencing. We frequently observed rough eye tissue that is pigmented, as though an active white gene is skipped. 相似文献
16.
The strain of Drosophila melanogaster In (1)m k ; In (2LR) Rev B shows more miniature variegation than the strain In(1)m K and less Revolute variegation than the strain In(2LR)Rev B . Observations on heterochromatisation in the larval salivary gland chromosomes of the three strains revealed that the m k chromosome is heterochromatised in a higher proportion of nuclei and the Rev B chromosome is heterochromatised in a lower proportion of nuclei in the double-inversion strain than in the corresponding single-inversion strain. Single-and double-inversion strains did not however differ in the mean number of bands heterochromatised per affected chromosome. The difference between incidence and extent of heterochromatisation was further exposed by comparisons between and within strains: the incidence of heterochromatisation in different chromosome regions within a nucleus was positively correlated, but a significant positive correlation was found in only one of the eight possible comparisons between extents of heterochromatisation in different chromosome regions in a given nucleus, two of the comparisons showing significantly negative correlations. The results in general are compatible with the view that the initiation and progression of heterochromatisation are distinct phenomena, under separate control. 相似文献
17.
The effects of suppressors of position-effect variegation were studied in a set of euchromatin-heterochromatin rearrangements of the X chromosome accompanied by inactivation of the gene wapl. The rearrangements differed from one another in the size of the heterochromatic block adjacent to euchromatin, with the euchromatin-heterochromatin border remaining unchanged. In one rearrangement (r20), the position effect caused by a small block of adjacent heterochromatin may be determined by its interaction with the neighboring main heterochromatic region of the X chromosome. Chromosome 3 (the RT chromosome) was found to have a strong suppressing effect on all rearrangements, irrespective of the amount of heterochromatin adjacent to euchromatin. Su-var(3)9, a known suppressor of the position-effect variegation, had a considerably weaker suppressing effect. The RT chromosome had the strongest suppressing effect on the rearrangement r20. 相似文献
18.
In Drosophila melanogaster, heterochromatin-induced silencing or position-effect variegation (PEV) of a reporter gene has provided insights into the properties of heterochromatin. Class I modifiers suppress PEV, and class II modifiers enhance PEV when the modifier gene is present in fewer than two doses. We have examined the effects of both class I and class II modifiers on four PEV mutations. These mutations include the inversions In(1)w(m4) and In(2R)bw(VDe2), which are classical chromosomal rearrangements that typify PEV mutations. The other mutations are a derivative of brown(Dominant), in which brown+ reporters are inactivated by a large block of heterochromatin, and a P[white+] transposon insertion associated with second chromosome heterochromatin. In general, we find that class I modifiers affect both classical and nonclassical PEV mutations, whereas class II modifiers affect only classical PEV mutations. We suggest that class II modifiers affect chromatin architecture in the vicinity of reporter genes, and only class I modifiers identify proteins that are potentially involved in heterochromatin formation or maintenance. In addition, our observations support a model in which there are different constraints on the process of heterochromatin-induced silencing in classical vs. nonclassical PEV mutations. 相似文献
19.
20.
In position-effect variegation euchromatic genes are brought into the vicinity of heterochromatic sequences as a result of chromosomal rearrangements. This results in the inactivation of these genes in a proportion of cells causing a variegated phenotype. Tartof et al. (1984) have shown that the flanking heterochromatin in the w
m4
variegating rearrangement in Drosophila melanogaster is homologous to the Type I inserts found in some portions of the rDNA repeats. We have studied the functional properties of these sequences using 51 revertant chromosomes, several variant lines of w
m4
, strong enhancer mutations of position-effect variegation and X heterochromatin deletions. Our results suggest an array of tandemly repeated sequences showing additive effects and probably subject to magnification and reduction in number. Since only 3 of the 51 revertants isolated do not show variegation if strong enhancer mutations are introduced, only a very short sequence must be essential for the induction of white gene inactivation in w
m4
. This suggests that the heterochromatic junction itself is sufficient to initiate the variegation of an adjacent gene. Parental source as well as paternal effects on the activity of these sequences have been detected. Revertant chromosomes of w
m4
can be found after P-directed mutagenesis in hybrid dysgenic crosses suggesting mobile genetic elements at the breakpoints of inversion w
m4
. These results are discussed with respect to the structural basis of positioneffect variegation as well as the function of certain heterochromatic sequences. 相似文献