首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 586 毫秒
1.
Enrichment cultures that anaerobically degraded oxalate were obtained from lake sediment inocula. From these, 5 pure cultures of anaerobic oxalate-degrading bacteria were isolated and partially characterized. The isolates were Gram-negative, non-sporeforming, non-motile, obligate anaerobes. Oxalate was required for growth and was stoichiometrically converted to formate; 14CO2 was also recovered when 14C-oxalate was added. Maximal growth occurred when the oxalate concentration was 50 mM. Acetate stimulated growth in the presence of oxalate, however, 14C-experiments indicated that acetate was only utilized for cell carbon.The isolates were either spiral-shaped or rod-shaped organisms. The first morphotype grew much more slowly than the second and exhibited 13-fold lower cell yields. These isolates represent a new strain of oxalate-degrading bacteria. The second morphotype was similar to the anaerobic oxalate-degrading bacteria previously found in rumen. This report extends the known habitats in which anaerobic oxalate-degrading organisms have been found to include aquatic sediments.  相似文献   

2.
Enrichment cultures of rumen bacteria degraded oxalate within 3 to 7 days in a medium containing 10% rumen fluid and an initial level of 45 mM sodium oxalate. This capability was maintained in serially transferred cultures. One mole of methane was produced per 3.8 mol of oxalate degraded. Molecular hydrogen and formate inhibited oxalate degradation but not methanogenesis; benzyl viologen and chloroform inhibited both oxalate degradation and methanogenesis. Attempts to isolate oxalate-degrading bacteria from these cultures were not successful. Oxalate degradation was uncoupled from methane production when enrichments were grown in continuous culture at dilution rates greater than or equal to 0.078 h-1. Growth of the uncoupled population (lacking methanogens) in batch culture was accompanied by degradation of 45 mM oxalate within 24 h and production of 0.93 mol of formate per mol of oxalate degraded. Oxalate degradation by the uncoupled population was not inhibited by molecular hydrogen or formate. Cell yields (grams [dry weight]) per mole of oxalate degraded by the primary enrichment and the uncoupled populations were 1.7 and 1.0, respectively.  相似文献   

3.
Rates of oxalate degradation by mixed bacterial populations in cecal contents from wild rats ranged from 2.5 to 20.6 mumol/g (dry weight) per h. The oxalate-degrading activity in cecal contents from three strains of laboratory rats (Long-Evans, Wistar, and Sprague-Dawley) from four commercial breeders was generally lower, ranging from 1.8 to 3.5 mumol/g (dry weight) of cecal contents per h. This activity did not increase when diets were supplemented with oxalate. When Sprague-Dawley rats from a fifth commercial breeder were fed an oxalate diet, rates of oxalate degradation in cecal contents increased from 2.0 to 23.1 mumol/g (dry weight) per h. Obligately anaerobic, oxalate-degrading bacteria, similar to ruminal strains of Oxalobacter formigenes, were isolated from the latter group of laboratory rats and from wild rats. Viable counts of these bacteria were as high as 10(8)/g (dry weight) of cecal contents, which was less than 0.1% of the total viable population. This report presents the first evidence for the presence of anaerobic oxalate-degrading bacteria in the cecal contents of rats and represents the first direct measurement of the concentration of these bacteria in the large bowel of monogastric animals. We propose that methods used for the maintenance of most commercial rat colonies often preclude the intestinal colonization of laboratory rats with anaerobic oxalate-degrading bacteria.  相似文献   

4.
Microbial degradation of oxalate in the gastrointestinal tracts of rats   总被引:1,自引:0,他引:1  
Rates of oxalate degradation by mixed bacterial populations in cecal contents from wild rats ranged from 2.5 to 20.6 mumol/g (dry weight) per h. The oxalate-degrading activity in cecal contents from three strains of laboratory rats (Long-Evans, Wistar, and Sprague-Dawley) from four commercial breeders was generally lower, ranging from 1.8 to 3.5 mumol/g (dry weight) of cecal contents per h. This activity did not increase when diets were supplemented with oxalate. When Sprague-Dawley rats from a fifth commercial breeder were fed an oxalate diet, rates of oxalate degradation in cecal contents increased from 2.0 to 23.1 mumol/g (dry weight) per h. Obligately anaerobic, oxalate-degrading bacteria, similar to ruminal strains of Oxalobacter formigenes, were isolated from the latter group of laboratory rats and from wild rats. Viable counts of these bacteria were as high as 10(8)/g (dry weight) of cecal contents, which was less than 0.1% of the total viable population. This report presents the first evidence for the presence of anaerobic oxalate-degrading bacteria in the cecal contents of rats and represents the first direct measurement of the concentration of these bacteria in the large bowel of monogastric animals. We propose that methods used for the maintenance of most commercial rat colonies often preclude the intestinal colonization of laboratory rats with anaerobic oxalate-degrading bacteria.  相似文献   

