首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 572 毫秒
1.
酸枣仁总皂甙对缺氧—再给氧心肌细胞的保护作用   总被引:3,自引:0,他引:3  
按Laarse’s方法建立培养心肌细胞缺氧-再给氧(A-R)模型,缺糖缺氧60min,再给氧30min。结果发现,缺氧组心肌细胞MDA含量增加,SOD活性降低,细胞膜脂质流动性下降,再给氧组上述改变加剧。酸枣仁总皂甙(ZS)能剂量依赖性地显著降低心肌细胞MDA含量,提高SOD活性,增加细胞膜脂质流动性。证明ZS有明显抗心肌细胞缺氧-再给氧损伤作用。  相似文献   

2.
陈东  于德刚  张环  陈爱芳 《生物磁学》2009,(20):3871-3873
目的:研究三七皂苷对纯化培养大鼠乳鼠心肌细胞缺氧/复氧损伤的保护作用及机制。方法:采用纯化培养的心肌细胞建立缺氧/复氧损伤模型,测定细胞凋亡率、caspase-3、乳酸脱氢酶(LDH)、丙二醛(MDA)、超氧化物歧化酶(SOD)含量。结果:与正常组比较,模型组LDH、MDA含量、caspase-3活性及细胞凋亡率明显升高(P<0.01),SOD活性明显降低(P<0.01);三七皂苷组降低LDH、MDA含量、caspase-3活性和细胞凋亡率,提高SOD活性,与缺氧/复氧组比较各实验指标差异均具有显著性(P<0.05)。结论:三七皂苷对缺氧/复氧心肌细胞损伤有保护作用,作用机制与清除氧自由基,抗脂质过氧化及降低细胞凋亡率有关。  相似文献   

3.
目的:观察慢性间歇性低压低氧对过氧化氢所致心肌细胞损伤的保护作用及其机制。方法:雄性豚鼠20只,随机分为两组(n=10):对照组(non-IHH)、低氧组(IHH)。低氧组豚鼠于低压氧舱接受28 d(海拔5 000 m、每天6 h)的低压低氧处理。胶原酶方法急性分离心肌细胞。细胞动缘探测系统测定过氧化氢对各组细胞收缩力的变化。生化方法测定各组丙二醛(MDA)、乳酸脱氢酶(LDH)及超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的变化。结果:①过氧化氢可使心肌细胞出现收缩、舒张紊乱,但IHH处理使其出现的潜伏期明显延长。②给予过氧化氢(300μmol/L,10 min)使来自于non-IHH或IHH的心肌细胞LDH、MDA含量均明显增加,但IHH心肌细胞LDH、MDA含量明显低于non-IHH心肌细胞的LDH、MDA含量。③经IHH处理组的心肌细胞SOD,CAT活性均明显高于non-IHH组。给予过氧化氢使来自于non-IHH或IHH的心肌细胞SOD,CAT活性均明显降低,但IHH心肌细胞SOD,CAT活性明显高于non-IHH心肌细胞的SOD,CAT活性。结论:IHH具有对抗过氧化氢心肌细胞损伤的作用,可能与其增强抗氧化酶活性有关。  相似文献   

4.
目的:观察多巴胺受体(DR2)激活对乳鼠心肌细胞缺氧/再灌注损伤的影响,并探讨其机制。方法:复制原代培养乳鼠心肌细胞缺氧/再灌注损伤模型,细胞随机分为正常组(Control)、缺氧/再灌注组(H/R)、DR2激动剂组(溴麦角环肽,Bro)、抑制剂组(氟哌啶醇,Hal)。倒置显微镜、透射电镜、流式细胞仪检测细胞凋亡情况;检测细胞培养液乳酸脱氢酶(LDH)、超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量;RT-PCR和Western blot方法检测心肌细胞促凋亡因子(Cyt C、caspase-3、caspase-8、caspase-9、Fas及Fas-L)及抑凋亡因子(Bc-l 2)mRNA和蛋白表达。结果:与正常组相比,H/R组细胞凋亡率、LDH活性、MDA含量、促凋亡因子及抑凋亡因子表达均增加,唯有SOD活性降低;与H/R组比较,Bro组可减轻或逆转上述指标的变化;Hal组上述指标变化不明显。结论:DR2激活可抑制缺氧/再灌注所致的乳鼠心肌细胞损伤和凋亡,机制与减少氧自由基有关。  相似文献   

