首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chitin is produced in large amounts in hypersaline habitats with neutral pH due to the high biomass production of brine shrimp Artemia. Recently, a high abundance of Artemia was also noticed in hypersaline soda lakes in the Kulunda Steppe (Altai, Russia), which prompted us to survey the possibility of microbial chitin utilization at extremely haloalkaline conditions in soda brines. Most active chitin utilisation-supporting microbial growth was found at anaerobic conditions at pH 10 and up to 3.5?M total Na+. At aerobic conditions, the degradation of chitin was slower, mostly incomplete and active at <2?M total Na+, although very slow partial degradation was possible up to 4?M Na+. Anaerobic enrichments at pH 10 yielded two different groups of obligately haloalkaliphilic fermentative anaerobes, exclusively specialized to utilise insoluble chitin as the only growth substrate. One group was represented by a single strain growing at moderate salinity, and another comprised multiple isolates growing up to 3.5?M Na+. These groups represent two novel bacterial phyla not closely related to any other cultured bacteria. Aerobic enrichments from the lake sediments were dominated by several obligately haloalkaliphilic members of the genus Marinimicrobium in the Gammaproteobacteria. They were less specialised than the anaerobes and grew with chitin and its monomer and oligomers at a pH of 10 up to 2.5?M Na+. Furthermore, several strains of haloalkaliphilic Gram-positive chitinolytics belonging to bacilli and actinobacteria were isolated from soda lake sediments and surrounding soda soils. In general, the results indicate the presence of an active and diverse haloalkaliphilic chitinolytic microbial community in hypersaline soda habitats.  相似文献   

2.
Gram-positive bacteria capable of nitrogen fixation were obtained in microoxic enrichments from soda soils in south-western Siberia, north-eastern Mongolia, and the Lybian desert (Egypt). The same organisms were obtained in anoxic enrichments with glucose from soda lake sediments in the Kulunda Steppe (Altai, Russia) using nitrogen-free alkaline medium of pH 10. The isolates were represented by thin motile rods forming terminal round endospores. They are strictly fermentative saccharolytic anaerobes but tolerate high oxygen concentrations, probably due to a high catalase activity. All of the strains are obligately alkaliphilic and highly salt-tolerant natronophiles (chloride-independent sodaphiles). Growth was possible within a pH range from 7.5 to 10.6, with an optimum at 9.5–10, and within a salt range from 0.2 to 4 M Na+, with an optimum at 0.5–1.5 M for the different strains. The nitrogenase activity in the whole cells also had an alkaline pH optimum but was much more sensitive to high salt concentrations compared to the growing cells. The isolates formed a compact genetic group with a high level of DNA similarity. Phylogenetic analysis based on 16S-rRNA gene sequences placed the isolates into Bacillus rRNA group 1 as a separate lineage with Amphibacillus tropicus as the nearest relative. In all isolates the key functional nitrogenase gene nifH was detected. A new genus and species, Natronobacillus azotifigens gen. nov., sp. nov., is proposed to accommodate the novel diazotrophic haloalkaliphiles. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. The GenBank accession numbers for the 16S rRNA gene of the novel strains are EU143681-EU143690 and EU850814-EU850816; for the nifH gene the accession numbers are EU542601, EU563380-EU563386 and EU850817-EU850819.  相似文献   

3.
Two strains, asporogenous Z-7940 and sporogenous Z-7939, of a moderately haloalkaliphilic, obligately anaerobic, fermentative bacteria, motile, with Gram-positive cell wall structure, were isolated from soda deposits in Lake Magadi, Kenya. Both strains are mesophilic and utilize only two amino acids, histidine and glutamate, with formation of acetate and ammonium as the main end products. Strain Z-7939 in addition is able to utilize pyruvate. DNA-DNA homology between strains Z-7940 and Z-7939 was 94%, indicating that in spite of phenotypic differences they belong to the same species. They are true alkaliphiles with a pH range for growth of the type strain Z-7940 from pH 8.0 to pH 10.5, optimum at pH 9.4. Both strains obligately depend on sodium and bicarbonate ions. The optimum salt concentration for growth of the type strain is 8–10% wt/vol and the range from 4% to 16%. The G+C content of strain Z-7940 is 31.9 mol% and the strain Z-7939 is 32.3 mol%. Analysis of 16S rDNA sequence of the type strain shows it to belong to cluster XI of the low G+C Gram-positive bacteria. On the basis of its distinct phylogenetic position and physiological properties, we propose a new genus and new species Natronoincola histidinovorans for these strains. The type strain is Z-7940 (=DSM 11416). Received: 5 March 1998 / Accepted: 3 April 1998  相似文献   

