首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An F2 and an equivalent F3 population derived from a cross between a high salt-tolerance indica variety, Nona Bokra, and a susceptible elite japonica variety, Koshihikari, were produced. We performed QTL mapping for physiological traits related to rice salt-tolerance. Three QTLs for survival days of seedlings (SDSs) under salt stress were detected on chromosomes 1, 6 and 7, respectively, and explained 13.9% to 18.0% of the total phenotypic variance. Based on the correlations between SDSs and other physiological traits, it was considered that damage of leaves was attributed to accumulation of Na+ in the shoot by transport of Na+ from the root to the shoot in external high concentration. We found eight QTLs including three for three traits of the shoots, and five for four traits of the roots at five chromosomal regions, controlled complex physiological traits related to rice salt-tolerance under salt stress. Of these QTLs, the two major QTLs with the very large effect, qSNC-7 for shoot Na+ concentration and qSKC-1 for shoot K+ concentration, explained 48.5% and 40.1% of the total phenotypic variance, respectively. The QTLs detected between the shoots and the roots almost did not share the same map locations, suggesting that the genes controlling the transport of Na+ and K+ between the shoots and the roots may be different.  相似文献   

2.
The detailed mechanisms of catalytic CO oxidation over Au2- and AuAg- dimers, which represent the simplest models for monometal Au and bimetallic Au-Ag nanoparticles, have been studied by performing density functional theory calculations. It is found that both Au2- and AuAg- dimers catalyze the reaction according to the similar mono-center Eley–Rideal mechanism. The catalytic reaction is of the multi-channel and multi-step characteristic, which can proceed along four possible pathways via two or three elementary steps. In AuAg-, the Au site is more active than the Ag site, and the calculated energy barrier values for the rate-determining step of the Au-site catalytic reaction are remarkably smaller than those for both the Ag-site catalytic reaction and the Au2- catalytic reaction. The better catalytic activity of bimetallic AuAg- dimer is attributed to the synergistic effect between Au and Ag atom. The present results provide valuable information for understanding the higher catalytic activity of Au-Ag nanoparticles and nanoalloys for low-temperature CO oxidation than either pure metallic catalyst.  相似文献   

3.
A comparison of three labeling strategies for studies involving side chain methyl groups in high molecular weight proteins, using 13CH3,13CH2D, and 13CHD2 methyl isotopomers, is presented. For each labeling scheme, 1H–13C pulse sequences that give optimal resolution and sensitivity are identified. Three highly deuterated samples of a 723 residue enzyme, malate synthase G, with 13CH3,13CH2D, and 13CHD2 labeling in Ile δ1 positions, are used to test the pulse sequences experimentally, and a rationalization of each sequence’s performance based on a product operator formalism that focuses on individual transitions is presented. The HMQC pulse sequence has previously been identified as a transverse relaxation optimized experiment for 13CH3-labeled methyl groups attached to macromolecules, and a zero-quantum correlation pulse scheme (13CH3 HZQC) has been developed to further improve resolution in the indirectly detected dimension. We present a modified version of the 13CH3 HZQC sequence that provides improved sensitivity by using the steady-state magnetization of both 13C and 1H spins. The HSQC and HMQC spectra of 13CH2D-labeled methyl groups in malate synthase G are very poorly resolved, but we present a new pulse sequence, 13CH2D TROSY, that exploits cross-correlation effects to record 1H–13C correlation maps with dramatically reduced linewidths in both dimensions. Well-resolved spectra of 13CHD2-labeled methyl groups can be recorded with HSQC or HMQC; a new 13CHD2 HZQC sequence is described that provides improved resolution with no loss in sensitivity in the applications considered here. When spectra recorded on samples prepared with the three isotopomers are compared, it is clear that the 13CH3 labeling strategy is the most beneficial from the perspective of sensitivity (gains ≥2.4 relative to either 13CH2D or 13CHD2 labeling), although excellent resolution can be obtained with any of the isotopomers using the pulse sequences presented here.  相似文献   

4.