5.
目的:探讨番茄红素对心肌细胞缺氧复氧的保护作用以及其分子机制。方法:采用原代培养心肌细胞建立缺氧/复氧损伤模型,实验分8组:正常对照组,H/R组,H/R+番茄红素(1,2,4,8,16,32μmol/L)剂量组。观察各组细胞经H/R损伤后,细胞内天冬氨酸氨基转移酶(AST)、肌酸激酶(CK)、乳酸脱氢酶(LDH)、超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量的变化情况,选择正常对照组,H/R组,最佳番茄红素剂量组做MTT分析细胞凋亡,Western检测TRL 4以及NF-κB的表达。结果:番茄红素(16,8,4,2μmol/L)剂量组可显著降低缺氧/复氧损伤心肌细胞内AST、CK、LDH释放量及MDA的生成,并能提高SOD活性。此外番茄红素可减少心肌细胞缺氧/复氧损伤后的心肌凋亡,减少TRL 4受体以及NF-κB的表达。结论:番茄红素具有抗缺氧/复氧损伤,保护心肌细胞的作用,其机制可能是通过抑制TRL 4通路来实现的。  相似文献   

6.
目的:探讨参麦注射液对肢体缺血/再灌注时肺脂质过氧化损伤的防护作用。方法:复制家兔缺血/再灌注(I/R)损伤模型,分别从右颈外静脉和左颈总动脉取血,代表入肺血和出肺血,观察入、出肺血及肺组织超氧化物歧化酶(SOD)、丙二醛(MDA)及参麦注射液对上述指标的影响。结果:与对照组比较,缺血再灌组松夹后4h入、出肺血及肺组织SOD活性明显降低,MDA含量增高(P<0.01);再灌前30min静脉给予参麦注射液后,SOD活性升高,而MDA含量降低(P<0.01)。相关分析显示MDA与SOD间存在明显负相关(P<0.05)。结论:缺血再灌注时伴有肺脏氧自由基代谢紊乱,参麦注射液通过清除氧自由基,对抗脂质过氧化,减轻肺损伤。  相似文献   

7.
脂联素对乳鼠心肌细胞缺氧/复氧损伤的保护作用   总被引:1,自引:0,他引:1  
本研究通过在大鼠乳鼠心室肌细胞上建立缺氧/复氧(hypoxia/reoxygenation,H/R)模型,模拟在体心肌缺血/再灌注损伤,观察脂联素(adiponectin,APN)对心肌细胞H/R损伤的影响,并探讨其作用机制。采用胰蛋白酶消化法原代培养乳鼠心室肌细胞,α-肌动蛋白免疫荧光法进行鉴定。选用培养72h的单层心肌细胞进行实验,随机分为5组:对照组、单纯H/R组、H/R+APN组、H/R+APN+腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)特异性抑制剂阿糖胞苷(AraA)组、H/R+AraA组。观察各组心肌细胞形态及自发搏动频率,用琼脂糖凝胶电泳和流式细胞术检测各组心肌细胞凋亡情况,并测定细胞丙二醛(MDA)含量及培养液中超氧化物歧化酶(SOD)活性,激光共聚焦显微镜观察心肌细胞内钙荧光强度,Western blot检测各组心肌细胞AMPK磷酸化水平。结果显示,与对照组相比,单纯H/R组细胞生长状态较差,搏动频率减慢甚至消失,DNA电泳呈凋亡特征性的梯状条带,细胞凋亡率显著增加,胞浆MDA水平增高,上清液中SOD活性下降,胞内钙荧光强度明显增高,AMPK磷酸化水平升高(P0.05)。与H/R组细胞相比,APN预处理后再进行H/R的心肌细胞搏动频率较快,凋亡率明显减少,MDA水平明显下降,SOD活性明显升高,心肌细胞AMPK磷酸化水平明显增高(P0.05)。AraA可以阻断APN的上述保护作用。以上结果表明,APN可减轻H/R导致的心肌细胞凋亡,减轻脂质过氧化及细胞内钙超载,这一保护作用可能与AMPK途径激活有关。  相似文献   