4.
Phylogenetic analysis of the nifH genes, encoding the Fe protein of the nitrogenase enzymatic complex, was carried out for pure cultures of anoxygenic phototrophic bacteria of diverse origin, as well as for heterotrophic alkaliphilic sulfate reducers isolated from saline and soda lakes. Topology of the nitrogenase tree correlated with that of the 16S rRNA gene tree to a considerable degree, which made it possible to use the nifH gene as a molecular marker for investigation of diazotrophic bacterial communities in sediments of hyper saline and soda lakes. Although diazotrophs were revealed in all environmental samples, their phylogenetic diversity was relatively low. Sulfate-reducing deltaproteobacteria and photo- and chemotrophic gammaproteobacteria were predominant in integrated samples. Analysis of the upper sediment layers revealed predominance of phototrophic diazotrophs of various phyla, including purple sulfur and nonsulfur proteobacteria, green nonsulfur bacteria, heliobacteria, and cyanobacteria. Some phylotypes could not be identified, probably indicating the presence of bacterial groups which have not yet been studied by conventional microbiological techniques.  相似文献   

5.
Two different groups of haloalkaliphilic, obligately autotrophic, sulfur-oxidizing bacteria belonging to the genera Thioalkalimicrobium and Thioalkalivibrio have recently been discovered in highly alkaline and saline soda lakes. To understand response to their extreme environment and different occurrence in soda lakes, the growth kinetics and competitive behavior of several representatives have been characterized in detail using batch and pH-controlled continuous cultivation. The bacteria belong to the true alkaliphiles, growing within the pH range 7.5-10.6 with maximum growth rate and maximum growth yield at pH 9.5-10. On the basis of their response to salt content, three groups can be identified. All the Thioalkalimicrobium strains and some of the Thioalkalivibrio strains belonged to the moderate halophiles. Some of the Thioalkalivibrio strains from hypersaline soda lakes were extremely salt-tolerant and capable of growth in saturated soda brines. The Thioalkalimicrobium strains demonstrated relatively high specific growth rates, low growth yield, high maintenance, and extremely high rates of thiosulfate and sulfide oxidation. In contrast, the Thioalkalivibrio strains, in general, were slow-growing, high-yield organisms with lower maintenance and much lower rates of oxidation of sulfide and thiosulfate. Moreover, the latter survived starvation much better than Thioalkalimicrobium. Different growth characteristics and salt resistance appear to determine the outcome of the enrichment cultures from different soda lakes: Thioalkalimicrobium dominated in the enrichments with freshly obtained samples from diluted soda lakes at low-medium salinity, while Thioalkalivibrio was the predominant organism in enrichments from aged samples and at hypersaline conditions. In mixed thiosulfate-limited chemostat cultures at low salinity, Thioalkalimicrobium strains (mu(max)=0.33 h(-1)) out-competed Thioalkalivibrio strains (mu(max)=0.15 h(-1)) at D>0.02 h(-1). The overall results suggest that Thioalkalimicrobium and Thioalkalivibrio represent two different ecological strategies.  相似文献   