Background  

Bicarbonate activated Soluble Adenylyl Cyclase (sAC) is a unique cytoplasmic and nuclear signaling mechanism for the generation of cAMP. HCO3 - activates sAC in bovine corneal endothelial cells (BCECs), increasing [cAMP] and stimulating PKA, leading to phosphorylation of the cystic fibrosis transmembrane-conductance regulator (CFTR) and increased apical Cl- permeability. Here, we examined whether HCO3 - may also regulate the expression of sAC and thereby affect the production of cAMP upon activation by HCO3 - and the stimulation of CFTR in BCECs.  相似文献   

5.
Nitromethane (NM, CH3NO2) is a widely studied energetic material, and its decomposition mechanism attracts great interest. In this work, bimolecular reactions between NO2 and nine intermediates generated during the decomposition of NM were investigated by computational chemistry methods. The mechanisms of the reactions were analyzed. The results revealed that these reactions possess small barriers and can easily occur, so they may be responsible for NO2 loss during the decomposition of NM.  相似文献   

6.
A theoretical study of a sandwich compound with a metal monolayer sheet between two aromatic ligands is presented. A full geometry optimization of the [Au3Cl3Tr2]2+ (1) compound, which is a triangular gold(I) monolayer sheet capped by chlorines and bounded to two cycloheptatrienyl (Tr) ligands was carried out using perturbation theory at the MP2 computational level and DFT. Compound (1) is in agreement with the 18–electron rule, the bonding nature in the complex may be interpreted from the donation interaction coming from the Tr rings to the Au array, and from the back-donation from the latter to the former. NICS calculations show a strong aromatic character in the gold monolayer sheet and Tr ligands; calculations done with HOMA, also report the same aromatic behavior on the cycloheptatrienyl fragments giving us an insight on the stability of (1). The Au –Au bond lengths indicate that an intramolecular aurophilic interaction among the Au(I) cations plays an important role in the bonding of the central metal sheet. Figure (a) Ground state geometry of complex 1; (b) Top view of compound 1 and Wiberg bond orders computed with the MP2/B1 computational method; (c) Lateral view of compound 1 and NICS values calculated with the MP2/B1 method; the values in parenthesis were obtained at the VWN/TZP level  相似文献   

7.
The analysis of the nephrotoxic mycotoxin citrinin in food, feed, and physiological samples is still challenging. Nowadays, liquid chromatography coupled with mass spectrometry is the method of choice for achieving low limits of detection. But matrix effects can present impairments for this method. Stable isotope dilution analysis can prevent some of these problems. Therefore, a stable isotopically labeled standard of citrinin for use in stable isotope dilution analysis was synthesized on large scale. The improved diastereoselective total synthetic strategy offered the possibility to introduce three 13C-labels in two steps by ortho-toluate anion chemistry. This led to a mass difference of 3 Da, sufficient for preventing spectral overlap. Additionally, a stable isotopically labeled form of dihydrocitrinone, the main urinary metabolite of citrinin, was synthesized with the same mass difference. This was achieved by a sequence of cyclisation, oxidation, deprotection, and carboxylation reactions starting from a protected intermediate of the labeled citrinin synthesis. Thus, this method also offers a complete way to synthesize dihydrocitrinone from citrinin on large scale.  相似文献   

8.
New methods are described for accurate measurement of multiple residual dipolar couplings in nucleic acid bases. The methods use TROSY-type pulse sequences for optimizing resolution and sensitivity, and rely on the E.COSY principle to measure the relatively small two-bond 2DCH couplings at high precision. Measurements are demonstrated for a 24-nt stem-loop RNA sequence, uniformly enriched in 13C, and aligned in Pf1. The recently described pseudo-3D method is used to provide homonuclear 1H-1H decoupling, which minimizes cross-correlation effects and optimizes resolution. Up to seven 1H-13C and 13C-13C couplings are measured for pyrimidines (U and C), including 1DC5H5, 1DC6H6, 2DC5H6, 2DC6H5, 1DC5C4, 1DC5C6, and 2DC4H5. For adenine, four base couplings (1DC2H2, 1DC8H8, 1DC4C5, and 1DC5C6) are readily measured whereas for guanine only three couplings are accessible at high relative accuracy (1DC8H8, 1DC4C5, and 1DC5C6). Only three dipolar couplings are linearly independent in planar structures such as nucleic acid bases, permitting cross validation of the data and evaluation of their accuracies. For the vast majority of dipolar couplings, the error is found to be less than ±3% of their possible range, indicating that the measurement accuracy is not limiting when using these couplings as restraints in structure calculations. Reported isotropic values of the one- and two-bond J couplings cluster very tightly for each type of nucleotide.  相似文献   