8.
黄芪甲苷后处理对乳鼠心肌细胞缺氧复氧损伤的作用研究   总被引:1,自引:0,他引:1  
目的:观察黄芪甲苷(AstragalosideⅣ,AsⅣ)后处理对缺氧复氧损伤(simulated ischemia reperfusion injury,SI/RI)的SD乳鼠心肌细胞是否具有保护作用。方法:将乳鼠原代心肌细胞平均分为五组,即空白对照组(Control)、缺氧复氧处理组(SI/RI)、黄芪甲苷预处理(5,10、20μM)+SI/RI组(AsIV+SI/RI)。各组细胞经处理后,四氮唑溴盐比色法(MTT)检测各组细胞存活率;TUNEL染色法测定各组细胞凋亡率;SOD测试盒检测培养液中超氧化物歧化酶(SOD)含量,总嘌呤氧化酶(XOD)测试盒检测丙二醛(MDA)含量。Western blot法检测各组细胞抗凋亡蛋白Bcl-2和促凋亡蛋白Caspase-3的表达。结果:与空白组相比,缺氧复氧损伤组细胞活力显著下降(P0.05),凋亡率显著上升(P0.05),其培养液中SOD水平显著降低(P0.05),MDA水平显著升高。而不同浓度AsⅣ后处理组的心肌细胞存活率显著上升,凋亡率显著下降,培养液中SOD水平显著上升,MDA水平显著下降(P0.05),且呈浓度呈依赖性。Western blot结果显示AsⅣ后处理组细胞中的Bcl-2表达明显上升,Caspase-3明显下降。结论:黄芪甲苷后处理对缺氧复氧诱导的乳鼠心肌细胞损伤具有显著的保护作用,能够显著上调抗凋亡蛋白Bcl-2的表达,下调促凋亡蛋白Caspase-3的表达。  相似文献   

9.
苦豆碱(aloperine,ALO)是一种具有抗炎、抗肿瘤及抗感染功效的生物碱,但其对人脐静脉内皮细胞缺氧/复氧损伤的影响尚不明确。本研究利用人脐静脉内皮细胞建立了体外缺氧/复氧损伤的细胞模型,对细胞进行分组处理:对照组、缺氧/复氧损伤组、苦豆碱(20、50和100μmol/L)预处理组。对细胞活力、细胞内乳酸盐脱氢酶(LDH)、丙二醛(MDA)和超氧化物歧化酶(SOD)活性,细胞内白细胞介素-1β(IL-1β)和肿瘤坏死因子α(TNF-α),以及内质网应激相关蛋白GRP78,XBP-1和凋亡相关蛋白CHOP的表达进行了检测。我们发现与缺氧/复氧损伤组相比,苦豆碱预处理能显著提高细胞活力和SOD活性、降低LDH活性、MDA含量以及IL-1β和TNF-α的水平(P0.05)。另外,苦豆碱预处理还显著下调缺氧/复氧损伤引起的GRP78、XBP-1和CHOP水平的上升(P0.05)。本研究证实苦豆碱能够提高细胞抗脂质过氧化反应的能力、降低炎症因子水平、抑制内质网应激引起的细胞凋亡,改善缺氧/复氧损伤引起的内皮细胞损伤。  相似文献   