6.
It has been hypothesized that the potential for anaerobic metabolism might be a common feature of bacteria in coastal marine waters (L. Riemann and F. Azam, Appl. Environ. Microbiol. 68: 5554-5562, 2002). Therefore, we investigated whether different phylogenetic groups of heterotrophic picoplankton from the coastal North Sea were able to take up a simple carbon source under anoxic conditions. Oxic and anoxic incubations (4 h) or enrichments (24 h) of seawater with radiolabeled glucose were performed in July and August 2003. Bacteria with incorporated substrate were identified by using a novel protocol in which we combined fluorescence in situ hybridization and microautoradiography of cells on membrane filters. Incorporation of glucose under oxic and anoxic conditions was found in alpha-Proteobacteria, gamma-Proteobacteria, and the Cytophaga-Flavobacterium cluster of the Bacteroidetes at both times, but not in marine Euryarchaeota. In July, the majority of cells belonging to the alpha-proteobacterial Roseobacter clade showed tracer incorporation both in oxic incubations and in oxic and anoxic enrichments. In August, only a minority of the Roseobacter cells, but most bacteria affiliated with Vibrio spp., were able to incorporate the tracer under either condition. A preference for glucose uptake under anoxic conditions was observed for bacteria related to Alteromonas and the Pseudoalteromonas-Colwellia group. These genera are commonly considered to be strictly aerobic, but facultatively fermentative strains have been described. Our findings suggest that the ability to incorporate substrates anaerobically is widespread in pelagic marine bacteria belonging to different phylogenetic groups. Such bacteria may be abundant in fully aerated coastal marine surface waters.  相似文献   

7.
Strain Z-7934, an alkaliphilic, obligately anaerobic, fermentative, asporogenous bacterium with Gram-positive cell wall structure, was isolated from soda deposits in Lake Magadi, Kenya. The organism ferments only a few amino acids, preferentially arginine and ornithine, with production of acetate, propionate, and ammonia. It is a true alkaliphile, with pH range for growth ranging from 7.5 to 10.5 (optimum pH 8.5), and growth is dependent on the presence of sodium ions. The G+C content of the genomic DNA is 37.6 mol%. 16S rDNA sequence analysis of strain Z-7934 shows that it belongs phylogenetically to cluster XI of the low G+C Gram-positive bacteria. On the basis of its distinct phylogenetic position and unique physiological properties, we propose a new genus and new species, Tindallia magadii, for this strain. The type strain is Z-7934T (=DSM 10318). Received: 5 January 1998 / Accepted: 5 February 1998  相似文献   

8.
Molecular techniques were used to compare the compositions of the bacterial communities of the 2 following lagoons from the former soda Texcoco Lake, Mexico: the restored Facultativa lagoon and the Nabor Carrillo lagoon. Ribosomal intergenic spacer analysis (RISA) revealed that bacterial communities of the 2 lagoons were different and presented a relatively low diversity. Clone libraries of 16S rDNA genes were constructed, and significant phylotypes were distinguished by restriction fragment length polymorphism (RFLP). A representative clone from each phylotype was partially sequenced. Molecular identification and phylogenetic analyses based on ribosomal sequences revealed that the Facultativa lagoon harbored mainly gamma- and beta-Proteobacteria, low G+C Gram-positive bacteria, and several members of the Halobacteriaceae family of archaea. The Nabor Carrillo lagoon mainly included typical halophilic and alkaliphilic low G+C Gram-positive bacteria, gamma-Proteobacteria, and beta-Proteobacteria similar to those found in other soda lakes. Several probably noncultured new bacterial species were detected. Three strains were isolated from the Nabor Carrillo lagoon, their partial 16S rDNA sequences were obtained. On this basis, they were identified as Halomonas magadiensis (H1), Halomonas eurihalina (H2), and Staphylococcus sciuri (H3). This is the first study that uses molecular techniques to investigate potential genetic diversity in the Texcoco lakes. In this preliminary evaluation, we infer the presence of alkalophilic, halophilic, or haloalkaliphilic bacteria potentially useful for biotechnology.  相似文献   

9.
It has been hypothesized that the potential for anaerobic metabolism might be a common feature of bacteria in coastal marine waters (L. Riemann and F. Azam, Appl. Environ. Microbiol. 68: 5554-5562, 2002). Therefore, we investigated whether different phylogenetic groups of heterotrophic picoplankton from the coastal North Sea were able to take up a simple carbon source under anoxic conditions. Oxic and anoxic incubations (4 h) or enrichments (24 h) of seawater with radiolabeled glucose were performed in July and August 2003. Bacteria with incorporated substrate were identified by using a novel protocol in which we combined fluorescence in situ hybridization and microautoradiography of cells on membrane filters. Incorporation of glucose under oxic and anoxic conditions was found in α-Proteobacteria, γ-Proteobacteria, and the Cytophaga-Flavobacterium cluster of the Bacteroidetes at both times, but not in marine Euryarchaeota. In July, the majority of cells belonging to the α-proteobacterial Roseobacter clade showed tracer incorporation both in oxic incubations and in oxic and anoxic enrichments. In August, only a minority of the Roseobacter cells, but most bacteria affiliated with Vibrio spp., were able to incorporate the tracer under either condition. A preference for glucose uptake under anoxic conditions was observed for bacteria related to Alteromonas and the Pseudoalteromonas-Colwellia group. These genera are commonly considered to be strictly aerobic, but facultatively fermentative strains have been described. Our findings suggest that the ability to incorporate substrates anaerobically is widespread in pelagic marine bacteria belonging to different phylogenetic groups. Such bacteria may be abundant in fully aerated coastal marine surface waters.  相似文献   

