首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Several studies have suggested a role for human genetic risk factors in the susceptibility to developing tuberculosis (TB). However, results of these studies have been inconsistent, and one potential reason for these inconsistencies is variation in aspects of study design. Specifically, phenotype definitions and population genetic factors have varied dramatically. Since TB is a complex trait, there are many challenges in designing studies to assess appropriately human genetic risk factors for the development of TB as opposed to the acquisition of latent M. tuberculosis infection. In this review we summarize these important study design differences, with illustrations from the TB genetics literature. We cite specific examples of studies of the NRAMP1 (SLC11A1) gene and present Fisher??s combined p values for different stratifications of these studies to further illustrate the impact of study design differences. Finally, we provide suggestions for the design of future genetic epidemiological studies of TB.  相似文献   

3.
The genetic relations of the apes have been the source of contention throughout the last decade. A potentially useful suite of phylogenetic characters is the distribution of darkly staining material (heterochromatin) in the chromosomes of the apes. While the precise etiology of this character suite remains unclear, it appears to be fairly easily reconciled to hominoid phylogeny in general. The distribution of heterochromatin at the tips of the chromosomes of gorillas and chimpanzees suggests a phylogenetic association between those two taxa exclusive of humans. © 1993 Wiley-Liss, Inc.  相似文献   

4.
Balmain A 《Cell》2002,108(2):145-152
Cancer directly affects at least one-third of the human population, but the inherited genetic determinants of cancer risk remain largely unknown. Mouse models of human cancer are helping us to understand this disease as a complex genetic trait and thus to identify the multiple genetic variant alleles involved in pathways that affect individual cancer susceptibility.  相似文献   

5.
Root-knot nematodes are obligate parasites of a wide range of plant species and can feed only on the cytoplasm of living plant cells. In the absence of a suitable plant host, infective juveniles of strain VW9 of the Northern root-knot nematode, Meloidogyne hapla, when dispersed in Pluronic F-127 gel, aggregate into tight, spherical clumps containing thousands of worms. Aggregation or clumping behavior has been observed in diverse genera in the phylum Nematoda spanning free-living species such as Caenorhabditis elegans as well as both plant and animal parasites. Clumping behavior differs between strains of M. hapla and occurs with other species within this genus where strain-specific differences in clumping ability are also apparent. Exposure of M. hapla juveniles to a gradient formed using low levels of cyanide promotes formation of clumps at a preferred cyanide level. Analysis of F2 lines from a cross of M. hapla strains that differ in clump-forming behavior reveals that the behavior segregates as a single, major locus that can be positioned on the genetic map of this nematode. Clumping behavior may be a survival strategy whose importance and function depend on the niche of the nematode strain or species.  相似文献   

6.
Replication of linkage results for complex traits has been exceedingly difficult, owing in part to the inability to measure the precise underlying phenotype, small sample sizes, genetic heterogeneity, and statistical methods employed in analysis. Often, in any particular study, multiple correlated traits have been collected, yet these have been analyzed independently or, at most, in bivariate analyses. Theoretical arguments suggest that full multivariate analysis of all available traits should offer more power to detect linkage; however, this has not yet been evaluated on a genomewide scale. Here, we conduct multivariate genomewide analyses of quantitative-trait loci that influence reading- and language-related measures in families affected with developmental dyslexia. The results of these analyses are substantially clearer than those of previous univariate analyses of the same data set, helping to resolve a number of key issues. These outcomes highlight the relevance of multivariate analysis for complex disorders for dissection of linkage results in correlated traits. The approach employed here may aid positional cloning of susceptibility genes in a wide spectrum of complex traits.  相似文献   

7.
Potato is the third most important staple food crop in terms of consumption, yet it is relatively susceptible to yield loss because of drought. As a first step towards improving drought tolerance in this crop, we set out to identify the genetic basis for drought tolerance in a diploid potato mapping population. Experiments were carried out under greenhouse conditions in two successive years by recording four physiological, seven growth and three yield parameters under stress and recovery treatments. Genotypes showed significant variation for drought and recovery responses. The traits measured had low to moderately high heritabilities (ranging from 22 to 74?%). A total of 47 quantitative trait loci (QTL) were identified, of which 28 were drought-specific, 17 under recovery treatment and two under well-watered conditions. The majority of these growth and yield QTL co-localized with a QTL for maturity on chromosome 5. Four QTL for ??13C, three for chlorophyll content and one for chlorophyll fluorescence (F v/F m) were found to co-localize with yield and other growth trait QTL identified on other chromosomes. Several multi-year and multi-treatment QTL were detected and QTL?×?environment interaction was found for ??13C. To our knowledge, this is the first comprehensive QTL study on water deficit and recovery potential in potato.  相似文献   

