首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
拟南芥液泡膜Na+/H+逆向转运蛋白的研究进展   总被引:2,自引:0,他引:2  
安静  张荃 《生命科学》2006,18(3):273-278
拟南芥液泡膜Na /H 逆向转运蛋白是由AtNHX1基因编码的一个在盐胁迫中起重要作用的蛋白。本文综述了AtNHX1的基本结构、功能及作用机制,展望其作为有效植物耐盐基因的前景,并对拟南芥液泡膜Na /H 逆向转运蛋白基因家族其他成员的研究,也做了相应的概括。  相似文献   

3.
The Na+/H+ antiporter of alkaliphilic Bacillus sp.   总被引:1,自引:0,他引:1  
The Na+/H+ antiporter, which appears to predominantly contribute to the alkaliphily of Bacillus halodurans C-125, was studied in an alkali-sensitive mutant of this strain and a transformant with restored alkaliphily. The alkali-sensitive mutant, strain 38154, which has lost the ability to grow above pH 9.5, was found to lack electro-genic Na+/H+ antiport activity driven by ΔΨ (membrane potential, interior negative), and it showed defective regulation of intracellular pH under alkaline conditions. On the other hand, a transformant carrying a 2.0-kb DNA fragment from the parental genome that complemented this defect was able to maintain an intracellular pH lower than that of the external milieu, and it was found to have recovered the Na+/H+ antiport activity driven by ΔΨ. Sequence analyses found that a 5.1-kb DNA region contained four open reading frames (ORF-1 to ORF-4). Direct sequencing of the corresponding region in mutant 38154 revealed a G-to-A substitution, which resulted in an amino acid substitution from Gly-393 to Arg in the putative ORF-1 product. It has been recently found that a region homologous to the DNA fragment responsible for the alkaliphily of strain C-125 exists in the genomes of Bacillus subtilis, Sinorhizobium (Rhizobium) meliloti, and Staphylococcus aureus. These homologues are present as a cluster of seven ORFs in each case. The shaA gene product of B. subtilis shows significant similarity to the ORF-1 product of strain C-125. Disruption of the shaA gene resulted in a decrease in Na+/H+ antiport activity, and growth of the shaA-disrupted strain was impaired when the external Na+ concentration was increased. We conclude that the shaA gene encodes a Na+/H+ antiporter, which plays an important role in extrusion of cytotoxic Na+. Received: May 29, 2000 / Accepted: July 18, 2000  相似文献   

4.
The Arabidopsis monovalent cation:proton antiporter-1 (CPA1) family includes eight members, AtNHX1-8. AtNHX1 and AtNHX7/SOS1 have been well characterized as tonoplast and plasma membrane Na+/H+ antiporters, respectively. The proteins AtNHX2-6 have been phylogenetically linked to AtNHX1, while AtNHX8 appears to be related to AtNHX7/SOS1. Here we report functional characterization of AtNHX8. AtNHX8 T-DNA insertion mutants are hypersensitive to lithium ions (Li+) relative to wild-type plants, but not to the other metal ions such as sodium (Na+), potassium (K+) and caesium (Cs+). AtNHX8 overexpression in a triple-deletion yeast mutant AXT3 that exhibits defective Na+/Li+ transport specifically suppresses sensitivity to Li+, but does not affect Na+ sensitivity. Likewise, AtNHX8 overexpression complemented sensitivity to Li+, but not Na+, in sos1-1 mutant seedlings, and increased Li+ tolerance of both the sos1-1 mutant and wild-type seedlings. Results of Li+ and K+ measurement of loss-of-function and gain-of-function mutants indicate that AtNHX8 may be responsible for Li+ extrusion, and may be able to maintain K+ acquisition and intracellular ion homeostasis. Subcellular localization of the AtNHX8-enhanced green fluorescent protein (EGFP) fusion protein suggested that AtNHX8 protein is targeted to the plasma membrane. Taken together, our findings suggest that AtNHX8 encodes a putative plasma membrane Li+/H+ antiporter that functions in Li detoxification and ion homeostasis in Arabidopsis.  相似文献   

