首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cd(II) complex of a peptide, Z-Cys-Ala-Pro-His-OMe was prepared and characterized by absorption, CD, 1H-, 13C-, and 113Cd-nmr, and nuclear Overhauser effect spectroscopy (NOESY) spectra to show the coordination of cysteine thiolate and histidine imizazole to Cd(II) ion. The NOESY spectra in dimethyl formamide showed that the cysteine residue was in proximity to the histidine residue. These results reveal the dictation of Z-Cys-Ala-Pro-His-OMe to Cd(II) ion in solution. Temperature-dependent dissociation equilibrium of histidine imidazole in solution was observed in this complex. Structural features of the chelating peptide are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
The absorptivity at 540 nm of bovine hemiglobincyanide (cyanmethemoglobin) was determined on the basis of the iron content and found to be equal to the established value for human hemiglobincyanide (11.0 L · mmol−1 · cm−1). On this basis the absorption spectra of the common derivatives were determined for bovine hemoglobin. There proved to be only slight differences in the oxyhemoglobin, deoxyhemoglobin, and carboxyhemoglobin spectra between bovine and human hemoglobin. For comparison of the methemoglobin spectra a new series of measurements was made for human hemoglobin. As also found in the rat, the methemoglobin spectrum of bovine blood differed considerably from that in the human. These differences should be taken into account in multicomponent analysis.  相似文献   

3.
A specific, sensitive and accurate quantitation method for glyceryl trinitrate was developed using gas chromatography—negative ion chemical ionization—selected ion monitoring with dichloromethane as a reagent gas. [15N3] and [2H5, 15N3] variants were synthesized from non-labelled or [2H8]glycerol and [15N]nitric acid. The former variant was used for preventing adsorption of glyceryl trinitrate onto active sites on column materials and the latter was used as an internal standard for quantitation of glyceryl trinitrate in biological fluids by selected ion monitoring. The quantitation limit of this method is 0.1 ng/ml of human plasma. When glyceryl trinitrate was administered intravenously in the dose of 4 μg/kg to patients receiving hypotensive anesthesia for surgical operation, the plasma levels exhibited a biexponential decay. The mean and standard deviation of half-lives of the α and β phases were found to be about 0.41 ± 0.13 and 5.34 ± 1.60 min, respectively.  相似文献   

4.
The rate constants k12n for isomerization of the E1H isomer (pKa 8 in H2O) of ribonuclease-A to the E2H isomer (pKa = 6.1 in H2O), determined from proton-uptake measurements by the temperature-jump technique, in mixtures of protium and deuterium oxides (atom fraction of deuterium n), are described by the equation k12n = (733 ± 16)(1 − n + [0.46 ± 0.04]n)(1 − n + 0.69n)2sec−1 at 25°C. On the basis of the absolute magnitude of the rate constant, the magnitude of the solvent isotope effect and the proton inventory, it appears that the rate-determining step is proton transfer to a water molecule from the imidazolium form of a histidine residue, with a product-like activated complex resembling a hydronium ion. The subsequent motion of the protein structure to generate the new isomer (conformation change) must then occur in a time approaching a vibrational period. Alternative but less likely mechanisms include rate-limiting protein reorganization concerted with proton transfer to water, rate-limiting diffusion of hydronium ion away from the enzyme, or “solvation catalysis” of protein reorganization.  相似文献   

5.
l-[5′-2H2]Histidine was used as a substrate to investigate the enzymatic reaction mechanism with histidine ammonia-lyase from Pseudomonas fluorescens. The study was performed to determine the exchange rate of deuterium at C-5′ of the imidazole ring with solvent hydrogen relative to the net urocanic acid production. The extent of hydrogen exchange at C-5′ of histidine or urocanic acid was measured by gas chromatography—mass spectrometry—selected ion monitoring, monitoring the molecular ion intensities of the respective gas chromatographic derivatives, at m/z 380 and 379 for histidine and at m/z 267 and 266 for urocanic acid. The observed hydrogen exchange at C-5′ suggested a reversible mechanism via a carbanion intermediate in the reaction with histidine ammonia-lyase.  相似文献   

