首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用CRISPR/Cas9基因编辑技术构建大鼠L2细胞α-ENaC基因敲除的细胞株,研究α-ENaC基因对细胞增殖的影响。构建敲除α-ENaC基因的CRISPR/Cas9表达载体和筛选报告载体,通过转染和嘌呤霉素筛选获得单克隆细胞株,Western Blot、测序确定突变的细胞株,CCK-8检测突变细胞株的增殖活力。成功构建靶向α-ENaC基因第一外显子的CRISPR/Cas9表达载体和筛选报告载体,嘌呤霉素筛选后,挑选8个单细胞克隆中有两个单细胞克隆α-ENaC蛋白表达下降,一个单细胞克隆α-ENaC蛋白不再表达,测序结果显示3个单细胞克隆分别为2个单等位基因突变和1个双等位基因突变,且未发现脱靶现象。突变细胞株的增殖活力降低,其中双等位基因突变细胞株增殖活力降低更为显著。因此,利用CRISPR/Cas9结合SSA-RPG报告载体成功获得了α-ENaC基因敲除的L2细胞株,α-ENaC与细胞增殖有关。  相似文献   

2.
目的:建立CRISPR/Cas9n系统,用于敲除人源黏着斑蛋白(VCL)基因。方法:设计一个靶向人源VCL基因第3个外显子的单向导RNA(sgRNA),分别克隆表达载体后,通过慢病毒转入人MDA-MB-231细胞,通过PCR及Western印迹检测细胞株中VCL基因的敲除效果。结果:测序结果显示靶向VCL基因CRISPR/Cas9重组质粒构建成功;PCR产物测序结果表明本次设计的Cas9/sgRNA能够对VCL基因进行编辑敲除;Western印迹显示Cas9-VCL组的MDA-MB-231细胞内VCL表达水平较对照组显著降低。结论:通过CRISPR/Cas9系统获得了靶向VCL基因的重组质粒,构建的重组质粒能有效敲除VCL。  相似文献   

3.
目的:利用CRISPR/Cas9基因编辑技术敲除人肝癌细胞HepG2中的四个半LIM结构域蛋白1(FHL1)基因,构建FHL1基因敲除的HepG2稳定细胞株。方法:根据CRISPR/Cas9靶点设计规则,设计特异性识别FHL1基因第三外显子相关序列的上下游小向导RNA,构建真核重组表达质粒,测序鉴定后,将重组质粒包装慢病毒感染HepG2细胞,用嘌呤霉素抗性筛选稳定敲除FHL1基因的细胞株,用免疫印迹法鉴定HepG2细胞中FHL1基因的敲除效果,利用生长曲线实验和划痕实验检测基因敲除对细胞生长和迁移的影响。结果:筛选出敲除FHL1基因的HepG2细胞株,且FHL1基因敲除显著促进细胞的增殖和迁移。结论:利用CRISPR/Cas9技术获得了内源FHL1基因敲除细胞株,初步实验提示敲除FHL1基因可以促进肝癌细胞增殖和迁移,为后续研究FHL1在肝癌中的功能奠定了基础。  相似文献   

4.
CRISPR/Cas9是新一代基因组编辑技术,可简便快捷地在哺乳动物细胞对基因进行敲除、敲入。但常规的CRISPR/Cas9表达系统直接转染效果差、病毒包装效率低,极大地限制了CRISPR/Cas9系统的广泛使用。该研究应用Tet-on系统,建立了Dox诱导Cas9表达的293T细胞株,命名为293T-i Cas9。MEIS1(myeloid ectropic viral integration site 1)是TALE(three amino acid loop extension)同源域家族的转录因子,其在白血病发生发展、胚胎造血系统发育及神经系统发育中有重要作用,但其作用机制仍未完全明确。将靶向MEIS1 Exon3的sg MEIS1表达载体转入293T-iCas9,SURVEYOR实验和Western blot检测结果表明,sg MEIS1有效地指导Cas9进行基因组编辑。最终经测序和Western blot结果证明,成功建立了MEIS1敲除细胞株,这为研究MEIS1的功能提供了重要的工具。  相似文献   