10.
研究黄芩素-7-甲醚对高原缺氧小鼠脑组织的保护作用及机制。用50只小鼠进行常压耐缺氧实验,测定黄芩素-7-甲醚的有效剂量。然后将88只小鼠随机分为正常对照组、缺氧模型组、芦丁组和黄芩素-7-甲醚组,连续灌胃给药5天,最后一个给药60 min后,置于模拟海拔8000 m氧舱内停留12 h,检测脑组织中含水量、过氧化氢(H2O2)、一氧化氮(NO)、丙二醛(MDA)、乳酸脱氢酶(LDH)、抗氧化酶以及Nrf2和HO-1蛋白的表达情况。结果发现:低压低氧能够诱导小鼠脑含水量、脑组织中H_2O_2、NO和MDA含量以及LDH活性显著增加,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-Px)的活性显著减低,Nrf2和HO-1蛋白表达增强。经黄芩素-7-甲醚预处理后能够显著降低高原缺氧小鼠脑组织中H_2O_2、MDA和NO含量以及LDH活性,提高抗氧化酶的活性,同时进一步增加Nrf2和HO-1蛋白的表达。以上结果表明:黄芩素-7-甲醚能够缓解高原缺氧导致脑组织氧化应激损伤,作用机制可能与清除自由基,激活Nrf2/ARE/HO-1信号途径,提高抗氧化酶活性有关。  相似文献   

11.
离体大鼠心肌细胞钠超负荷与缺氧—复氧损伤   总被引:6,自引:0,他引:6  
李兆萍  唐朝枢 《生理学报》1989,41(3):304-307
本工作在离体成年大鼠心肌细胞缺氧-复氧模型上,观察到细胞无氧孵育时加入Na~ -K~ ATP酶抑制剂哇巴因,增加细胞内钠离子浓度,复氧孵育后造成了更严重的细胞损伤及钙超负荷,缺氧期末细胞内钠离子浓度与复氧后钙超负荷的程度呈显著正相关。复氧期给予Na~ -Ca~(2 )交换抑制剂Mn~(2 ),明显减轻了细胞的缺氧-复氧损伤,Mn~(2 )还显著抑制了无钠孵育引起的细胞损伤。结果提示:缺氧期细胞内钠超负荷是复氧时细胞内钙超负荷发生的条件,Na~ -Ca~(2 )交换是Ca~(2 )进入细胞的重要途径。  相似文献   

12.
Feng Y  Lu Y  Lin X  Gao Y  Zhao Q  Li W  Wang R 《Life sciences》2008,82(13-14):752-763
The protection of brain mitochondria from oxidative stress is an important therapeutic strategy against ischemia-reperfusion injury and neurodegenerative disorders. Isolated brain mitochondria subjected to a 5 min period of anoxia followed by 5 min reoxygenation mirrored the effect of oxidative stress in the brain. The present study attempts to evaluate the protective effects of endomorphin 1 (EM1), endomorphin 2 (EM2), and morphine (Mor) in an in vitro mouse brain mitochondria anoxia-reoxygenation model. Endomorphins (EM1/2) and Mor were added to mitochondria prior to anoxia or reoxygenation. EM1/2 and Mor markedly improved mitochondrial respiratory activity with a decrease in state 4 and increases in state 3, respiratory control ratio (RCR) and the oxidative phosphorylation efficiency (ADP/O ratio), suggesting that they may play a protective role in mitochondria. These drugs inhibited alterations in mitochondrial membrane fluidity, lipoperoxidation, and cardiolipin (CL) release, which indicates protection of the mitochondrial membranes from oxidative damage. The protective effects of these drugs were concentration-dependent. Furthermore, these drugs blocked the enhanced release of cytochrome c (Cyt c), and consequently inhibited the cell apoptosis induced by the release of Cyt c. Our results suggest that EM1/2 and Mor effectively protect brain mitochondria against oxidative stresses induced by in vitro anoxia-reoxygenation and may play an important role in the prevention of deleterious effects during brain ischemia-reperfusion and neurodegenerative diseases.  相似文献   