6.
The role of active site histidine residues in SCN oxidation by lacrimal gland peroxidase (LGP) has been probed after modification with diethylpyrocarbonate (DEPC). The enzyme is irreversibly inactivated following pseudo-first order kinetics with a second order rate constant of 0.26 M–1 sec–1 at 25°C. The pH dependent rate of inactivation shows an inflection point at 6.6 indicating histidine derivatization. The UV difference spectrum of the modified versus native enzyme shows a peak at 242 nm indicating formation of N-carbethoxyhistidine. Carbethoxyhistidine formation and associated inactivation are reversed by hydroxylamine indicating histidine modification. The stoichiometry of histidine modification and the extent of inactivation show that out of five histidine residues modified, modification of two residues inactivates the enzyme. Substrate protection with SCN during modification indicates that although one histidine is protected, it does not prevent inactivation. The spectroscopically detectable compound II formation is lost due to modification and is not evident after SCN protection. The data indicate that out of two histidines, one regulates compound I formation while the other one controls SCN binding. SCN protected enzyme is inactive due to loss of compound I formation. SCN binding studies by optical difference spectroscopy indicate that while the native enzyme binds SCN with the Kd of 15 mM, the modified enzyme shows very weak binding with the Kd of 660 mM. From the pH dependent binding of SCN, a plot of log Kd vs. pH shows a sigmoidal curve from which the involvement of an enzyme ionizable group of pKa 6.6 is ascertained and attributed to the histidine residue controlling SCN binding. LGP has thus two distinctly different essential histidine residues – one regulates compound I formation while the other one controls SCN binding.  相似文献   

7.
Nickel-dependent superoxide dismutase (NiSOD) is a member of a class of metalloenzymes that protect aerobic organisms from the damaging superoxide radical (O2 ·−). A distinctive and fascinating feature of NiSOD is the presence of active-site nickel–thiolate interactions involving the Cys2 and Cys6 residues. Mutation of one or both Cys residues to Ser prevents catalysis of O2 ·−, demonstrating that both residues are necessary to support proper enzymatic activity (Ryan et al., J Biol Inorg Chem, 2010). In this study, we have employed a combined spectroscopic and computational approach to characterize three Cys-to-Ser (Cys → Ser) mutants (C2S, C6S, and C2S/C6S NiSOD). Similar electronic absorption and magnetic circular dichroism spectra are observed for these mutants, indicating that they possess nearly identical active-site geometric and electronic structures. These spectroscopic data also reveal that the Ni2+ ion in each mutant adopts a high-spin (S = 1) configuration, characteristic of a five- or six-coordinate ligand environment, as opposed to the low-spin (S = 0) configuration observed for the four-coordinate Ni2+ center in the native enzyme. An analysis of the electronic absorption and magnetic circular dichroism data within the framework of density functional theory computations performed on a series of five- and six-coordinate C2S/C6S NiSOD models reveals that the active site of each Cys → Ser mutant possesses an essentially six-coordinate Ni2+ center with a rather weak axial bonding interaction. Factors contributing to the lack of catalytic activity displayed by the Cys → Ser NiSOD mutants are explored.  相似文献   

8.
We have reported here on the structural polymorphism of lipid A, the “endotoxic principle” of bacterial lipopolysaccharide. For lipid A of rough mutant lipopolysaccharide from Salmonella minnesota and Escherichia coli, the three-dimensional supramolecular structures were determined with x-ray diffraction utilizing synchrotron radiation. The investigations were performed in the water concentration range 10 to 95% by weight, at [lipid A]:[Mg2+] molar ratios from 1:0 to 0.1:1, and in the temperature range from 20 to 70°C. These data were correlated with measurements of the β→α phase behaviour which was monitored with differential scanning calorimetry and Fourier-transform infrared spectroscopy. We found that the transition temperature of the acyl chains ranges—in the absence of Mg2+—from 45°C at high to 56°C at low water content, and—at an equimolar content of Mg2+—from 52°C at high to 59°C at low water concentrations. In the gel phase—in which the lipid A acyl chains are more disordered than those from saturated phospholipids—cubic phases are adopted at high water content (>60%) and at high [lipid A):[Mg2+] molar ratios. At low water contents, lamellar states are assumed exclusively. In the liquid crystalline state of lipid A, the hexagonal HII, state is adopted under all conditions. The structural variability of lipid A is highest at high water concentrations, and structural changes may be induced by only slight changes in temperature, water content, and Mg2+ concentration. Under physiological conditions, however, the lipid A assemblies exhibit a strong preference to cubic structures.  相似文献   

9.
Arginase from the gills of the bivalveSemele solida was inactivated by diethyl pyrocarbonate (DEPC) in a pseudo-first-order reaction with a bimolecular rate constant of 160 M−1 min−1. The reaction order with respect to DEPC concentration was 1, the inactivation followed a titration curve for a residue with a pKa of 6.4 at 25°C and the enzymatic activity was restored by hydroxylamine. It is concluded that inactivation results from the modification of a single histidine residue. Borate, a noncompetitive inhibitor with respect to arginine, protected the enzyme from inactivation by DEPC.  相似文献   