5.
6.
7.
利用RACE技术得到碱地肤KsNHX1的3'cDNA序列,分子系统进化分析显示,KsNHX1为液泡膜Na+/H+逆向转运蛋白编码基因.通过半定量RT-PCR检测了该基因在盐碱胁迫下的表达,结果表明:200 mmol·L-1 NaCl胁迫2~24h,KsNHX1在叶片中表达量持续增加;200 mmol·L-1 NaCl处理10 h,KsNHX1在根、茎、叶和花中的表达都上调;不同浓度NaCl处理下,叶片中KsNHX1表达上调,160 mmol·L-1时达到最高;低于400 mmol·L-1浓度下,根中该基因的表达也都上调.经不同浓度Na2CO3胁迫,根中KsNHX1的表达变化趋势与相应浓度NaCl胁迫下的变化相同;但叶片中除160 mmol·L-1 Na,CO3处理下KsNHX1表达略有上调外,其他浓度下KsNHX1的表达都低于对照.KsNHX1的表达模式暗示,在不同盐碱胁迫下,碱地肤能够维持体内相对稳定的K+/Na+,其耐盐特性可能与Na+/H+逆向转运蛋白的作用密切相关.  相似文献   

8.
A K+/H+ antiport system was detected for the first time in right-side-out membrane vesicles prepared from alkaliphilic Bacillus sp. no. 66 (JCM 9763). An outwardly directed K+ gradient (intravesicular K+ concentration, Kin, 100 mM; extravesicular K+ concentration, Kout, 0.25 mM) stimulated uphill H+ influx into right-side-out vesicles and created the inside-acidic pH gradient (ΔpH). This H+ influx was pH-dependent and increased as the pH increased from 6.8 to 8.4. Addition of 100 μM quinine inhibited the H+ influx by 75%. This exchange process was electroneutral, and the H+ influx was not stimulated by the imposition of the membrane potential (interior negative). Addition of K+ at the point of maximum ΔpH caused a rapid K+-dependent H+ eflux consistent with the inward exchange of external K+ for internal H+ by a K+/H+ antiporter. Rb+ and Cs+ could replace K+ but Na+ and Li+ could not. The H+ efflux rate was a hyperbolic function of K+ and increased with increasing extravesicular pH (pHout) from 7.5 to 8.5. These findings were consistent with the presence of K+/H+ antiport activity in these membrane vesicles. Received: March 20, 1997 / Accepted: May 22, 1997  相似文献   

9.
Three vacuolar cation/H+ antiporters, AtNHX1 (At5g27150), 2 (At3g05030) and 5 (At1g54370), have been characterized as functional Na+/H+ antiporters in Arabidopsis. However, the physiological functions of AtNHX3 (At5g55470) still remain unclear. In this study, the physiological functions of AtNHX3 were studied using T‐DNA insertion mutant and 35S‐driven AtNHX3 over‐expression Arabidopsis plants. RT‐PCR analyses revealed that AtNHX3 is highly expressed in germinating seeds, flowers and siliques. Experiments with AtNHX3::YFP fusion protein in tobacco protoplasts indicated that AtNHX3 is mainly localized to vacuolar membrane, with a minor localization to pre‐vacuolar compartments (PVCs) and endoplasmic reticulum (ER). Seedlings of null nhx3 mutants were hypersensitive to K+‐deficient conditions. Expression of AtNHX3 complemented the sensitivity to K+ deficiency in nhx3 seedlings. Tonoplast vesicles isolated from transgenic plants over‐expressing AtNHX3 displayed significantly higher K+/H+ exchange rates than those isolated from wild‐type plants. Furthermore, nhx3 seeds accumulated less K+ and more Na+ when both wild‐type and nhx3 were grown under normal growth condition. The overall results indicate that AtNHX3 encodes a K+/H+ antiporter required for low‐potassium tolerance during germination and early seedling development, and may function in K+ utilization and ion homeostasis in Arabidopsis.  相似文献   