9.
10.
Metal oxide semiconductors (MOS) are important and promising materials in optoelectronics, and it has been widely used in various catalytic applications such as gas sensing due to its high reactivity with many gases. In current work, mixtures of SnO2-WO3 (1:1) were prepared to synthesize nanostructured thin films by pulsed laser deposition as gas sensors. The sensitivity of sensors was measured for a relatively low concentration (200 ppm) of NO2 gas at room temperature; sensors prepared with target exposed to (200) laser shots have higher sensitivity with a maximum value of 96.49 % at time 65 s as compared with the sensors prepared with (150) laser shots where the sensitivity has a maximum value 71.82 % at time 110 s; XRD pattern shows a better crystalline and high intensity with increasing laser shots up to 200; scanning electron microscopy (SEM) micrographs show approximate homogeneity of grains that cover the substrate without cracks and pinholes with nanoparticles fall in micro and nanometer range 50–200 nm. The values of the direct band gap were found to be 2.07143 eV for films prepared with 150 laser shots and 2.02899 eV for films prepared with 200 laser shots which have higher absorbance than the former films due to the increment in thickness and particle size. Empirical equations between sensitivity and gas exposure time have been formulated with great coincidence with the experimental data.  相似文献   

11.
The intriguing decompositions of nitro-containing explosives have been attracting interest. While theoretical investigations have long been concentrated mainly on unimolecular decompositions, bimolecular reactions have received little theoretical attention. In this paper, we investigate theoretically the bimolecular reactions between nitromethane (CH3NO2)—the simplest nitro-containing explosive—and its decomposition products, such as NO2, NO and CO, that are abundant during the decomposition process of CH3NO2. The structures and potential energy surface (PES) were explored at B3LYP/6-31G(d), B3P86/6-31G(d) and MP2/6-311?+?G(d,p) levels, and energies were refined using CCSD(T)/cc-pVTZ methods. Quantum chemistry calculations revealed that the title reactions possess small barriers that can be comparable to, or smaller than, that of the initial decomposition reactions of CH3NO2. Considering that their reactants are abundant in the decomposition process of CH3NO2, we consider bimolecular reactions also to be of great importance, and worthy of further investigation. Moreover, our calculations show that NO2 can be oxidized by CH3NO2 to NO3 radical, which confirms the conclusion reached formerly by Irikura and Johnson [(2006) J Phys Chem A 110:13974–13978] that NO3 radical can be formed during the decomposition of nitramine explosives.  相似文献   

12.
Various abnormalities in CD4+CD25+ regulatory T cells (Tregs) in systemic lupus erythematosus (SLE) include increased Foxp3+ cells that are CD25 negative. Barring methodological technical factors, these cells could be atypical Tregs or activated non-Treg CD4+ cells that express Foxp3. Two groups have reached opposite conclusions that could possibly reflect the subjects studied. One group studied untreated new-onset SLE and suggested that these T cells were mostly CD25-Foxp3+ non-Tregs. The other group studied patients with long-standing disease and suggested that these cells are mostly dysfunctional Tregs. A third group reported increased Foxp3+CD4+CD25dim rather than CD25- cells in active SLE and these were also non-Tregs. Thus, it is likely that not all Foxp3+ T cells in SLE have protective suppressive activity.  相似文献   