8.
The genetic dissection of complex traits in a founder population   总被引:11,自引:0,他引:11       下载免费PDF全文
We estimated broad heritabilities (H(2)) and narrow heritabilities (h(2)) and conducted genomewide screens, using a novel association-based mapping approach for 20 quantitative trait loci (QTLs) among the Hutterites, a founder population that practices a communal lifestyle. Heritability estimates ranged from.21 for diastolic blood pressure (DBP) to.99 for whole-blood serotonin levels. Using a multipoint method to detect association under a recessive model we found evidence of major QTLs for six traits: low-density lipoprotein (LDL), triglycerides, lipoprotein (a) (Lp[a]), systolic blood pressure (SBP), serum cortisol, and whole-blood serotonin. Second major QTLs for Lp(a) and for cortisol were identified using a single-point method to detect association under a general two-allele model. The heritabilities for these six traits ranged from.37 for triglycerides to.99 for serotonin, and three traits (LDL, SBP, and serotonin) had significant dominance variances (i.e., H(2) > h(2)). Surprisingly, there was little correlation between measures of heritability and the strength of association on a genomewide screen (P>.50), suggesting that heritability estimates per se do not identify phenotypes that are influenced by genes with major effects. The present study demonstrates the feasibility of genomewide association studies for QTL mapping. However, even in this young founder population that has extensive linkage disequilibrium, map densities <5 cM may be required to detect all major QTLs.  相似文献   

9.
10.
Quantitative genetic dissection of complex traits in a QTL-mapping pedigree   总被引:1,自引:0,他引:1  
This paper summarizes and modifies quantitative genetic analyses on a pedigree used to map genetic factors (i.e., QTLs) underlying a complex trait. The total genetic variance can be exactly estimated based on the F2 family derived from two homozygous parents for alternative alleles at all QTLs of interest. The parents, F1 hybrids, and two backcrosses are combined to each parent, and the total number of QTLs and the number of dominant QTLs are estimated under the assumptions of gene association with the two parents, equal gene effect, no linkage, and no epistasis among QTLs. Further relaxation for each of the assumptions are made in detail. The biometric estimator for the QTL number and action mode averaged over the entire genome could provide some basic and complementary information to QTL mapping designed to detect the effect and location of specific genetic factors.  相似文献   

11.
Quantitative traits are often influenced by many loci with small effects. Identifying most of these loci and resolving them to specific genes or genetic variants is challenging. Yet, achieving such a detailed understanding of quantitative traits is important, as it can improve our knowledge of the genetic and molecular basis of heritable phenotypic variation. In this study, we use a genetic mapping strategy that involves recurrent backcrossing with phenotypic selection to obtain new insights into an ecologically, industrially, and medically relevant quantitative trait—tolerance of oxidative stress, as measured based on resistance to hydrogen peroxide. We examine the genetic basis of hydrogen peroxide resistance in three related yeast crosses and detect 64 distinct genomic loci that likely influence the trait. By precisely resolving or cloning a number of these loci, we demonstrate that a broad spectrum of cellular processes contribute to hydrogen peroxide resistance, including DNA repair, scavenging of reactive oxygen species, stress-induced MAPK signaling, translation, and water transport. Consistent with the complex genetic and molecular basis of hydrogen peroxide resistance, we show two examples where multiple distinct causal genetic variants underlie what appears to be a single locus. Our results improve understanding of the genetic and molecular basis of a highly complex, model quantitative trait.  相似文献   

12.

Key message

A comprehensive linkage atlas for seed yield in rapeseed.

Abstract

Most agronomic traits of interest for crop improvement (including seed yield) are highly complex quantitative traits controlled by numerous genetic loci, which brings challenges for comprehensively capturing associated markers/genes. We propose that multiple trait interactions underlie complex traits such as seed yield, and that considering these component traits and their interactions can dissect individual quantitative trait loci (QTL) effects more effectively and improve yield predictions. Using a segregating rapeseed (Brassica napus) population, we analyzed a large set of trait data generated in 19 independent experiments to investigate correlations between seed yield and other complex traits, and further identified QTL in this population with a SNP-based genetic bin map. A total of 1904 consensus QTL accounting for 22 traits, including 80 QTL directly affecting seed yield, were anchored to the B. napus reference sequence. Through trait association analysis and QTL meta-analysis, we identified a total of 525 indivisible QTL that either directly or indirectly contributed to seed yield, of which 295 QTL were detected across multiple environments. A majority (81.5%) of the 525 QTL were pleiotropic. By considering associations between traits, we identified 25 yield-related QTL previously ignored due to contrasting genetic effects, as well as 31 QTL with minor complementary effects. Implementation of the 525 QTL in genomic prediction models improved seed yield prediction accuracy. Dissecting the genetic and phenotypic interrelationships underlying complex quantitative traits using this method will provide valuable insights for genomics-based crop improvement.
  相似文献   