5.
[目的]利用CRISPR/Cas9技术对猪内源性逆转录病毒(PERV)进行编码区的大片段敲除,获得PERV敲除的阳性PK15单克隆细胞系。[方法]通过对巴马小型猪基因组进行高通量测序,获得PERV高度保守序列,再根据CRISPR/Cas9的构建原理,设计2个gRNA,并将其同时整合入含有PB转座子的可表达Cas9蛋白的载体中,即PB-CAG-2×gRNA-Cas9载体。然后以电转方式将打靶载体转入PK15细胞中,并通过药物(G418)筛选方法筛出单细胞克隆。通过PCR鉴定,挑出阳性克隆,并将其传代扩大获得细胞系。[结果]酶切、测序验证了载体PB-CAG-2×gRNA-Cas9的正确性,PCR结果显示7株单克隆细胞系均有约3600bp的PERV大片段敲除。[结论]构建了PERV敲除的基因打靶载体PB-CAG-2×gRNA-Cas9,并利用该载体成功打靶获得了7株PERV大片段敲除的PK15细胞系。  相似文献   

6.
《遗传》2020,(5)
CRISPR/Cas9系统是一种近年来被广泛应用于基因组编辑的强大工具。通过将CRISPR/Cas9系统中的Cas9蛋白突变后,使其失去剪切活性而成为dCas9 (nuclease-dead Cas9),再结合基因功能丧失(loss-of-function,LOF)、基因功能激活(gain-of-function, GOF)以及非编码功能基因鉴定技术即可实现全基因组高通量的功能基因及调控元件靶向鉴定和筛选。目前,该技术已被广泛应用于疾病免疫机理、药物靶点筛选和动物遗传育种等研究,为生命医学和基础科学带来了全新高效的技术方法和研究思路。本文综述了基于CRISPR/Cas9技术在全基因组中高通量筛选功能基因及调控元件的方法及研究进展,重点阐述了CRISPR/Cas9系统在动物细胞中筛选功能性基因的方法,以期为基因编辑及相关研究领域提供参考。  相似文献   

7.
CRISPR/Cas9是一种高效、便捷的基因编辑工具,在生命科学领域具有广泛的应用。基于CRISPR/Cas9系统构建基因组文库进行高通量筛选,有助于解析不同生物学背景下编码基因的功能和调控元件的特征。覆盖全基因组或特定生物途径的CRISPR筛选支持在不同的遗传背景和时空环境下进行,有助于鉴定关键的生物学靶点,并阐述生理、病理条件下的基因功能及相互作用网络。本文总结了近年来CRISPR筛选在衰老、肿瘤等疾病研究中的重要进展,概述了CRISPR筛选与单细胞测序、功能基因组学等方法相结合的研究策略,并讨论了CRISPR筛选面临的挑战以及可能的解决方案。  相似文献   

8.
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9)是第三代基因组编辑技术。在sgRNA引导下,Cas9核酸内切酶作用于特定基因组序列,产生DNA双链断裂(double-strandedbreaks,DSBs),利用同源定向修复(homology-directedrepair,HDR)可实现对靶基因的特异性基因敲除(knock-out)或敲入(knock-in)。传统的技术方案将CRISPR/Cas9技术与Cre/loxP或FLP/FRT系统联用,可实现高效的基因打靶,也易于移除打靶过程中引入的筛选标记。然而,筛选标记移除过程中会在基因组中残留34个碱基的标签序列。因此,对基因组进行精确编辑的同时不引入无关序列仍有一定难度。在人工诱导多能干细胞(induced pluripotent stem cells, iPSCs)的基因组编辑中,CRISPR/Cas9技术和piggyBac转座酶联用的两步法策略能够实现这一目标:首先运用CRISPR/Cas9技术,利用同源定向修复原理引入基因突变及筛选标记,然后利用piggyBac转座酶将筛选标记精确移除。借鉴该方法的技术原理,本研究对果蝇(Drosophila melanogaster)CG4894基因进行了无缝编辑(seamless genome editing),成功将该基因第18外显子上第21位的酪氨酸(tyrosine,Y)突变为半胱氨酸(cysteine,C),且测序结果显示基因组中除设计位点之外并无其他外源序列残留。CRISPR/Cas9技术和piggyBac转座酶联用策略为果蝇基因组的精确编辑提供了更多选择。  相似文献   