13.
The effects of Ca(NO3)2 stress on biomass production, oxidative damage, antioxidant enzymes activities and polyamine contents in roots of grafted and non-grafted tomato plants were investigated. Results showed that when exposed to 80 mM Ca(NO3)2 stress, the biomass production reduction in non-grafted plants was more significant than that of grafted plants. Under Ca(NO3)2 stress, superoxide anion radical (O2) producing rate, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents of non-grafted plants roots were significantly higher than those of grafted plants, however, nitrate (NO3 ), ammonium (NH4 +) and proline contents, superoxide dismutase (SOD, EC1.15.1.1), peroxidase (POD, EC1.11.1.7), catalase (CAT, EC1.11.1.6) and arginine decarboxylase (ADC, EC 4.1.1.19) activities of grafted plants roots were significantly higher than those of non-grafted plants. Regardless of stress, free, conjugated and bound polyamine contents in roots of grafted plants were significantly higher than those of non-grafted plants. The possible roles of antioxidant enzymes, prolines and polyamines in adaptive mechanism of tomato roots to Ca(NO3)2 stress were discussed. Gu-Wen Zhang and Zheng-Lu Liu contributed equally to this work.  相似文献   

14.
15.
At the 2017 meeting of the Australian Society for Biophysics, we presented the combined results from two recent studies showing how hydronium ions (H3O+) modulate the structure and ion permeability of phospholipid bilayers. In the first study, the impact of H3O+ on lipid packing had been identified using tethered bilayer lipid membranes in conjunction with electrical impedance spectroscopy and neutron reflectometry. The increased presence of H3O+ (i.e. lower pH) led to a significant reduction in membrane conductivity and increased membrane thickness. A first-order explanation for the effect was assigned to alterations in the steric packing of the membrane lipids. Changes in packing were described by a critical packing parameter (CPP) related to the interfacial area and volume and shape of the membrane lipids. We proposed that increasing the concentraton of H3O+ resulted in stronger hydrogen bonding between the phosphate oxygens at the water–lipid interface leading to a reduced area per lipid and slightly increased membrane thickness. At the meeting, a molecular model for these pH effects based on the result of our second study was presented. Multiple μs-long, unrestrained molecular dynamic (MD) simulations of a phosphatidylcholine lipid bilayer were carried out and showed a concentration dependent reduction in the area per lipid and an increase in bilayer thickness, in agreement with experimental data. Further, H3O+ preferentially accumulated at the water–lipid interface, suggesting the localised pH at the membrane surface is much lower than the bulk bathing solution. Another significant finding was that the hydrogen bonds formed by H3O+ ions with lipid headgroup oxygens are, on average, shorter in length and longer-lived than the ones formed in bulk water. In addition, the H3O+ ions resided for longer periods in association with the carbonyl oxygens than with either phosphate oxygen in lipids. In summary, the MD simulations support a model where the hydrogen bonding capacity of H3O+ for carbonyl and phosphate oxygens is the origin of the pH-induced changes in lipid packing in phospholipid membranes. These molecular-level studies are an important step towards a better understanding of the effect of pH on biological membranes.  相似文献   

16.
A novel type of trivalent BNg five-membered cational species B5Ngn3+(Ng = He~Rn, n = 1~5) has been found and investigated theoretically using the B3LYP and MP2 methods with the def2-QZVPPD and def2-TZVPPD basis sets. The geometry, harmonic vibrational frequencies, bond energies, charge distribution, bond nature, aromaticity, and energy decomposition analysis of these structures were reported. The calculated B?Ng bond energy is quite large (the averaged bond energy is in the range of 209.2~585.76 kJ mol-1) for heavy rare gases and increases with the Ng atomic number. The analyses of the molecular wavefunction show that in the BNg compounds of heavy Ng atoms Ar~Rn, the B?Ng bonds are of typical covalent character. Nuclear independent chemical shifts display that both B53+ and B5Ngn3+(n=1~5) have obvious aromaticity. Energy decomposition analysis shows that these BNg compounds are mainly stabilized by the σ-donation from the Ng valence p orbital to the B53+ LUMO. These findings offer valuable clues toward the design and synthesis of new stable Ng-containing compounds.  相似文献   