13.
It is appropriate that this review should appear in a volume dedicated to Mert Bernfield. Much of my interest in the cell biology of the extracellular matrix, particularly during development, echoes Mert's pioneering studies. His kind but provocative questioning during meetings is especially missed. The glycosaminoglycan hyaluronan is ubiquitous, and is especially abundant during embryogenesis. Hydrated matrices rich in hyaluronan expand the extracellular space, facilitating cell migration. The viscoelastic properties of hyaluronan are also essential for proper function of cartilage and joints. Recent understanding of hyaluronan biology has benefited from the identification of genes encoding hyaluronan synthases and hyaluronidases, genetic analysis of the roles of hyaluronan during development, elucidation of the biochemical mechanisms of hyaluronan synthesis, and by studies of human genetics and tumors. This review focuses on recent studies utilizing hyaluronan-deficient, gene targeted mice with null alleles for the principal source of hyaluronan during mid-gestation, hyaluronan synthase-2 (has-2). Published in 2003.  相似文献   

14.
? The seasonal timing of growth events is crucial to tree distribution and conservation. The seasonal growth cycle is strongly adapted to the local climate that is changing because of global warming. We studied bud set as one cornerstone of the seasonal growth cycle in an integrative approach. ? Bud set was dissected at the phenotypic level into several components, and phenotypic components with most genetic variation were identified. While phenotypic variation resided in the timing of growth cessation, and even so more in the duration from growth cessation to bud set, the timing of growth cessation had a stronger genetic component in both natural and hybrid populations. ? Quantitative trait loci (QTL) were identified for the most discriminative phenotypic bud-set components across four poplar pedigrees. The QTL from different pedigrees were recurrently detected in six regions of the poplar genome. ? These regions of 1.83-4.25 Mbp in size, containing between 202 and 394 genes, form the basis for further molecular-genetic dissection of bud set.  相似文献   

15.
Aluminum (Al) toxicity, which is caused by the solubilization of Al3+ in acid soils resulting in inhibition of root growth and nutrient/water acquisition, is a serious limitation to crop production, because up to one-half of the world's potentially arable land is acidic. To date, however, no Al tolerance genes have yet been cloned. The physiological mechanisms of tolerance are somewhat better understood; the major documented mechanism involves the Al-activated release of Al-binding organic acids from the root tip, preventing uptake into the primary site of toxicity. In this study, a quantitative trait loci analysis of Al tolerance in Arabidopsis was conducted, which also correlated Al tolerance quantitative trait locus (QTL) with physiological mechanisms of tolerance. The analysis identified two major loci, which explain approximately 40% of the variance in Al tolerance observed among recombinant inbred lines derived from Landsberg erecta (sensitive) and Columbia (tolerant). We characterized the mechanism by which tolerance is achieved, and we found that the two QTL cosegregate with an Al-activated release of malate from Arabidopsis roots. Although only two of the QTL have been identified, malate release explains nearly all (95%) of the variation in Al tolerance in this population. Al tolerance in Landsberg erecta x Columbia is more complex genetically than physiologically, in that a number of genes underlie a single physiological mechanism involving root malate release. These findings have set the stage for the subsequent cloning of the genes responsible for the Al tolerance QTL, and a genomics-based cloning strategy and initial progress on this are also discussed.  相似文献   

16.
17.
18.
Many genetic traits have complex modes of inheritance; they may exhibit incomplete or age-dependent penetrance or fail to show any clear Mendelian inheritance pattern. As primary linkage maps for the human genome near completion, it is becoming increasingly possible to map these traits. Prior to undertaking a linkage study, it is important to consider whether the pedigrees available for the proposed study are likely to provide sufficient information to demonstrate linkage, assuming a linked marker is tested. In the current paper, we describe a computer simulation method to estimate the power of a proposed study to detect linkage for a complex genetic trait, given a hypothesized genetic model for the trait. Our method simulates trait locus genotypes consistent with observed trait phenotypes, in such a way that the probability to detect linkage can be estimated by sample statistics of the maximum lod score distribution. The method uses terms available when calculating the likelihood of the trait phenotypes for the pedigree and is applicable to any trait determined by one or a few genetic loci; individual-specific environmental effects can also be dealt with. Our method provides an objective answer to the question, Will these pedigrees provide sufficient information to map this complex genetic trait?  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号