5.
Abstract Concentrations of oxalate-degrading anaerobes in ruminal contents of sheep were determined from counts of colonies producing clear zones on a calcium oxalate medium (D agar with 7 mM CaCl2). Viable counts of oxalate degraders from a 55-kg sheep fed a diet containing 32% halogeton (4.6% oxalate) averaged 2.6 × 106/ g (dry weight). When the halogeton concentration in the diet was reduced to 16%, counts of oxalate degraders decreased nearly 300-fold. Oxalate-degrading isolates from this sheep were similar to OxB, the type strain of Oxalobacter formigenes . When a 45-kg sheep was fed diets containing 2.2, 1.5, and 0.8% oxalate, viable counts of oxalate degraders (enumerated on D agar with 14 mM CaCl2 and 20% filter-sterilized ruminal fluid) represented 0.85, 0.52, and 0.06% of the total viable population, respectively; total viable counts were essentially unchanges by these concentrations of dietary oxalate. Similar percentages of oxalate degraders were also observed when a 23-kg sheep was fed diets containing 1.5 or 0.8% oxalate. This report presents the first direct measurements of the concentrations of oxalate-degrading bacteria in the rumen and supports the concept that the availability of oxalate in the diet influences the proportion of oxalate-degrading bacteria in the rumen  相似文献   

6.
Six strains of Oxalobacter formigenes (anaerobic oxalate-degrading bacteria) were examined for their ability to colonize the gastrointestinal tracts of adult laboratory rats. These rats did not harbor O. formigenes. Strain OxCR6, isolated from the cecal contents of a laboratory rat that was naturally colonized by oxalate-degrading bacteria, colonized the ceca and colons of adult rats fed a diet that contained 4.5% sodium oxalate. Five days after rats were inoculated intragastrically with 10(9) viable cells of strain OxCR6, oxalate degradation rates in cecal and colonic contents increased by 19 and 40 times, respectively. Viable counts of strain OxCR6 from these rats averaged 10(8)/g (dry weight) of cecal contents. Strain OxCR6 was not detected in the cecal contents of inoculated rats fed diets that contained less than 3.0% sodium oxalate. Strains of O. formigenes isolated from the cecal contents of swine, guinea pigs, and wild rats and from human feces also colonized the ceca of laboratory rats; a ruminal strain failed to colonize the rat cecum.  相似文献   

7.
Oxalobacter formigenes and its potential role in human health   总被引:2,自引:0,他引:2  
Oxalate degradation by the anaerobic bacterium Oxalobacter formigenes is important for human health, helping to prevent hyperoxaluria and disorders such as the development of kidney stones. Oxalate-degrading activity cannot be detected in the gut flora of some individuals, possibly because Oxalobacter is susceptible to commonly used antimicrobials. Here, clarithromycin, doxycycline, and some other antibiotics inhibited oxalate degradation by two human strains of O. formigenes. These strains varied in their response to gut environmental factors, including exposure to gastric acidity and bile salts. O. formigenes strains established oxalate breakdown in fermentors which were preinoculated with fecal bacteria from individuals lacking oxalate-degrading activity. Reducing the concentration of oxalate in the medium reduced the numbers of O. formigenes bacteria. Oxalate degradation was established and maintained at dilution rates comparable to colonic transit times in healthy individuals. A single oral ingestion of O. formigenes by adult volunteers was, for the first time, shown to result in (i) reduced urinary oxalate excretion following administration of an oxalate load, (ii) the recovery of oxalate-degrading activity in feces, and (iii) prolonged retention of colonization.  相似文献   