10.
A Na(+)/H(+) antiporter gene was isolated from alkaliphilic Bacillus sp. G1. The full-length sequence of the Na(+)/H(+) antiporter gene was obtained using a genome walking method, and designated as g1-nhaC. An ORF preceded by a promoter-like sequence and a Shine-Dalgarno sequence, and followed by a terminator-like sequence was identified. The deduced amino acid sequence consists of 535 amino acids, and a calculated molecular mass of 57 776 Da. g1-nhaC was subsequently cloned into pET22b(+) and expressed in Escherichia coli BL21 (DE3). Recombinant E. coli harboring the g1-nhaC gene was able to grow in modified L medium at various concentrations of NaCl (0.2-2.0 M) at different pH values. The recombinant bacteria grew well in the medium with concentrations of NaCl as high as 1.75 M at pH 8.0-9.0. Minimal growth was observed at 2.0 M NaCl, pH 8.0-9.0. At pH 10, the recombinant bacteria grew well in a medium with a low concentration of NaCl (0.2 M). These results suggested that the g1-NhaC antiporter from Bacillus sp. G1 plays a role in Na(+) extrusion at lower pH values and in pH homeostasis at pH 10 under Na(+)-limiting conditions.  相似文献   

11.
王立光 《生物工程学报》2019,35(8):1424-1432
拟南芥内膜Na,K~+/H~+反向转运体(Endosomal NHX)的亚细胞定位、离子转运特性及生物学功能阐释取得了重要进展。拟南芥内膜Na~+,K~+/H~+反向转运体包含AtNHX5和AtNHX6两个成员,它们的氨基酸序列相似性为78.7%。研究表明,AtNHX5和AtNHX6具有功能冗余,它们都定位在高尔基体(Golgi)、反面高尔基体管网状结构(TGN)、内质网(ER)和液胞前体(PVC),参与调控耐盐胁迫、pH平衡和K~+平衡等。有报道显示内膜NHXs跨膜结构域存在能够调控自身离子活性的酸性保守氨基酸残基,对其自身功能具有决定性作用。最新研究结果表明,拟南芥内膜NHXs影响囊泡运输和蛋白存贮,并参与生长素介导的植物生长和发育。文中主要对拟南芥内膜NHXs的亚细胞定位、离子转运、功能及应用进展进行了概述。  相似文献   

12.
张耿  王赞  关宁  王学敏  李源  高洪文 《遗传》2007,29(10):1263-1270
根据小麦液泡膜Na /H 逆转运蛋白基因TaNHX1的全长序列设计引物,通过RT-PCR直接扩增的方法从中间偃麦草(Elytrigia intermedia)中克隆到了TaNHX1的同源基因,命名为TiNHX1(Acession Numeber:EF409418).TiNHX1最大开放阅读框为1 641 bp,编码含有546个氨基酸残基、分子量为59.8 kDa的蛋白,预测等电点8.0.TiNHX1含有38个碱性氨基酸,36个酸性氨基酸,256个疏水氨基酸及129个极性氨基酸.二级结构预测表明该蛋白含约44%的a-螺旋、21%的p-折叠、4%的p-转角和29%的不规则卷曲.亲疏水性分析显示,TiNHX1含有12个连续的疏水片断,其中10个可能构成穿膜螺旋.序列分析显示,TiNHX1与小麦(Triticum aestivum)、长穗偃麦草(Elytrigia elongate)、水稻(Oryza sativa)、小盐芥(Thellungiella halophila)、拟南芥(Arabidopsis thaliana)等植物的液泡膜Na /H 逆向转运蛋白高度同源,序列相似性分别为97%、96%、85%、68%、67%.序列比对结果以及进化树分析均表明TiNHX1应为定位于中间偃麦草液胞膜上的Na /H 逆向转运蛋白.  相似文献   