10.
Anaerobic enrichment cultures with elemental sulfur as electron acceptor and either acetate or propionate as electron donor and carbon source at pH 10 and moderate salinity inoculated with sediments from soda lakes in Kulunda Steppe (Altai, Russia) resulted in the isolation of two novel members of the bacterial phylum Chrysiogenetes. The isolates, AHT11 and AHT19, represent the first specialized obligate anaerobic dissimilatory sulfur respirers from soda lakes. They use either elemental sulfur/polysulfide or arsenate as electron acceptor and a few simple organic compounds as electron donor and carbon source. Elemental sulfur is reduced to sulfide through intermediate polysulfide, while arsenate is reduced to arsenite. The bacteria belong to the obligate haloalkaliphiles, with a pH growth optimum from 10 to 10.2 and a salt range from 0.2 to 3.0 M Na+ (optimum 0.4–0.6 M). According to the phylogenetic analysis, the two strains were close to each other, but distinct from the nearest relative, the haloalkaliphilic sulfur-reducing bacterium Desulfurispirillum alkaliphilum, which was isolated from a bioreactor. On the basis of distinct phenotype and phylogeny, the soda lake isolates are proposed as a new genus and species, Desulfurispira natronophila (type strain AHT11T = DSM22071T = UNIQEM U758T).  相似文献   

11.
High Diversity of Diazotrophs in the Forefield of a Receding Alpine Glacier   总被引:2,自引:0,他引:2  
Forefields of receding glaciers are unique and sensitive environments representing natural chronosequences. In such habitats, microbial nitrogen fixation is of particular interest since the low concentration of bioavailable nitrogen is one of the key limitations for growth of plants and soil microorganisms. Asymbiotic nitrogen fixation in the Damma glacier (Swiss Central Alps) forefield soils was assessed using the acetylene reduction assay. Free-living diazotrophic diversity and population structure were resolved by assembling four NifH sequence libraries for bulk and rhizosphere soils at two soil age classes (8- and 70-year ice-free forefield). A total of 318 NifH sequences were analyzed and grouped into 45 unique phylotypes. Phylogenetic analyses revealed a higher diversity as well as a broader distribution of NifH sequences among phylogenetic clusters than formerly observed in other environments. This illustrates the importance of free-living diazotrophs and their potential contribution to the global nitrogen input in this nutrient-poor environment. NifH diversity in bulk soils was higher than in rhizosphere soils. Moreover, the four libraries displayed low similarity values. This indicated that both soil age and the presence of pioneer plants influence diversification and population structure of free-living diazotrophs.  相似文献   

12.
Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4+), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2 and PO43− are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the future.  相似文献   

13.
District heating systems (DHS) are extreme aqueous environments characterized by high temperatures, high pH (9.5-10.0), and low nutrient availability. Culture-independent and culture-dependent techniques showed that DHS may nevertheless harbour geno- and phenotypically diverse bacterial biofilm communities. Approximately 50% of the cells in biofilms growing on mild steel coupons in rotortorque reactors connected to the return line (40 degrees C) of a Danish DHS were detectable by FISH analysis and thus were probably metabolically active. A bacterial 16S rRNA gene clone library generated from the biofilms was dominated by proteobacterial phylotypes (closely related to known aerobic species) and by phylotypes affiliated to the anaerobic class Clostridia. Anoxic enrichment cultures derived from biofilms primarily contained 16S rRNA gene and dsrAB (encoding major subunits of dissimilatory sulfite reductase) phylotypes affiliated to the latter class. Alkalitolerant and neutrophilic anaerobic bacteria were isolated from the DHS, including novel Gram-positive and deltaproteobacterial sulfate-reducers and sulfite-reducers constituting novel Gram-positive lineages. In total, 39 distinct 16S rRNA gene phylotypes representing ten classes were identified. The detection of several alkalitolerant, sulfide-producing, and, thus, potentially biocorrosive species underlines the need to maintain a high water quality in the DHS in order to prevent the proliferation of these species.  相似文献   