8.
Oxalobacter formigenes and Its Potential Role in Human Health   总被引:2,自引:0,他引:2       下载免费PDF全文
Oxalate degradation by the anaerobic bacterium Oxalobacter formigenes is important for human health, helping to prevent hyperoxaluria and disorders such as the development of kidney stones. Oxalate-degrading activity cannot be detected in the gut flora of some individuals, possibly because Oxalobacter is susceptible to commonly used antimicrobials. Here, clarithromycin, doxycycline, and some other antibiotics inhibited oxalate degradation by two human strains of O. formigenes. These strains varied in their response to gut environmental factors, including exposure to gastric acidity and bile salts. O. formigenes strains established oxalate breakdown in fermentors which were preinoculated with fecal bacteria from individuals lacking oxalate-degrading activity. Reducing the concentration of oxalate in the medium reduced the numbers of O. formigenes bacteria. Oxalate degradation was established and maintained at dilution rates comparable to colonic transit times in healthy individuals. A single oral ingestion of O. formigenes by adult volunteers was, for the first time, shown to result in (i) reduced urinary oxalate excretion following administration of an oxalate load, (ii) the recovery of oxalate-degrading activity in feces, and (iii) prolonged retention of colonization.  相似文献   

9.
Oxalate-degrading Enterococcus faecalis   总被引:2,自引:0,他引:2  
An oxalate-degrading Enterococcus faecalis was isolated from human stools under anaerobic conditions. The bacteria required a poor nutritional environment and repeated subculturing to maintain their oxalate-degrading ability. The E. faecalis produced 3 proteins (65, 48, and 40 kDa) that were not produced by non-oxalate-degrading E. faecalis as examined by SDS-PAGE. Antibodies against oxalyl-coenzyme A decarboxylase (65 kDa) and formyl-coenzyme A transferase (48 kDa) obtained from Oxalobacter formigenes (an oxalate-degrading anaerobic bacterium in the human intestine) reacted with 2 of the proteins (65 and 48 kDa) from the E. faecalis as examined by Western blottings. This is the first report on the isolation of oxalate-degrading facultative anaerobic bacteria from humans.  相似文献   

10.
Eight strains of rumen bacteria capable of degrading phloroglucinol (1,3,5-trihydroxybenzene) under anaerobic conditions were isolated from enrichment cultures of the bovine rumen microflora established in a prereduced medium containing 0.02 M phloroglucinol. Five of the strains were facultatively anaerobic Gram-positive streptococci which were identified as Streptococcus bovis. Three strains of obligately anaerobic Gram-positive cocci were assigned to the genus Coprococcus. Anaerobic cultures of the Streptococcus bovis strains in a 40% rumen fluid medium initially containing 0.02 M phloroglucinol degraded 50-80% of the substrate within 2 days, whereas cultures of the Coprococcus strains degraded more than 80% of the substrate under the same conditions. The Streptococcus bovis strains were incapable of degrading phloroglucinol in brain heart infusion or in the medium of de Man, Rogosa, and Sharpe (MRS broth) incubated aerobically.  相似文献   

11.
AIMS: To isolate and characterize an oxalate-degrading Pandoraea sp. OXJ-11. METHODS AND RESULTS: A new bacterium Pandoraea sp. OXJ-11 was isolated from soil samples, which can grow in the medium with oxalate as the sole carbon and energy source. The isolate OXJ-11 is Gram-negative straight rod. It occurs singly and is motile by means of a double polar flagellum. Catalase is positive and nitrate is not reduced. It grows aerobically and the optimum growth temperature and the optimum pH are at 30 degrees C and pH 6.0, respectively. The polyphasic taxonomic data along with 16S rRNA sequence comparison demonstrate that the isolate OXJ-11 should belong to the genus Pandoraea and represent a new member in this family. CONCLUSIONS: Oxalate could be degraded and the oxalate-degrading enzyme activity was detected when the isolate OXJ-11 grew in the medium with oxalate as carbon source. SIGNIFICANCE AND IMPACT OF THE STUDY: Oxalate-degrading Pandoraea sp. OXJ-11 would be beneficial to the potential application in the control of sclerotinia stem rot in economically important plants caused by fungus Sclerotinia sclerotiorum, and in making plants resistant to the white mold disease by oxalate-degrading enzyme transgene.  相似文献   

12.
This report describes a new group of anaerobic bacteria that degrade oxalic acid. The new genus and species, Oxalobacter formigenes, are inhabitants of the rumen and also of the large bowel of man and other animals where their actions in destruction of oxalic acid may be of considerable importance to the host. Isolates from the rumen of a sheep, the cecum of a pig, and from human feces were all similar Gram-negative, obligately anaerobic rods, but differences between isolates in cellular fatty acid composition and in serologic reaction were noted. Measurements made with type strain OxB indicated that 1 mol of protons was consumed per mol of oxalate degraded to produce approximately 1 mol of CO2 and 0.9 mol of formate. Substances that replaced oxalate as a growth substrate were not found.  相似文献   