13.
A gene encoding a Na(+)/H(+) antiporter was cloned from a chromosomal DNA of Halobacillus dabanensis strain D-8(T) by functional complementation. Its presence enabled the antiporter-deficient Escherichia coli strain KNabc to survive in the presence of 0.2 M NaCl or 5 mM LiCl. The gene was sequenced and designated as nhaH. The deduced amino-acid sequence of NhaH consists of 403 residues with a calculated molecular mass of 43,481 Da, which was 54% identical and 76% similar to the NhaG Na(+)/H(+) antiporter of Bacillus subtilis. The hydropathy profile was characteristic of a membrane protein with 12 putative transmembrane domains. Everted membrane vesicles prepared from E. coli cells carrying nhaH exhibited Na(+)/H(+) as well as Li(+)/H(+) antiporter activity, which was pH-dependent with highest activities at pH 8.5-9.0 and at pH 8.5, respectively. Moreover, nhaH confers upon E. coli KNabc cells the ability to grow under alkaline conditions.  相似文献   

14.
15.
AtNHX5 and AtNHX6 are endosomal Na+,K+/H+ antiporters that are critical for growth and development in Arabidopsis, but the mechanism behind their action remains unknown. Here, we report that AtNHX5 and AtNHX6, functioning as H+ leak, control auxin homeostasis and auxin‐mediated development. We found that nhx5 nhx6 exhibited growth variations of auxin‐related defects. We further showed that nhx5 nhx6 was affected in auxin homeostasis. Genetic analysis showed that AtNHX5 and AtNHX6 were required for the function of the endoplasmic reticulum (ER)‐localized auxin transporter PIN5. Although AtNHX5 and AtNHX6 were colocalized with PIN5 at ER, they did not interact directly. Instead, the conserved acidic residues in AtNHX5 and AtNHX6, which are essential for exchange activity, were required for PIN5 function. AtNHX5 and AtNHX6 regulated the pH in ER. Overall, AtNHX5 and AtNHX6 may regulate auxin transport across the ER via the pH gradient created by their transport activity. H+‐leak pathway provides a fine‐tuning mechanism that controls cellular auxin fluxes.  相似文献   

16.
To examine the extracellular Na+ sensitivity of a renal inwardly rectifying K+ channel, we performed electrophysiological experiments on Xenopus oocytes or a human kidney cell line, HEK293, in which we had expressed the cloned renal K+ channel, ROMK1 (Kir1.1). When extracellular Na+ was removed, the whole-cell ROMK1 currents were markedly suppressed in both the oocytes and HEK293 cells. Single-channel ROMK1 activities recorded in the cell-attached patch on the oocyte were not affected by removal of Na+ from the pipette solution. However, macro-patch ROMK1 currents recorded on the oocyte were significantly suppressed by Na+ removal from the bath solution. A blocker of Na+/H+ antiporters, amiloride, largely inhibited the Na+ removal-induced suppression of whole-cell ROMK1 currents in the oocytes. The pH-insensitive K80M mutant of ROMK1 was much less sensitive to Na+ removal. Na+ removal was found to induce a significant decrease in intracellular pH in the oocytes using H+-selective microelectrodes. Coexpression of ROMK1 with NHE3, which is a Na+/H+ antiporter isoform of the kidney apical membrane, conferred increased sensitivity of ROMK1 channels to extracellular Na+ in both the oocytes and HEK293 cells. Thus, it is concluded that the ROMK1 channel is regulated indirectly by extracellular Na+, and that the interaction between NHE transporter and ROMK1 channel appears to be involved in the mechanism of Na+ sensitivity of ROMK1 channel via regulating intracellular pH. Received: 13 April 1999/Revised: 15 July 1999  相似文献   

