首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions.  相似文献   

2.
There is concern that the progeny resulting from the spawnings of escaped farmed Atlantic salmon may compete with and disrupt native salmon populations. This study compared, both in the hatchery and in the wild, fitness-related traits and examined interactions among farmed, native and hybrid 0+ parr derived from controlled crosses and reared under common conditions. The farmed salmon were seventh-generation fish from the principal commercial strain in Norway and native salmon were from the rivers Imsa and Lone, Norway. In the hatchery, farmed salmon were more aggressive than both native populations and tended to dominate them in pairwise contests. Farmed salmon were also more prone to risk, leaving cover sooner after a simulated predator attack, and had higher growth rates than native fish. Interbreeding between farmed and native fish generally resulted in intermediate expression of the above traits. There was, however, evidence of hybrid vigour in Lone/farmed crosses which were able to dominate both pure Lone and farmed parr in pairwise contests. In the wild, observations of habitat use and diet suggested that the populations compete for territory and food, and both farmed fish and hybrids expressed higher growth rates than native fish. Our results suggest that these innate differences in behaviour and growth, that probably are linked closely to fitness, will threaten native populations through competition and disruption of local adaptations.  相似文献   

3.

Gene editing offers opportunities to solve fish farming sustainability issues that presently hampers expansion of the aquaculture industry. In for example Atlantic salmon farming, there are now two major bottlenecks limiting the expansion of the industry. One is the genetic impact of escaped farmed salmon on wild populations, which is considered the most long-term negative effect on the environment. Secondly and the utmost acute problem is the fish parasite salmon lice, which is currently causing high lethality in wild salmonids due to high concentrations of the parasite in the sea owing to sea cage salmon farming. There are also sustainability issues associated with increased use of vegetable-based ingredients as replacements for marine products in fish feed. This transition comes at the expense of the omega-3 content both in fish feed and the fish filet of the farmed fish. Reduced fish welfare represents another obstacle, and robust farmed fish is needed to avoid negative stress associated phenotypes such as cataract, bone and fin deformities, precocious maturity and higher disease susceptibility. Gene editing could solve some of these problems as genetic traits can be altered positively to reach phenotype of interest such as for example disease resistance and increased omega-3 production.

  相似文献   

4.
This paper reviews the literature on disease interaction between wild and farmed fish and recommends strategies to reduce the disease risks to both populations. Most, if not all, diseases of farmed fish originate in wild populations. The close contact between farmed and wild fish readily leads to pathogens exchange. Aquaculture creates conditions ( e.g. high stocking levels) conducive to pathogen transmission and disease; hence pathogens can overspill back, resulting in high levels of challenge to wild populations. This is exemplified by sea lice infections in farmed Atlantic salmon. Stocking with hatchery reared fish or aquaculture escapees can affect disease dynamics in wild populations. Whirling disease has been spread to many wild rainbow trout populations in the US with the release of hatchery reared stock. The greatest impact of aquaculture on disease in wild populations has resulted from the movement of fish for cultivation. Examples of exotic disease introduction following movement of live fish for aquaculture with serious consequences for wild populations are reviewed. The salmon parasite, Gyrodactylus salaris, has destroyed wild salmon populations in 44 Norwegian rivers. Crayfish plague has wiped out European crayfish over much of Europe. Eels numbers have declined in Europe and infection with the swimbladder nematode Anguillicola crassus has in part been blamed. The impact of disease in farmed fish on wild populations can mitigated. Risk analysis methods need to be refined and applied to live fish movement and new aquacultural developments. Appropriate biosecurity strategies, based on risk assessments, should be developed to reduce pathogen exchange and mitigate the consequences.  相似文献   

5.
Domestication has been shown to have an effect on morphology and behaviour of Atlantic salmon (Salmo salar). We compared swimming costs of three groups of juvenile Atlantic salmon subject to different levels of domestication: (1) wild fish; (2) first generation farmed fish origination from wild genitors; and (2) seventh generation farmed fish originating from Norwegian aquaculture stocks. We assessed swimming costs under two types of turbulent flow (one mean flow velocity of 23 cm s?1 and two standard deviations of flow velocity of 5 and 8 cm s?1). Respirometry experiments were conducted with fish in a mass range of 5–15 g wet at a water temperature of 15° C. Our results confirm (1) that net swimming costs are affected by different levels of turbulence such that, for a given mean flow velocity, fish spent 1·5‐times more energy as turbulence increased, (2) that domesticated fish differed in their morphology (having deeper bodies and smaller fins) and in their net swimming costs (being up to 30·3% higher than for wild fish) and (3) that swimming cost models developed for farmed fish may be also be applied to wild fish in turbulent environments.  相似文献   