13.
Studies on the anaerobic cecal microflora of the 5-week-old chicken were made to determine a suitable roll-tube medium for enumeration and isolation of the bacterial population, to determine effects of medium components on recovery of total anaerobes, and to identify the predominant bacterial groups. The total number of microorganisms in cecal contents determined by direct microscope cell counts varied (among six samples) from 3.83 x 10(10) to 7.64 x 10(10) per g. Comparison of different nonselective media indicated that 60% of the direct microscope count could be recovered with a rumen fluid medium (M98-5) and 45% with medium 10. Deletion of rumen fluid from M98-5 reduced the total anaerobic count by half. Colony counts were lower if chicken cecal extract was substituted for rumen fluid in M98-5. Supplementing medium 10 with liver, chicken fecal, or cecal extracts improved recovery of anaerobes slightly. Prereduced blood agar media were inferior to M98-5. At least 11 groups of bacteria were isolated from high dilutions (10(-9)) of cecal material. Data on morphology and physiological and fermentation characteristics of 90% of the 298 isolated strains indicated that these bacteria represented species of anaerobic gram-negative cocci, facultatively anaerobic cocci and streptococci, Peptostreptococcus, Propionibacterium, Eubacterium, Bacteroides, and Clostridium. The growth of many of these strains was enhanced by rumen fluid, yeast extract, and cecal extract additions to basal media. These studies indicate that some of the more numerous anaerobic bacteria present in chicken cecal digesta can be isolated and cultured when media and methods that have been developed for ruminal bacteria are employed.  相似文献   

14.
Veratrylglycerol-beta-guaiacyl ether (0.2 g/liter), a lignin model compound, was found to be degraded by mixed rumen bacteria in a yeast extract medium under strictly anaerobic conditions to the extent of 19% within 24 h. Guaiacoxyacetic acid, 2-(o-methoxyphenoxy)ethanol, vanillic acid, and vanillin were detected as degradation products of veratrylglycerol-beta-guaiacyl ether by thin-layer chromatography, gas chromatography, and gas chromatography-mass spectrometry. Guaiacoxyacetic acid (0.25 g/liter), when added into the medium as a substrate, was entirely degraded within 36 h, resulting in the formation of phenoxyacetic acid, guaiacol, and phenol. These results suggest that the beta-arylether bond, an important intermonomer linkage in lignin, can be cleaved completely by these rumen anaerobes.  相似文献   

15.
Veratrylglycerol-beta-guaiacyl ether (0.2 g/liter), a lignin model compound, was found to be degraded by mixed rumen bacteria in a yeast extract medium under strictly anaerobic conditions to the extent of 19% within 24 h. Guaiacoxyacetic acid, 2-(o-methoxyphenoxy)ethanol, vanillic acid, and vanillin were detected as degradation products of veratrylglycerol-beta-guaiacyl ether by thin-layer chromatography, gas chromatography, and gas chromatography-mass spectrometry. Guaiacoxyacetic acid (0.25 g/liter), when added into the medium as a substrate, was entirely degraded within 36 h, resulting in the formation of phenoxyacetic acid, guaiacol, and phenol. These results suggest that the beta-arylether bond, an important intermonomer linkage in lignin, can be cleaved completely by these rumen anaerobes.  相似文献   

16.
Two strains of rumen anaerobes isolated from dehydrodivanillin-degrading cultures were identified as Fusobacterium varium and Enterococcus faecium. These organisms degraded dehydrodivanillin synergistically to 5-carboxymethylvanillin and vanillic acid. Specific conditions for protoplast formation and cell wall regeneration for both bacteria were determined, under strictly anaerobic conditions, to be as follows. The cell wall of each bacterium in yeast extract medium was loosened by adding penicillin G during early log-phase growth. The cell wall of F. varium was lysed by lysozyme (1 mg/ml) in glycerol (0.2 M)-phosphate buffer (0.05 M; pH 7.0). The addition of NaCl (0.08 M) with lysozyme was necessary for lysis of E. faecium in this solution. Almost all cells were converted to protoplasts after 2 h of incubation at 37 degrees C. Regeneration of both protoplasts was 20 to 30% on an agar-containing yeast extract medium.  相似文献   