9.
CRISPR/Cas9系统作为一种新型的基因组编辑技术,利用人工设计的向导RNA(singleguide RNA,sg RNA)介导外源表达的Cas9蛋白与基因组靶点特异性结合以实现对基因组DNA的特异性切割,切割后的基因组DNA通过非同源末端连接或同源重组的方式进行修复,从而实现基因的敲除、敲入等。MEIS2属于一类高度保守的同源盒转录因子MEIS家族,研究发现,MEIS2广泛参与胚胎的早期发育及肿瘤的发生发展,但其发挥作用的机制目前还不是很清楚。该研究针对MEIS2基因作用的功能域,设计两个靶向MEIS2基因Exon3和Exon8的sg RNA,通过SURVEYOR分析及Western blot检测,确认了所设计sg RNA的有效性。进一步通过细胞分选及Western blot检测筛选出稳定敲除MEIS2基因的HEK293T细胞株。最后,通过序列测定确认MEIS2发生了移码突变。综上所述,该研究利用CRISPR/Cas9技术成功建立了完全敲除MEIS2的HEK293T细胞株,为研究MEIS2的功能和作用机制提供了有效工具。  相似文献   

10.
拟利用CRISPR/Cas9技术建立编辑FGF5基因的绒山羊细胞株。在FGF5基因的第一外显子设计靶点并合成gRNA靶点引物,构建2个编辑FGF5基因的Cas/gRNA真核表达质粒载体。电穿孔法转染绒山羊成纤维细胞后T7核酸内切酶(T7E1)检测载体活性,选择活性最高的载体转染细胞,单细胞接种并扩繁,提取基因组DNA,PCR及测序鉴定。经测序分析共获得20个FGF5基因敲除细胞株(包括FGF5+/-和FGF5-/-),总突变率为14.81%。双敲除突变细胞株可作为供体细胞进行重构胚构建,为创造高产绒性状的FGF5基因编辑绒山羊奠定基础。  相似文献   

11.
为探讨混合谱系激酶3(mixed lineage kinase 3,Mlk3)基因敲除(knockout,KO)对小鼠血压的影响,采用CRISPR/Cas9系统构建Mlk3基因敲除(Mlk3 knockout,Mlk3KO)小鼠模型。T7核酸内切酶I(T7 endonuclease I,T7E1)酶切法验证向导RNA(small guide RNA,sgRNA)的活性。体外转录CRISPR/Cas9 mRNA及sgRNA,显微注射至受精卵并移植入假孕母鼠。聚合酶链式反应(polymerase chain reaction,PCR)及DNA测序检测基因型。实时荧光定量PCR(Real-time PCR,RT-PCR)检测Mlk3 mRNA表达,Western blotting及免疫荧光检测Mlk3蛋白表达。尾套法监测小鼠血压。免疫组化及Western blotting检测小鼠主动脉肌球蛋白轻链(myosin light chain,MLC)磷酸化水平。PCR基因型鉴定及DNA测序显示Mlk3敲除成功,且Mlk3敲除小鼠未检测到Mlk3蛋白表达,证实CRISPR/Cas9系统成功构建了Mlk3敲除小鼠。Mlk3敲除小鼠在基础状态下血压显著高于同笼对照,且Mlk3敲除小鼠主动脉平滑肌层MLC的磷酸化高于对照组,说明Mlk3具有抗高血压的内源性保护作用。本研究为探讨蛋白激酶Mlk3抗高血压及抗高血压诱导心血管不良重塑的作用机制提供了理想的动物模型。  相似文献   

12.
CRISPR/Cas9基因打靶技术是近几年发展起来的一种高效率的定向打靶技术,被认为是遗传领域的革命性技术。Titin-Cap基因是本实验室已初步鉴定的斑马鱼心脏发育候选基因,且国内外目前尚无斑马鱼Titin-Cap基因的敲除品系。为了研究Titin-Cap基因在心脏发育过程中的作用机制,我们利用CRISPR/Cas9基因打靶技术建立斑马鱼Titin-Cap基因的敲除品系。测序结果显示,注射了CRISPR/Cas9 gRNA的胚胎出现双峰,说明在打靶位点附近出现了碱基缺失或插入,证明我们设计的gRNA是有效的。对F0代突变体成鱼的筛选中,测序结果同样显示有阳性结果。这些结果说明用CRISPR/Cas9基因打靶技术成功敲除了斑马鱼Titin-Cap基因,获得了Titin-Cap基因敲除的嵌合体斑马鱼。  相似文献   