6.
Migratory behaviour at spawning of wild and newly-escaped farmed Atlantic salmon was analysed by radio telemetry in the River Alta, North Norway. Spawning areas were located by aerial surveys. Farmed females moved significantly more than wild females ( P <0.01). There was no such difference between the two groups of males. About 83% of the wild fish stayed within identified spawning areas for 1 day or longer. The corresponding figure for farmed salmon was only 43% ( P <0.05). Wild salmon stayed 8.1 days inside spawning areas and farmed salmon 5.2 days. The present results suggest that escaped farmed salmon had reduced spawning success compared with wild fish.  相似文献   

7.
8.
Spironucleus barkhanus isolated from the blood of Arctic charr Salvelinus alpinus from a marine fish farm were genetically compared with S. barkhanus isolated from the gall bladder of wild Arctic charr. The wild Arctic charr were caught in the lake used as the water source for the hatchery from which the farmed fish originated. Sequencing of the small subunit ribosomal RNA gene (SSU rDNA) from these 2 populations showed that the isolates obtained from farmed and wild Arctic charr were only 92.7 % similar. Based on the sequence differences between these isolates, it is concluded that the parasites isolated from the farmed fish have not been transmitted from wild Arctic charr in the hatchery's fresh water source. It is therefore most likely that the farmed fish were infected by S. barkhanus after they were transferred to seawater. S. barkhanus isolated from diseased farmed Arctic charr were 99.7% similar to the isolates obtained from diseased farmed Chinook (Canada) and Atlantic salmon (Norway). The high degree of sequence similarity between S. barkhanus from farmed Arctic charr, Chinook and Atlantic salmon indicates that systemic spironucleosis may be caused by specific strains/variants of this parasite. The genetic differences between the isolates of farmed and wild fish are of such magnitude that their conspecificity should be questioned.  相似文献   

9.
As the global population grows more of our fish and seafood are being farmed. Fish are the main dietary source of the omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, but these cannot be produced in sufficient quantities as are now required for human health. Farmed fish have traditionally been fed a diet consisting of fishmeal and fish oil, rich in n-3 LC-PUFA. However, the increase in global aquaculture production has resulted in these finite and limited marine ingredients being replaced with sustainable alternatives of terrestrial origin that are devoid of n-3 LC-PUFA. Consequently, the nutritional value of the final product has been partially compromised with EPA and DHA levels both falling. Recent calls from the salmon industry for new sources of n-3 LC-PUFA have received significant commercial interest. Thus, this review explores the technologies being applied to produce de novo n-3 LC-PUFA sources, namely microalgae and genetically engineered oilseed crops, and how they may be used in aquafeeds to ensure that farmed fish remain a healthy component of the human diet.  相似文献   

10.
1. Absolute and relative amounts of eicosapentaneoic acid (EPA) and docohexaenoic acid (DHA) in muscle of eels from four different fish farms were compared with samples from wild eels from two different areas of northern Italy. 2. Farmed eels were richer in DHA and EPA than wild animals. 3. The addition of cod liver oil to the diet of farmed eels led to a significant accumulation of EPA and DHA, but no change in total lipid content. 4. The calculation of two indices related to highly unsaturated fatty acid (HUFA) content (FLQ = fish lipid quality; AI = aterogenic index), indicated the higher nutritional value of farmed vs wild fish. 5. We conclude that farmed eels are an adequate source of fish products for human nutrition and propose use of the above-mentioned indices as an effective means for assessing fish nutritional quality for populations at high risk of chronic degenerative disease.  相似文献   