17.
W Chen  K Ohmiya    S Shimizu 《Applied microbiology》1986,52(4):612-616
Two strains of rumen anaerobes isolated from dehydrodivanillin-degrading cultures were identified as Fusobacterium varium and Enterococcus faecium. These organisms degraded dehydrodivanillin synergistically to 5-carboxymethylvanillin and vanillic acid. Specific conditions for protoplast formation and cell wall regeneration for both bacteria were determined, under strictly anaerobic conditions, to be as follows. The cell wall of each bacterium in yeast extract medium was loosened by adding penicillin G during early log-phase growth. The cell wall of F. varium was lysed by lysozyme (1 mg/ml) in glycerol (0.2 M)-phosphate buffer (0.05 M; pH 7.0). The addition of NaCl (0.08 M) with lysozyme was necessary for lysis of E. faecium in this solution. Almost all cells were converted to protoplasts after 2 h of incubation at 37 degrees C. Regeneration of both protoplasts was 20 to 30% on an agar-containing yeast extract medium.  相似文献   

18.
Studies on the Cecal Microflora of Commercial Broiler Chickens   总被引:9,自引:5,他引:4       下载免费PDF全文
A study was made of the cecal microflora isolated from broilers (5-week-old) reared under typical commercial husbandry conditions. Three hundred and twenty-five bacterial strains (randomly isolated from colonies representing 49 to 81% of the microscopic count) were isolated from cecal digesta of six animals on a rumen fluid roll tube medium (M98-5). Seventy-seven percent of these strains consisted of strict anaerobes: gram-negative, pleomorphic cocci (5.2%), Peptostreptococcus (1.5%), gram-positive rods (36.1% as Propionibacterium acnes and Eubacterium sp.), gram-negative rods (18.6% as Bacteroides clostridiiformis, B. hypermegas and B. fragilis) and sporeforming rods (15.7% as Clostridium sp.). Two types of facultatively anaerobic bacteria (gram-positive cocci and Escherichia coli) were also isolated and constituted 17.5% of the remaining flora. The distribution of the bacterial groups isolated from six cecal samples varied considerably. Data on the growth requirements of anaerobic strains indicated that many could be cultured in a simple medium consisting of an energy source, minerals, reducing agent, Trypticase, and yeast extract (or a vitamin mixture in place of yeast extract). The growth of some of these bacteria was also enhanced by CO(2) and rumen fluid. These preliminary data suggest that some of the more numerous anaerobes isolated from the chicken cecum may not require complex nutrients for growth and, in fact, may be nutritionally similar to rumen anaerobes.  相似文献   

19.
目的初步筛选牛瘤胃中纤维素降解菌。方法分别采用基本培养基(牛肉膏蛋白胨培养基、马丁培养基),利用好氧、兼性和厌氧3种不同的培养方法进行初选,初步分离牛瘤胃中的细菌与真菌,再通过复选培养基(加入微晶纤维素),筛选降解纤维素的菌种。结果筛选分离出降解纤维素的1株厌氧细菌和1株厌氧真菌。结论此实验方法简单易行,能够有效地从牛瘤胃中筛选出生长良好的纤维素降解菌。  相似文献   

20.
AIMS: This study was undertaken to evaluate the oxalate-degrading activity in several Lactobacillus species widely used in probiotic dairy and pharmaceutical preparations. Functional characterization of oxalyl-CoA decarboxylase and formyl-CoA transferase in Lactobacillus acidophilus was performed in order to assess the possible contribution of Lactobacillus in regulating the intestinal oxalate homeostasis. METHODS AND RESULTS: In order to determine the oxalate-degrading ability in 60 Lactobacillus strains belonging to 12 species, a screening was carried out by using an enzymatic assay. A high variability in the oxalate-degrading capacity was found in the different species. Strains of Lact. acidophilus and Lactobacillus gasseri showed the highest oxalate-degrading activity. Oxalyl-CoA decarboxylase and formyl-CoA transferase genes from Lact. acidophilus LA14 were cloned and sequenced. The activity of the recombinant enzymes was assessed by capillary electrophoresis. CONCLUSIONS: Strains of Lactobacillus with a high oxalate-degrading activity were identified. The function and significance of Lact. acidophilus LA14 oxalyl-CoA decarboxylase and formyl-CoA transferase in oxalate catabolism were demonstrated. These results suggest the potential use of Lactobacillus strains for the degradation of oxalate in the human gut. SIGNIFICANCE AND IMPACT OF THE STUDY: Identification of probiotic strains with oxalate-degrading activity can offer the opportunity to provide this capacity to individuals suffering from an increased body burden of oxalate and oxalate-associated disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号