13.
Whether the response of the fetal heart to ischemia-reperfusion is associated with activation of the c-Jun N-terminal kinase (JNK) pathway is not known. In contrast, involvement of the sarcolemmal L-type Ca2+ channel (LCC) and the mitochondrial KATP (mitoKATP) channel has been established. This work aimed at investigating the profile of JNK activity during anoxia-reoxygenation and its modulation by LCC and mitoK(ATP) channel. Hearts isolated from 4-day-old chick embryos were submitted to anoxia (30 min) and reoxygenation (60 min). Using the kinase assay method, the profile of JNK activity in the ventricle was determined every 10 min throughout anoxia-reoxygenation. Effects on JNK activity of the LCC blocker verapamil (10 nM), the mitoK(ATP) channel opener diazoxide (50 microM) and the blocker 5-hydroxydecanoate (5-HD, 500 microM), the mitochondrial Ca2+ uniporter (MCU) inhibitor Ru360 (10 microM), and the antioxidant N-(2-mercaptopropionyl) glycine (MPG, 1 mM) were determined. In untreated hearts, JNK activity was increased by 40% during anoxia and peaked fivefold relative to basal level after 30-40 min reoxygenation. This peak value was reduced by half by diazoxide and was tripled by 5-HD. Furthermore, the 5-HD-mediated stimulation of JNK activity during reoxygenation was abolished by diazoxide, verapamil or Ru360. MPG had no effect on JNK activity, whatever the conditions. None of the tested pharmacological agents altered JNK activity under basal normoxic conditions. Thus, in the embryonic heart, JNK activity exhibits a characteristic pattern during anoxia and reoxygenation and the respective open-state of LCC, MCU and mitoKATP channel can be a major determinant of JNK activity in a ROS-independent manner.  相似文献   

14.
BACKGROUND/AIM: Excitation-contraction coupling is modulated by nitric oxide (NO) which otherwise has either beneficial or detrimental effects on myocardial function during hypoxia-reoxygenation. This work aimed at characterizing the variations of electromechanical delay (EMD) induced by anoxia-reoxygenation within the developing heart and determining whether atrial and ventricular EMD are modulated by NO to the same extent. METHODS: Hearts of 4 or 4.5-day-old chick embryos were excised and submitted in vitro to normoxia (45 min), anoxia (30 min) and reoxygenation (60 min). Electrocardiogram and atrial and ventricular contractions were simultaneously recorded throughout experiment. Anoxia-reoxygenation-induced chrono-, dromo-and inotropic disturbances and changes in EMD in atrium (EMDa) and ventricle (EMDv) were investigated in control hearts and in hearts exposed to 0.1, 1, 10, 50 and 100 microM of DETA-NONOate (a NO donating agent) or to 50 microM of L-NAME (a NOS inhibitor). RESULTS: Under normoxia, heart rate, PR interval, ventricular shortening velocity, EMDa and EMDv were similar in control, L-NAME-treated and DETA-NONOate-treated hearts. Under anoxia, cardiac activity became markedly erratic within less than 10 min in all groups. At the onset of reoxygenation, EMDv was increased by about 300% with respect to the preanoxic value while EMDa did not vary significatively. Compared to control conditions, L-NAME or DETA-NONOate had no influence on the negative chrono-, dromo- and inotropic effects induced by anoxia-reoxygenation. However, L-NAME prolonged EMDv during anoxia and delayed EMDv recovery during reoxygenation while 100 microM DETA-NONOate had the opposite effects. EMDa was neither affected by NOS inhibitor nor NO donor. At the end of reoxygenation, all the investigated parameters returned to their basal values. CONCLUSION: This work provides evidence that a NO-dependent pathway is involved in regulation of the ventricular excitation-contraction coupling in the anoxic-reoxygenated developing heart.  相似文献   