13.
目的:利用CRISPR/Cas9技术对K562细胞系JAK2基因进行编辑,构建JAK2基因敲除的K562细胞系。方法:使用CRISPR在线设计工具,针对JAK2基因设计sgRNA,构建Cas9-sgRNA共表达质粒。使用第二代慢病毒包装系统包装慢病毒并感染K562细胞,提取细胞基因组DNA,Sanger测序和TA克隆检测基因编辑活性。无限稀释法将编辑阳性的细胞接种于96孔板并扩培得到单克隆细胞株,提取基因组DNA,Sanger测序和TA克隆分析敲除JAK2单克隆细胞的基因型。结果:成功构建靶向敲除JAK2基因的lentiCRISPRv2-sgRNA3-1质粒。优化方案得到低细胞毒性高转染效率的感染K562细胞慢病毒量。CRISPR/Cas9系统成功在JAK2基因sgRNA3-1识别位点发挥基因组编辑活性,获得纯合敲除JAK2基因细胞株K562-JAK2~(-/-)(两个等位分别发生移码突变,预期编码没有功能的JAK2蛋白)。结论:CRIAPR/Cas9系统通过慢病毒感染方式获得JAK2基因纯合敲除的K562细胞株,该细胞模型可用于研究在慢性髓系白血病中JAK2基因的作用,为构建K562敲除其他基因细胞系提供实验依据,为探究造血分化机制的研究奠定实验基础。  相似文献   

14.
目的:运用CRISPR/Cas9基因编辑技术,建立miR-362基因敲除的95-D肺癌细胞株,并研究miR-362在肿瘤中的调控作用。方法:针对人源miR-362基因序列设计gRNA,构建px330-gRNA载体;T7E1 assay确定gRNA的有效性。分别扩增miR-362上下游同源臂序列构建donor载体。利用脂质体将CRISPR系统和donor载体共转至人肺癌细胞系95-D,通过同源重组方法将筛选标志基因整合至基因组中,通过流式分选以及q PCR方法检测筛选出的细胞中miR-362表达水平。利用Transwell分析miR-362对细胞运动能力的影响。结果:与95-D细胞相比,95-D-Knock Down细胞中miR-362表达水平显著降低,且迁移侵袭能力分别下降了53.1%(P=0.000 6)和48.3%(P=0.000 2)。结论:利用CRISPR/Cas9系统成功构建了miR-362基因敲除的95-D细胞,miR-362可促进细胞的运动能力,为后续研究miR-362在肿瘤中的作用机制和功能奠定了基础。  相似文献   

15.
旨在建立一种简便检测线粒体DNA(mt DNA)核酸酶靶向剪切活性的方法。利用转基因技术,将一段含有两个靶向目标序列(T1、T2)的线粒体DNA序列随机整合到宿主基因组中,通过实时荧光定量PCR筛选单拷贝或低拷贝的单克隆转基因细胞株。将含有T1、T2的CRISPR(clustered regularly interspaced short palindromic repeats)/Cas9质粒分别瞬时转染到所选细胞株中,靶向剪切核基因组,在靶向目标序列处造成DNA双链断裂,引发非同源末端连接修复机制,引入插入或缺失突变。观察测序峰图,证明两个靶向目标序列T1、T2均有剪切效率,且T1高于T2。建立了一种高效快速检测线粒体核酸酶靶向剪切活性的新方法。  相似文献   

16.
旨在建立一种简便检测线粒体DNA(mt DNA)核酸酶靶向剪切活性的方法。利用转基因技术,将一段含有两个靶向目标序列(T1、T2)的线粒体DNA序列随机整合到宿主基因组中,通过实时荧光定量PCR筛选单拷贝或低拷贝的单克隆转基因细胞株。将含有T1、T2的CRISPR(clustered regularly interspaced short palindromic repeats)/Cas9质粒分别瞬时转染到所选细胞株中,靶向剪切核基因组,在靶向目标序列处造成DNA双链断裂,引发非同源末端连接修复机制,引入插入或缺失突变。观察测序峰图,证明两个靶向目标序列T1、T2均有剪切效率,且T1高于T2。建立了一种高效快速检测线粒体核酸酶靶向剪切活性的新方法。  相似文献   

17.
采用高效基因编辑系统CRISPR/Cas9构建hoxb4基因敲除斑马鱼模型,进行hoxb4基因功能的研究。根据hoxb4基因的一号外显子的正义链及反义链设计3个长20 bp的sg RNA,分别靶向ExonⅠ的192#位点,244#位点及313#位点。化学合成sg RNA的寡核苷酸序列,经过酶切克隆进p T7-g RNA质粒中,构建g RNA的体外转录载体并通过体外转录得到靶位点的g RNA。将质粒p SP6-2s NLS-sp Cas9线性化然后在体外转录得到Cas9的m RNA并进行加A尾,将以上靶位点的g RNA与Cas9的m RNA共注射入单细胞期的斑马鱼胚胎内,提取基因组DNA,PCR扩增出目的基因片段并使用T7EI酶切测效,最后将PCR产物连入p MD19-T simple载体中,挑取阳性克隆进行菌落PC R鉴定,然后经Sanger测序检测突变类型。结果显示,靶位点的sg RN A寡核苷酸双链成功连入p T7-g RNA质粒中且序列正确;其中靶向ExonⅠ的313#位点的sg RNA可成功编辑斑马鱼hoxb4基因,T7 EⅠ检测其敲除效率高达26.5%,并测序得到4种阳性突变型。通过CRISPR/Cas9系统成功编辑斑马鱼hoxb4基因并测序鉴定其突变类型,为HOXb4基因功能的研究提供了可靠的基因敲除方法。  相似文献   