14.
Nitrogen-fixing microorganisms play important roles in the structure and function of aquatic ecosystems. However, the diversity and distribution of diazotrophic bacteria along the lake depth continuum are so far poorly understood. In this study, we investigated the dynamic variations of diazotrophs in a subtropical deep reservoir during the stratified period. We applied an in-depth biomolecular approach (DGGE, clone libraries, and quantitative real-time PCR) to explore the nitrogenase (nifH) gene diversity and abundance. The diazotrophic community shifted between the oxic/anoxic interface and the nifH diversity increased with depth. The Cyanobacteria, affiliated to the toxic bloom-forming Cylindrospermopsis raciborskii, were the dominant diazotrophic cluster in the surface waters, whereas diazotrophic Alphaproteobacteria were dominant in the bottom waters. The relationships between microbial and environmental factors clearly demonstrated that the temperature gradient and the oxygen concentration affect the heterogeneity of the diazotrophic community, thereby influencing the entire aquatic nitrogen cycle.  相似文献   

15.
Enrichment with isobutyronitrile as the sole carbon, energy and nitrogen source at pH 10, using soda solonchak soils as an inoculum, resulted in the selection of a binary culture consisting of two different spore-forming phenotypes. One of them, strain ANL-iso4, was capable of growth with isobutyronitrile as a single substrate, while the other phenotype only utilized products of isobutyronitrile hydrolysis, such as isobutyroamide and isobutyrate. Strain ANL-iso4 is an obligate alkaliphile and a moderately salt-tolerant bacterium. Apart from isobutyronitrile, it grew on other (C3-C6) aliphatic nitriles at pH 10. Resting cells of ANL-iso4 actively hydrolyzed a number of aliphatic and arylaliphatic nitriles and their corresponding amides. The latter, together with the intermediate formation of amides during nitrile hydrolysis, indicated the presence of a nitrile hydratase/amidase system in the novel bacterium. Although present in an alkaliphilic bacterium, both nitrile- and amide-hydrolyzing activities had a pH optimum within the neutral range, probably due to their intracellular localization. On the basis of phenotypic and phylogenetic analyses, strain ANL-iso4 is proposed as a new species Bacillus alkalinitrilicus sp. nov.  相似文献   

16.
Abstract Two new diazotrophic bacteria, Listonella anguillarum and Vibrio campbellii , and one non-nitrogen-fixing bacterium, Staphylococcus sp., were isolated from the rhizosphere of mangrove trees. Strains of these newly-defined diazotrophs are known as pathogenic bacteria in fish and shellfish. During the purification of diazotrophic species from the entire rhizosphere population, N2-fixation of the bacterial mixtures decreased. When grown in vitro in mixed cultures, the non-fixing bacterium Staphylococcus sp. increased the nitrogen-fixing capacity of L. anguillarum by 17% over the pure culture; the nitrogen-fixing capacity per bacterial cell increased 22%. This interaction was not due to a change in O2 concentration. Staphylococcus sp. decreased the nitrogen-fixing capacity of V. campbellii by 15%.
These findings indicate that (i) other species of rhizosphere bacteria, apart from the common diazotrophic species, should be evaluated for their contribution to the nitrogen-fixation process in mangrove communities; and (ii) the nitrogen-fixing activity detected in the rhizosphere of mangrove plants is probably not the result of individual nitrogen-fixing strains, but the sum of interactions between members of the rhizosphere community.  相似文献   