11.
Fishes farmed in sea pens may become infested by parasites from wild fishes and in turn become point sources for parasites. Sea lice, copepods of the family Caligidae, are the best-studied example of this risk. Sea lice are the most significant parasitic pathogen in salmon farming in Europe and the Americas, are estimated to cost the world industry €300 million a year and may also be pathogenic to wild fishes under natural conditions.Epizootics, characteristically dominated by juvenile (copepodite and chalimus) stages, have repeatedly occurred on juvenile wild salmonids in areas where farms have sea lice infestations, but have not been recorded elsewhere. This paper synthesizes the literature, including modelling studies, to provide an understanding of how one species, the salmon louse, Lepeophtheirus salmonis, can infest wild salmonids from farm sources. Three-dimensional hydrographic models predicted the distribution of the planktonic salmon lice larvae best when they accounted for wind-driven surface currents and larval behaviour. Caligus species can also cause problems on farms and transfer from farms to wild fishes, and this genus is cosmopolitan. Sea lice thus threaten finfish farming worldwide, but with the possible exception of L. salmonis, their host relationships and transmission adaptations are unknown. The increasing evidence that lice from farms can be a significant cause of mortality on nearby wild fish populations provides an additional challenge to controlling lice on the farms and also raises conservation, economic and political issues about how to balance aquaculture and fisheries resource management.  相似文献   

12.
In Scotland and elsewhere, there are concerns that escaped farmed Atlantic salmon (Salmo salar L.) may impact on wild salmon stocks. Potential detrimental effects could arise through disease spread, competition, or inter-breeding. We investigated whether there is evidence of a direct effect of recorded salmon escape events on wild stocks in Scotland using anglers' counts of caught salmon (classified as wild or farmed) and sea trout (Salmo trutta L.). This tests specifically whether documented escape events can be associated with reduced or elevated escapes detected in the catch over a five-year time window, after accounting for overall variation between areas and years. Alternate model frameworks were somewhat inconsistent, however no robust association was found between documented escape events and higher proportion of farm-origin salmon in anglers' catch, nor with overall catch size. A weak positive correlation was found between local escapes and subsequent sea trout catch. This is in the opposite direction to what would be expected if salmon escapes negatively affected wild fish numbers. Our approach specifically investigated documented escape events, contrasting with earlier studies examining potentially wider effects of salmon farming on wild catch size. This approach is more conservative, but alleviates some potential sources of confounding, which are always of concern in observational studies. Successful analysis of anglers' reports of escaped farmed salmon requires high data quality, particularly since reports of farmed salmon are a relatively rare event in the Scottish data. Therefore, as part of our analysis, we reviewed studies of potential sensitivity and specificity of determination of farmed origin. Specificity estimates are generally high in the literature, making an analysis of the form we have performed feasible.  相似文献   

13.
The normal shape of the salmonid ventricle is a triangular pyramid with the apex pointing caudoventrally. A strong positive correlation has been established between this shape and optimum cardiac output and function. Domesticated salmonids appear to have developed a more rounded ventricle with misaligned bulbus arteriosus. Several reports from fish health veterinarians indicate that fish with abnormal heart morphology have a high mortality rate during stress-inducing situations like grading, transportation and bath treatments. The present paper compares and describes the ventricle morphology of wild vs. farmed Atlantic salmon, and wild steelhead (anadromous rainbow trout) vs. farmed rainbow trout. Several parameters were measured to provide numerical measurement of the differences in shape, i.e. height:width ratio and the angle between the longitudinal ventricular axis and the axis of the bulbus arteriosus. We conclude that the hearts of farmed fish are rounder than those in corresponding wild fish, and that the angle between the ventricular axis and the axis of the bulbus arteriosus is more acute in wild fish than in their farmed counterparts. Further studies are necessary to reveal the prevalence, functional significance and possible causes of these abnormal hearts.  相似文献   

14.
The major sources of vitamin D for most humans are casual exposure of the skin to solar ultraviolet B (UVB; 290-315 nm) radiation and from dietary intake. The cutaneous synthesis of vitamin D is a function of skin pigmentation and of the solar zenith angle which depends on latitude, season, and time of day. In order to mimic the natural environment of skin to sunlight exposure, we therefore measured serum 25-hydroxyvitamin D levels in volunteers with different skin types following repeated UV irradiation. Because melanin pigment in human skin competes for and absorbs the UVB photons responsible for the photolysis of 7-dehydrocholesterol to previtamin D3, we also studied the effect of skin pigmentation on previtamin D3 production in a human skin model by exposing type II and type V skin samples to noon sunlight in June when the solar zenith angle is most acute. Vitamin D is rare in food. Among the vitamin D-rich food, oily fish are considered to be one of the best sources. Therefore, we analyzed the vitamin D content in several commonly consumed oily and non-oily fish. The data showed that farmed salmon had a mean content of vitamin D that was approximately 25% of the mean content found in wild caught salmon from Alaska, and that vitamin D2 was found in farmed salmon, but not in wild caught salmon. The results provide useful global guidelines for obtaining sufficient vitamin D3 by cutaneous synthesis and from dietary intake to prevent vitamin D deficiency and its health consequences, ensuing illness, especially, bone fractures in the elderly.  相似文献   