10.
Summary In our study on non coded amino acids and their utilization in peptide chemistry we synthesized methylene-thio (CH2—S) and methyleneoxy (CH2—O) group containing amino acids and pseudodipeptides which could be used as building blocks for the construction of peptide hormone analogues. The (CH2—S) isoster of peptide bond exhibits increased flexibility, lipophility and resistance to proteolytic enzymes. This group exhibits similar properties as the isosteric disulfide bond in the side chain of cystine residue. The (CH2—O) isoster is moreover similar in its geometry to extended conformation of peptide bond. As a consequence, the changed profile of biological activities could be expected for peptide hormone analogues containing such isosteric moiety. The (CH2—S) isosters of the peptide bond were prepared by alkylation of thiolates of 2-mercaptocarboxylic acids, the disulfide bond by alkylation of cysteine or homocysteine. The (CH2—O) isosters were prepared by (AcO)4Rh2 catalyzed addition of carbenes of alkyl diazocarboxylates to N-protected aminoalcohols. Pseudodipeptides H—Leu—(CH2—S)—Gly—NH2 and H—Leu—(CH2—O)—Gly—NH2 were introduced into the C-terminal part of the oxytocin molecule using solution methods of peptide chemistry. Both inserted isosteric bonds were resistant against proteolytic degradation, the first one was found to decrease an enzymic cleavage of the distant Tyr2-Ile3 bond in the corresponding analogue, too. The (CH2—S) isosters of the disulfide bond containing an orthogonal protection of their-amino (Fmoc) and-(OAll, OH) or-(OBu+, OH) carboxylic groups were applied in the solid phase synthesis of the aminoterminal 1-deamino-15-pentadecapeptide of endothelin-I which represents a strong vasoactive agent. The solid phase synthesis was carried out by the step-wise protocol on the Rink or Merrifield type resin using orthogonally protected carba cystine building blocks.  相似文献   

11.
Rapid, sensitive and specific high-performance liquid chromatographic assays are described for protoporphyrinogen oxidase and ferrochelatase in human leucocytes. The enzyme reaction products were separated and quantitated by reversed-phase high-performance liquid chromatography with fluorescence detection. The optimal pH for the protoporphyrinogen oxidase assay was 8.6 and the Michaelis constant for protoporphyrinogen IX was 9.78 ± 0.96 μM (mean ± S.D.). The mean (± S.D.) activity of protoporphyrinogen oxidase in fourteen apparently healthy subjects was 0.146 ± 0.023 nmol protoporphyrin IX per min per mg protein. In one patient with variegate porphyria, the activity was 0.028 nmol protoporphyrin IX per min per mg protein. The optimal pH for ferrochelatase was 7.4 and with protoporphyrin and Zn2+ as substrates, the Michaelis constants were 1.49 and 8.33 μM, respectively. The mean activity of ferrochelatase in ten control subjects was 0.24 nM Zn—protoporphyrin or 2.05 nM Zn—mesoporphyrin formed per h per mg protein.  相似文献   

12.
The kinetics of formation of the complex ion, μ-carbonato-di-μ-hydroxo-bis((1,5-diamino-3-aza-pentane) cobalt(III), from the tri-μ-hydroxo-bis((1,5-diamino-3-aza-pentane(III)cobalt(III)) ion in aqueous buffered carbonate solution have been studied spectrophotometrically at 295 nm over the ranges 20.0θ°C34.8, 8.03pH9.44, 5 mM [CO32−35 mM and at an ionic strength of 0.1 M (LiClO4). On the basis of the kinetic results a mechanism, involving rapid cleavage of an hydroxo bridge followed by carbon dioxide uptake with subsequent bridge formation, has been proposed. At 25 °C, the rate of the carbon dioxide uptake is 0.58 M−1 s−1 with ΔH≠ = (13.2±0.7) kcal mol−1 and ΔS≠ = (−15.1 ± 0.7) cal deg−1 mol−1. The results are composed with those obtained for several mononuclear cobalt(III) and one dinuclear cobalt(III) complexes.  相似文献   