17.
The radioactive precursor, [3-3H]oleanolic acid was administrated to excised roots from four weeks old Calendula officinalis L. plants. Transformations of this compound into two series of its glycosides, i.e. glucosides and glucuronides were investigated. For the first time it has been shown that both series of oleanolic acid glycosides are synthesized in roots of young marigold plants. The pathway of their biosynthesis seems to be similar, although not identical, to the pathway occurring in green organs of C. officinalis.  相似文献   

18.
Inorganic ions have been used widely to investigate biophysical properties of high voltage-activated calcium channels (HVA: Cav1 and Cav2 families). In contrast, such information regarding low voltage-activated calcium channels (LVA: Cav3 family) is less documented. We have studied the blocking effect of Cd2+, Co2+ and Ni2+ on T-currents expressed by human Cav3 channels: Cav3.1, Cav3.2, and Cav3.3. With the use of the whole-cell configuration of the patch-clamp technique, we have recorded Ca2+ (2 mM) currents from HEK−293 cells stably expressing recombinant T-type channels. Cd2+ and Co2+ block was 2- to 3-fold more potent for Cav3.2 channels (EC50 = 65 and 122 μM, respectively) than for the other two LVA channel family members. Current-voltage relationships indicate that Co2+ and Ni2+ shift the voltage dependence of Cav3.1 and Cav3.3 channels activation to more positive potentials. Interestingly, block of those two Cav3 channels by Co2+ and Ni2+ was drastically increased at extreme negative voltages; in contrast, block due to Cd2+ was significantly decreased. This unblocking effect was slightly voltage-dependent. Tail-current analysis reveals a differential effect of Cd2+ on Cav3.3 channels, which can not close while the pore is occupied with this metal cation. The results suggest that metal cations affect differentially T-type channel activity by a mechanism involving the ionic radii of inorganic ions and structural characteristics of the channels pore.  相似文献   

19.
Glycogen synthase kinase-3 (GSK-3) is a kind of serine-threonine protein kinase. It places important roles in several signaling pathways and it is a key therapeutic target for a number of diseases, such as diabetes, cancer, Alzheimer’s disease and chronic inflammation. Mg2+ ions which interact with ATP are conserved in GSK. They are important in phosphoryl transfer. Li+ is an inhibitor for GSK-3. It is used to treat bipolar mood disorder. This paper illustrates the effect of Li+ on GSK-3. When MgI2+ is replaced by Li+, the atom fluctuation of GSK-3 will rise, and the in-line phosphoryl transfer mechanism is probably demolished and the binding of pre-phosphorylated substrates may be disturbed. All the results we obtained clearly suggest that inhibition to GSK-3 is caused by the MgI2+ replacement with Li+.  相似文献   

20.
Increasing concentrations of carbon dioxide (CO2) in the atmosphere or continuous nitrogen (N) deposition might alter the carbon (C) cycle in boreal mires and thus have significant impacts on the development of climate change. The atmospheric impact of the C cycle in mires is twofold: C accumulation attenuates and CH4 release strengthens the natural greenhouse effect. We studied the effects of an increased supply of CO2 or NH4NO3 on the vegetation and annual CO2 exchange in lawns of a boreal oligotrophic mire in eastern Finland over a 2-year period. Ten study plots were enclosed with mini-FACE (Free Air Carbon Dioxide Enrichment) rings. Five plots were vented with CO2-enriched air (target 560 ppmv), while their controls were vented with ambient air; five plots were sprayed with NH4NO3, corresponding to a cumulative addition of 3 g N m−2 a−1, while their controls were sprayed with distilled water only. A raised NH4NO3 supply seemed to affect the composition of the moss layer. Raised CO2 did not affect the vegetation, but gross photosynthesis increased significantly. The change in net CO2 exchange depended on the annual weather conditions. Our results suggest that C accumulation may increase in wet years and compensate for the warming effect caused by the increase in CH4 release from this mire. In contrast, a relatively dry and warm growing period favors decomposition and can even make the CO2 balance negative. Along with the increased CH4 release under raised CO2, the decreased C accumulation then increases the radiative forcing of boreal mires. Received 22 October 2001; accepted 13 May 2002.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号