15.
Genetic interactions between farmed and wild conspecifics are of special concern in fisheries where large numbers of domesticated individuals are released into the wild. In the Atlantic salmon (Salmo salar), selective breeding since the 1970's has resulted in rapid genetic changes in commercially important traits, such as a doubling of the growth rate. Each year, farmed salmon escape from net pens, enter rivers, and interbreed with wild salmon. Field experiments demonstrate that genetic introgression may weaken the viability of recipient populations. However, due to the lack of diagnostic genetic markers, little is known about actual rates of gene flow from farmed to wild populations. Here we present a panel of 60 single nucleotide polymorphisms (SNPs) that collectively are diagnostic in identifying individual salmon as being farmed or wild, regardless of their populations of origin. These were sourced from a pool of 7000 SNPs comparing historical wild and farmed salmon populations, and were distributed on all but two of the 29 chromosomes. We suggest that the generic differences between farmed and wild salmon at these SNPs have arisen due to domestication. The identified panel of SNPs will permit quantification of gene flow from farmed to wild salmon populations, elucidating one of the most controversial potential impacts of aquaculture. With increasing global interest in aquaculture and increasing pressure on wild populations, results from our study have implications for a wide range of species.  相似文献   

16.
The extent and effect of disease interaction and pathogen exchange between wild and farmed fish populations is an ongoing debate and an area of research that is difficult to explore. The objective of this study was to investigate pathogen transmission between farmed and wild Atlantic salmon (Salmo salar L.) populations in Norway by means of molecular epidemiology. Piscine reovirus (PRV) was selected as the model organism as it is widely distributed in both farmed and wild Atlantic salmon in Norway, and because infection not necessarily will lead to mortality through development of disease. A matrix comprised of PRV protein coding sequences S1, S2 and S4 from wild, hatchery-reared and farmed Atlantic salmon in addition to one sea-trout (Salmo trutta L.) was examined. Phylogenetic analyses based on maximum likelihood and Bayesian inference indicate long distance transport of PRV and exchange of virus between populations. The results are discussed in the context of Atlantic salmon ecology and the structure of the Norwegian salmon industry. We conclude that the lack of a geographical pattern in the phylogenetic trees is caused by extensive exchange of PRV. In addition, the detailed topography of the trees indicates long distance transportation of PRV. Through its size, structure and infection status, the Atlantic salmon farming industry has the capacity to play a central role in both long distance transportation and transmission of pathogens. Despite extensive migration, wild salmon probably play a minor role as they are fewer in numbers, appear at lower densities and are less likely to be infected. An open question is the relationship between the PRV sequences found in marine fish and those originating from salmon.  相似文献   

17.
Domestication has been shown to have an effect on morphology and behaviour of Atlantic salmon ( Salmo salar ). We compared swimming costs of three groups of juvenile Atlantic salmon subject to different levels of domestication: (1) wild fish; (2) first generation farmed fish origination from wild genitors; and (2) seventh generation farmed fish originating from Norwegian aquaculture stocks. We assessed swimming costs under two types of turbulent flow (one mean flow velocity of 23 cm s−1 and two standard deviations of flow velocity of 5 and 8 cm s−1). Respirometry experiments were conducted with fish in a mass range of 5–15 g wet at a water temperature of 15° C. Our results confirm (1) that net swimming costs are affected by different levels of turbulence such that, for a given mean flow velocity, fish spent 1·5‐times more energy as turbulence increased, (2) that domesticated fish differed in their morphology (having deeper bodies and smaller fins) and in their net swimming costs (being up to 30·3% higher than for wild fish) and (3) that swimming cost models developed for farmed fish may be also be applied to wild fish in turbulent environments.  相似文献   