15.
The effect of superoxide dismutase (SOD) on membrane integrity and fluidity of the cultured neonatal rat cardiac myocytes in vitro was investigated under the condition of hypoxia and hypoxia/reoxygenation. Lactate dehydrogenase (LDH) concentration was used as the biochemical indicator for the loss of cell membrane integrity. Fluorescence polarization (FP), average microviscosity (N) and anisotropy (Ast), which are inversely proportional to the fluidity of cell membrane, were assayed. Cells were respectively exposed to hypoxia or hypoxia/reoxygenation for different periods of time in the absence or presence of SOD at various concentrations. Hypoxia alone or hypoxia/ reoxygenation brought injury to the cultured myocytes. This was demonstrated by changes in LDH and membrane fluidity. In the former LDH concentration gradually increased in a time-dependent manner and the values of FP, N and Asf were significantly increased. The changes in membrane integrity and fluidity induced by hypoxia or hypoxia/reoxygenation could be prevented by adding SOD to the culture medium. The results provide a direct evidence that SOD (740 u.ml-1, the effective dose) was effective in protecting cultured myocytes against the injury as well as an indirect evidence of free radical generation. Based on the results obtained from this study and the establishment of concept of optimally effective dose by Bernier and Omar et al, it was suggested that some previous reports, in which no evidence was found both in protective effect of SOD and in free radical generation by using only one dose in hypoxia/reoxygenation model, should be interpreted with caution.  相似文献   

16.

Background

Paraoxonase 1 (PON1) is a protein found associated with high density lipoprotein (HDL), thought to prevent oxidative modification of low-density lipoprotein (LDL). This enzyme has been implicated in lowering the risk of cardiovascular disease. Anoxia-reoxygenation and oxidative stress are important elements in cardiovascular and cerebrovascular disease. However, the role of PON1 in anoxia-reoxygenation or anoxic injury is unclear. We hypothesize that PON1 prevents anoxia-reoxygenation injury. We set out to determine whether PON1 expression in Drosophila melanogaster protects against anoxia-reoxygenation (A-R) induced injury.

Methods

Wild type (WT) and transgenic PON1 flies were exposed to anoxia (100% Nitrogen) for different time intervals (from 1 to 24 hours). After the anoxic period, flies were placed in room air for reoxygenation. Activity and survival of flies was then recorded.

Results

Within 5 minutes of anoxia, all flies fell into a stupor state. After reoxygenation, survivor flies resumed activity with some delay. Interestingly, transgenic flies recovered from stupor later than WT. PON1 transgenic flies had a significant survival advantage after A-R stress compared with WT. The protection conferred by PON1 expression was present regardless of the age or dietary restriction. Furthermore, PON1 expression exclusively in CNS conferred protection.

Conclusion

Our results support the hypothesis that PON1 has a protective role in anoxia-reoxygenation injury, and its expression in the CNS is sufficient and necessary to provide a 100% survival protection.  相似文献   

17.
The aim of the study was to investigate the effect of in vitro anoxia/reoxygenation on the oxidative phosphorylation of isolated lung mitochondria. Mitochondria were isolated after harvesting from fresh pig lungs flushed with Euro-Collins solution. Mitochondrial respiratory parameters were determined in isolated mitochondria before anoxia (control), after 5-45 min anoxia followed by 5 min reoxygenation, and after 25 or 40 min of in vitro incubation in order to follow the in vitro aging of mitochondria during respiratory assays. Respiratory parameters measured after anoxia/reoxygenation did not show any oxidative phosphorylation dysfunction, indicating a high resistance of pulmonary mitochondria to in vitro anoxia/reoxygenation (up to 45 min anoxia). These results indicate that mitochondria are not directly responsible of their oxidative phosphorylation damage observed after in vivo ischemia (K. Willet et al., Transplantation 69 (2000) 582) but are a target of others cellular injuries leading to mitochondrial dysfunction in vivo.  相似文献   