17.
Vibrio parahaemolyticus mutants lacking three Na+/H+ antiporters (NhaA, NhaB, NhaD) were constructed. The DeltanhaA strains showed significantly higher sensitivity to LiCl regarding their growth compared to the parental strain. The DeltanhaA and DeltanhaB strains exhibited higher sensitivities to LiCl. The mutant XACabd lacking all of the three antiporters could not grow in the presence of 500 mM LiCl at pH 7.0, or 50 mM at pH 8.5. The XACabd mutant was also sensitive to 1.0 M NaCl at pH 8.5. These results suggest that Na+/H+ antiporters, especially NhaA, are responsible for resistance to LiCl and to high concentrations of NaCl. Reduced Na+/H+ and Li+/H+ antiport activities were observed with everted membrane vesicles of DeltanhaB strains. However, Li+/H+ antiport activities of DeltanhaB strains were two times higher than those of DeltanhaA strains when cells were cultured at pH 8.5. It seems that expression of nhaA and nhaB is dependent on medium pH to some extent. In addition, HQNO (2-heptyl-4-hydroxyquinoline N-oxide), which is a potent inhibitor of the respiratory Na+ pump, inhibited growth of XACabd, but not of the wild type strain. Moreover, survival rate of XACabd under hypoosmotic stress was lower than that of wild type strain. It is likely that the Na+/H+ antiporters are involved in osmoregulation under hypoosmotic stress. Based on these findings, we propose that the Na+/H+ antiporters cooperate with the respiratory Na+ pump in ionic homeostasis in V. parahaemolyticus.  相似文献   

18.
19.
The Arabidopsis genome contains many sequences annotated as encoding H(+)-coupled cotransporters. Among those are the members of the cation:proton antiporter-2 (CPA2) family (or CHX family), predicted to encode Na(+),K(+)/H(+) antiporters. AtCHX17, a member of the CPA2 family, was selected for expression studies, and phenotypic analysis of knockout mutants was performed. AtCHX17 expression was only detected in roots. The gene was strongly induced by salt stress, potassium starvation, abscisic acid (ABA) and external acidic pH. Using the beta-glucuronidase reporter gene strategy and in situ RT-PCR experiments, we have found that AtCHX17 was expressed preferentially in epidermal and cortical cells of the mature root zones. Knockout mutants accumulated less K(+) in roots in response to salt stress and potassium starvation compared with the wild type. These data support the hypothesis that AtCHX17 is involved in K(+) acquisition and homeostasis.  相似文献   

20.
A suspension‐cultured cell strain of the mangrove plant (Bruguiera sexangula) was established from a callus culture and maintained in an amino acid medium in the absence of NaCl. NaCl non‐adapted cells were transferred to media containing 0–200 mm NaCl. The initial growth rate decreased gradually with increasing salt concentrations. However, at up to 150 mm NaCl, cell number growth at the highest point was almost the same as that at lower salt concentrations. Cells even continued to grow in the presence of 200 mm NaCl. Cells incubated in a medium containing 50 mm NaCl for 3 weeks accumulated Na+, while those incubated in 150 mm NaCl for 2 d showed only a transient increase in Na+ and Cl concentrations. In the latter treatment, the intracellular concentration of Na+ returned to the original low level within 2 weeks. It took a longer time for Cl to return to its original level. As a result, the Na+ and Cl concentrations in cells cultured with 50 mm NaCl were much larger than those in cells cultured with 150 mm NaCl. The intracellular distribution of ions after transfer to the medium containing 150 mm NaCl was analysed by isolating the vacuoles. Treatment with amiloride, an inhibitor of the Na+/H+ antiporter, suppressed the recovery of Na+ to the original level in the cells. Treatment with 150 mm NaCl for 3 d stimulated the activities of both the vanadate‐dependent H+‐ATPase and the Na+/H+ antiporter in the plasma membrane fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号