18.
The present study describes the use of molecular methods in studying infectious salmon anaemia virus (ISAV), an important pathogen of farmed salmon in Norway, Scotland, the Faeroe Islands, Canada, USA and Chile. The nucleotide sequences of the haemagglutinin gene (HA) from 70 ISAV isolates have been analysed for phylogenetic relationship and the average mutation rate of nucleotide substitutions calculated. The isolates constitute 2 major groups, 1 European and 1 North American group. The isolate from Chile is closely related to the North American isolates. The European isolates can be further divided into 3 separate groups reflecting geographical distribution, time of collection, and transmission connected with farming activity. Based on existing information about infectious salmon anaemia (ISA) and new information emerging from the present study, it is hypothesised that: (1) ISAV is maintained in wild populations of trout and salmon in Europe; (2) it is transmitted between wild hosts mainly during their freshwater spawning phase in rivers; (3) wild salmonids, mainly trout, possibly carry benign wild-type ISAV isolates; (4) a change (mutation) in virulence probably results from deletions of amino acid segments from the highly polymorphic region (HPR) of benign wild-type isolates; (5) ISA emerges in farmed Atlantic salmon when mutated isolates are transmitted from wild salmonids or, following mutation of benign isolates, in farmed salmon after transmission from wild salmonids; (6) farming activity is an important factor in transmission of ISAV between farming sites in addition to transmission of ISAV from wild salmonids to farmed salmon; (7) transmission of ISAV from farmed to wild salmonids probably occurs less frequently than transmission from wild to farmed fish due to lower frequency of susceptible wild individuals; (8) the frequency of new outbreaks of ISA in farmed salmon probably reflects natural variation in the prevalence of ISAV in wild populations of salmonids.  相似文献   

19.
The onset of exogenous feeding, when juveniles emerge from the gravel, is a critical event for salmonids where early emergence and large size provide a competitive advantage in the wild. Studying 131 farmed, hybrid and wild Norwegian Atlantic salmon families, originating from four wild populations and two commercial strains, we investigated whether approximately 10 generations of selection for faster growth has also resulted in increased somatic growth prior to the onset of exogenous feeding. In addition, we tested whether relaxed selection in farms has allowed for alterations in hatching time between farmed and wild salmon. Across three cohorts, wild salmon families hatched earlier than farmed salmon families, while hybrid families displayed intermediate hatching times. While the observed differences were small, i.e., 1–15 degree-days (0–3 days, as water temperatures were c. 5–6°C), these data suggest additive genetic variation for hatching time. Alevin length prior to exogenous feeding was positively related to egg size. After removal of egg size effects, no systematic differences in alevin length were observed between the wild and farmed salmon families. While these results indicate additive genetic variation for egg development timing, and wild salmon families consistently hatched earlier than farmed salmon families, these differences were so small they are unlikely to significantly influence early life history competition of farmed and wild salmon in the natural environment. This is especially the case given that the timing of spawning among females can vary by several weeks in some rivers. The general lack of difference in size between farmed and wild alevins, strongly suggest that the documented differences in somatic growth rate between wild and farmed Norwegian Atlantic salmon under hatchery conditions are first detectable after the onset of exogenous feeding.  相似文献   

20.
In some wild Atlantic salmon populations, rapid declines in numbers of wild returning adults has been associated with an increase in the prevalence of farmed salmon. Studies of phenotypic variation have shown that interbreeding between farmed and wild salmon may lead to loss of local adaptation. Yet, few studies have attempted to assess the impact of interbreeding at the genome level, especially among North American populations. Here, we document temporal changes in the genetic makeup of the severely threatened Magaguadavic River salmon population (Bay of Fundy, Canada), a population that might have been impacted by interbreeding with farmed salmon for nearly 20 years. Wild and farmed individuals caught entering the river from 1980 to 2005 were genotyped at 112 single-nucleotide polymorphisms (SNPs), and/or eight microsatellite loci, to scan for potential shifts in adaptive genetic variation. No significant temporal change in microsatellite-based estimates of allele richness or gene diversity was detected in the wild population, despite its precipitous decline in numbers over the last two decades. This might reflect the effect of introgression from farmed salmon, which was corroborated by temporal change in linkage-disequilibrium. Moreover, SNP genome scans identified a temporal decrease in candidate loci potentially under directional selection. Of particular interest was a SNP previously shown to be strongly associated with an important quantitative trait locus for parr mark number, which retained its genetic distinctiveness between farmed and wild fish longer than other outliers. Overall, these results indicate that farmed escapees have introgressed with wild Magaguadavic salmon resulting in significant alteration of the genetic integrity of the native population, including possible loss of adaptation to wild conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号