18.
CRISPR/Cas9基因编辑系统操作简单易行,无需引入外源基因,生物安全性高。但怎样快速筛选获得不含外源转化元件的基因编辑后代是一个关键技术问题。本研究创造性的将拟南芥种皮特异性启动子At2S3与荧光筛选标记基因mCherry组装进植物基因组定点编辑CRISPR载体pHDE中,以拟南芥as1为靶基因,构建一种通过荧光标记筛选、实现转化后代中Cas9 Free的基因高效编辑体系。结果表明,通过同源重组方法构建的带有筛选标记的CRISPR载体与设计相符,外源插入片段正确。挑选转化后种皮上带有红色荧光标记的阳性种子培育得到T1代植株,经PCR验证,成功获得as1定点敲除的纯合突变植株,纯合子比率达到40%;挑选T1代纯合突变上不带荧光的种子,培育得到的T2代植株中,PCR检测不到Cas9片段,实现了编辑后代的Cas9 Free。本研究构建的一种带有可视化筛选标记的基因高效编辑体系,成功实现编辑后代中无外源插入的Cas9等转化元件,生物安全性高,为基因组定点编辑技术在植物遗传资源改良中的高效利用提供了借鉴与参考。  相似文献   

19.
GATA-1(GATA binding protein-1)在造血分化过程是最重要的转录调控因子,在红细胞和巨核细胞中特异性高表达,并通过调节相关基因的转录在红系和巨核系造血细胞的分化发育过程中发挥重要作用。该研究采用CRISPR/Cas9技术将K562细胞中的GATA-1基因敲除,建立了GATA-1基因敲除K562细胞株。首先,设计了4个CRISPR的靶向位点,利用p GL3-U6-sg RNA-PGKpuromycin质粒构建了4个导向RNA(single guide RNA,sg RNA)载体。利用电穿孔的方法将sg RNA载体与Cas9载体p ST1374-NLS-fl ag-linker-Cas9共转K562细胞。转染48 h,经定点PCR和T7EN1内切酶酶切鉴定后,采用细胞有限稀释法嘌呤霉素筛选,定点测序和Western blot检测结果显示,成功构建了GATA-1基因敲除K562细胞株,命名为K562-KO GATA-1。使用联苯胺染色和流式细胞术的方法检测血型糖蛋白A(glycophorin A,CD235a)发现,与正常K562细胞相比,K562-KO GATA-1细胞株经Hemin诱导红系分化明显受到抑制。综上,该研究建立了敲除GATA-1的K562细胞系,可用于后续的造血分化相关研究。  相似文献   

20.
为了在动物体内研究Fbxl5基因是通过什么机制导致斑马鱼心脏出现突变表型,本文利用近几年兴起的CRISPR/Cas9打靶技术建立斑马鱼Fbxl5基因敲除品系。本文将打靶位点定位于Fbxl5的F-box结构域,也就是Fbxl5的第五号外显子上。首先经过基因打靶网站分析筛选出针对Fbxl5基因F-box结构域最适合的打靶位点,扩增出Fbxl5基因CRISPR/Cas9打靶双链DNA,并转录为RNA,与Hcas9共注射至斑马鱼胚胎。最后,在注射48 h后对Fbxl5基因CRISPR/Cas9打靶的有效性进行检测。首先在注射48 h之后收集胚胎提取基因组DNA,用特异性引物进行PCR扩增;将纯化后的Fbxl5基因PCR产物连接到p MD18-T载体,再经质粒提取,测序分析,通过与WT斑马鱼基因组序列进行比对发现Fbxl5-9号在PAM序列AGG下游缺失了4个碱基。证明该CRISPR/Cas9系统在敲除心脏发育候选基因Fbxl5是有效的,该研究为最终获得Fbxl5基因敲除斑马鱼奠定了良好的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号