17.
N(2) fixation by diazotrophic bacteria associated with the roots of the smooth cordgrass, Spartina alterniflora, is an important source of new nitrogen in many salt marsh ecosystems. However, the diversity and phylogenetic affiliations of these rhizosphere diazotrophs are unknown. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified nifH sequence segments was used in previous studies to examine the stability and dynamics of the Spartina rhizosphere diazotroph assemblages in the North Inlet salt marsh, near Georgetown, S.C. In this study, plugs were taken from gel bands from representative DGGE gels, the nifH amplimers were recovered and cloned, and their sequences were determined. A total of 59 sequences were recovered, and the amino acid sequences predicted from them were aligned with sequences from known and unknown diazotrophs in order to determine the types of organisms present in the Spartina rhizosphere. We recovered numerous sequences from diazotrophs in the gamma subdivision of the division Proteobacteria (gamma-Proteobacteria) and from various anaerobic diazotrophs. Diazotrophs in the alpha-Proteobacteria were poorly represented. None of the Spartina rhizosphere DGGE band sequences were identical to any known or previously recovered environmental nifH sequences. The Spartina rhizosphere diazotroph assemblage is very diverse and apparently consists mainly of unknown organisms.  相似文献   

18.
Soda lake sediments usually contain high concentrations of sulfide indicating active sulfate reduction. Monitoring of sulfate-reducing bacteria (SRB) in soda lakes demonstrated a dominance of two groups of culturable SRB belonging to the order Desulfovibrionales specialized in utilization of inorganic electron donors, such as formate, H2 and thiosulfate. The most interesting physiological trait of the novel haloalkaliphilic SRB isolates was their ability to grow lithotrophically by dismutation of thiosulfate and sulfite. All isolates were obligately alkaliphilic with a pH optimum at 9.5–10 and moderately salt tolerant. Among the fifteen newly isolated strains, four belonged to the genus Desulfonatronum and the others to the genus Desulfonatronovibrio. None of the isolates were closely related to previously described species of these genera. On the basis of phylogenetic, genotypic and phenotypic characterization of the novel soda lake SRB isolates, two novel species each in the genera Desulfonatronum and Desulfonatronovibrio are proposed.  相似文献   

19.
A heterotrophic bacterial strain AGD 8-3 capable of denitrification under extreme haloalkaline conditions was isolated from soda solonchak soils of the Kulunda steppe (Russia). The strain was classified within the genus Halomonas. According to the results of 16S rRNA gene sequencing, Halomonas axialensis, H. meridiana, and H. aquamarina are most closely related to strain AGD 8-3 (96.6% similarity). Similar to other members of the genus, the strain can grow within a wide range of salinity and pH. The strain was found to be capable of aerobic reduction of chromate and selenite on mineral media at 160 g/l salinity and pH 9.5–10. The relatively low level of phylogenetic similarity and the phenotypic characteristics supported classification of strain AGD 8-3 as a new species Halomonas chromatireducens.  相似文献   

20.
In order to study the effect of different chloroethenes (electron acceptors) on the bacterial composition of dechlorinating communities, two reductive dechlorinating enrichment cultures were developed that were able to reduce trichloroethene (TCE) and cis-1,2-dichloroethene (cis-DCE) to ethene using hydrogen as electron donor, respectively. The inoculum for the cultures was material from a methanogenic fluidized bed reactor (FBR), which was originally seeded with digester sludge and showed a stable capacity for tetrachloroethene (PCE) reduction to ethene for over six years. Molecular methods were used to determine and compare the microbial communities of these two enrichment cultures. A clone library of bacterial 16S rRNA genes was generated for each enrichment. The clones were screened into different groups by restriction fragment length polymorphism (RFLP) analysis using two different four base pair recognition restriction enzymes. A total of 12 sequence types were identified by phylogenetic analysis of nearly complete 16S rDNA sequences ( approximately 1450 bp). The sequences were affiliated with six recognized phyla of the domain Bacteria: Firmicutes (low G+C Gram-positives), Chloroflexi (green non-sulphur bacteria), Actinobacteria (high G+C Gram-positives), Bacteroidetes (Cytophaga-Flexibacter-Bacteroides), Nitrospira and Spirochaetes. The results led to the identification of an organism closely related to Dehalococcoides ethenogenes to be the presumptive dechlorinator in both enrichments. Different electron acceptors affected the bacterial diversity and the community profiles of the two enrichments. Most of the sequences identified in our dechlorinating enrichments shared high similarities with sequences previously obtained from other enriched dechlorinating cultures and chlorinated-compound-contaminated sediments or aquifers, suggesting these bacteria may have direct or indirect roles in reductive dechlorination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号