18.
We examined the effects of in vitro anoxia and in vivo hypoxia (8% O2/92% N2) on norepinephrine (NE)- and carbachol-stimulated phosphoinositide (PI) turnover in rat brain slices. The formation of 3H-labeled polyPI in cortical slices was impaired by in vitro anoxia and fully restored by reoxygenation. Accumulation of 3H-labeled myo-inositol phosphates (3H-IPs) stimulated by 10(-5) M NE was significantly reduced by anoxia (control at 60 min, 1,217 +/- 86 cpm/mg of protein; anoxia for 60 min, 651 +/- 82 cpm/mg; mean +/- SEM; n = 5; p less than 0.01), and reoxygenation following anoxia resulted in overshooting of the accumulation (control at 120 min, 1,302 +/- 70 cpm/mg; anoxia for 50 min plus oxygenation for 70 min, 1,790 +/- 126 cpm/mg; n = 5; p less than 0.01). The underlying mechanisms for the two phenomena--the decrease caused by anoxia and the overshooting caused by reoxygenation following anoxia--seemed to be completely different because of the following observations. (a) Although the suppression of NE-stimulated accumulation at low O2 tensions was also observed in Ca2+-free medium, the overshooting in response to reoxygenation was not. (b) Carbachol-stimulated accumulation was significantly reduced by anoxia and was restored by reoxygenation only to control levels. Thus, the postanoxic overshooting in accumulation of 3H-IPs seems to be a specific response to NE. (c) The decrease observed at low O2 tensions was due to a decrease in Emax value, whereas the postanoxic overshooting was due to a decrease in EC50 value.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Resveratrol protection on the main functions of purified rat brain mitochondria submitted to anoxia-reoxygenation was investigated. Resveratrol (<0.1 microM) reversed partly (23.3%) the respiratory control ratio (RCR) decrease by protecting both states 3 and 4. This effect was both observed when resveratrol was added before anoxia or reoxygenation. Resveratrol fully inhibited the release of cytochrome c in a concentration-dependent manner and significantly decreased the superoxide anion (O2(0-)) production at a concentration of 1 nM. The mitochondrial membranes damaged after the anoxia-reoxygenation were partly protected (about 70%) by resveratrol at 0.1 microM. The oxygen consumption of mitochondria in presence of NADH and cytochrome c was significantly inhibited by resveratrol with a low EC50 of 18.34 pM. Resveratrol inhibited the CCCP-induced uncoupling from about 20%. The effects of resveratrol on oxidative phosphorylation parameters were also investigated in rats after pretreatment (0.4, 2 and 10 mg/kg/day) for one week. After the isolation of brain mitochondria, the RCR was significantly less decreased in the resveratrol group compared to the control group. These results showed that resveratrol could preserve the mitochondrial functions with at least three mechanisms: antioxidant properties, action on complex III and a membrane stabilizing effect.  相似文献   

20.
《Free radical research》2013,47(3-6):287-296
Endothelial cells were subjected to anoxia/reoxygenation in order to simulate some of the free radical mechanisms occurring in ischaemialreperfusion. With ESR and spin trapping using the spin traps 5.5-dimethyl-l-pyrroline-l-oxide (DMPO) and 3,3,5,5-dimethyl-l-pyrroline-l-oxide (M4PO), the results show that upon reoxygenation of endothelial cells, following a period of anoxia, these cells generate superoxide (02). Cytotoxicity of the spin traps was measured by standard trypan blue exclusion methods. Cell injury or death was measured at various times during reoxygenation by lactate dehydrogenase (LDH) release. Experiments using oxypurinol, SOD, CAT and a combination of SOD and CAT show that while oxypurinol partially prevents spin adduct formation. the combination of SOD and CAT is more effective in doing so. These results suggest that the majority of the oxygen radicals produced by endothelial cells are done so exogenously. The results also suggest that endothelial cells are not only a source of oxygen radicals but also a target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号