13.
The interaction of F with high and low spin ferric deuteroporphyrin IX dimethyl ester and a low spin model compound, bis(histidine methyl ester) deuterohemin IX has been studied in dimethylformamide solution by low-temperature EPR. The reaction of F with these complexes leads to high spin compounds. The structure of the EPR line at g = 2 is due to superhyperfine interactions with axial fluoride ligands. It allows their identification as mono- or difluoride complexes. Their optical absorption spectra are reported. In the particular cases of bis(imidazole) deuterohemin IX dimethyl ester and of the model compound, the variations of the EPR spectra as functions of concentration of ionic ligand are reported. Three new low spin complexes are thus obtained. They are characterized by a specific interaction of F with the NH group of the imidazole ring. This is proved following a second independent study in which we report the changes in g tensor principal values of low spin ferric porphyrins with the basicity (pKa) of various nitrogenous bases.  相似文献   

14.
Two high-performance liquid chromatographic procedures were proposed to measure histamine. The first, with UV detection and a strong acid cation exchanger (Partisil 10, SCX Whatman), made it possible to isolate histamine and some methylated derivatives. The second, with a C18 sorbent (μBondapak, Waters, 10 μm particle size) eluted with ion-pairing phases, made it possible to isolate the histamine—o-phthaldialdehyde complexes. This last procedure allied with a chromatographic purification step gave lower or identical amounts of histamine than those described in human urine (16 ± 7 μg per 24 h), canine whole blood (1.5 ± 1 ng/ml) and human gastric juice (2.3 ± 1.4 ng/ml). The two procedures gave the concentration of a histamine-like compound isolated from the antral mucosa.  相似文献   

15.
An assay has been developed for Nτ-methylhistamine, a major metabolite of the autocoid histamine, based on gas chromatography—electron-capture negative-ion chemical ionisation mass spectrometry. Nτ-Methylhistamine was extracted from urine by cation-exchange chromatography and converted to its di-(3,5-bistrifluoromethylbenzoyl) derivative. The latter has good chromatographic properties and gives a negative-ion mass spectrum with the molecular ion (M, m/z 605) as base peak. A commercially available trideuterated analogue of Nτ-methylhistamine was used as internal standard. Basal urinary excretion of Nτ-methylhistamine in five normal subjects was found to be 0.21 ± 0.05 μmol/h (289 ± 74 μmol/mol of creatinine). This value was not significantly altered in these subjects following the infusion of a sub-pharmacological dose of histamine. In eight atopic volunteers, basal urinary excretion of Nτ-methyl-histamine was also not significantly changed following challenge with inhaled allergen.  相似文献   

16.
For the quantification of nitrite and nitrate, the stable metabolites of -arginine-derived nitric oxide (NO) in human urine and plasma, we developed a gas chromatographic—mass spectrometric (GC—MS) method in which [15N]nitrite and [15N]nitrate were used as internal standards. Endogenous nitrite and [15N]nitrite added to acetone-treated plasma and urine samples were converted into their pentafluorobenzyl (PFB) derivatives using PFB bromide as the alkylating agent. For the analysis of endogenous nitrate and [15N]nitrate they were reduced to nitrite and [15N]nitrite, respectively, by cadmium in acidified plasma and urine samples prior to PFB alkylation. Reaction products were extracted with toluene and 1-μl aliquots were analyzed by selected-ion monitoring at m/z 46 for endogenous nitrite (nitrate) and m/z 47 for [15N]nitrite ([15N]nitrate). The intra- and inter-assay relative standard deviations for the determination of nitrite and nitrate in urine and plasma were below 3.8%. The detection limit of the method was 22 fmol of nitrite. Healthy subjects (n = 12) excreted into urine 0.49 ± 0.25 of nitrite and 109.5 ± 61.7 of nitrate (mean ± S.D., μmol/mmol creatinine) with a mean 24-h output of 5.7 μmol for nitrite and 1226 μmol for nitrate. The concentrations of nitrite and nitrate in the plasma of these volunteers were determined to be (mean ± S.D., μmol/l) 3.6 ± 0.8 and 68 ± 17, respectively.  相似文献   

17.
Murine epidermal growth factor (m-EGF), a polypeptide produced as a chromatographically homogeneous peak on diethylaminoethyl (DEAE) cellulose by the method of Savage and co-workers, and characterised as a single compound, has been shown by ourselves and several other groups to be a mixture. The present contribution extends our previously reported work and discuss the separation of this material, termed DEAE—m-EGF, into its components by preparative ion-pair reversed-phase high-performance liquid chromatography (RP-HPLC) on C18 μBondapak in quantities up to 50 mg per run. Isocratic elution was used and the mobile phase was acetonitrile—water (26:74, v/v, 0.04 M in triethylamine acetate); pH was 5.6, temperature 40°C, and detection was by ultraviolet absorption at 254 nm, and (for some runs) by differential refractometry. Seven significant peaks, four major, three minor, were detected. Of the major peaks, two designated α- and β-EGF, constituted 70% of the total mass and were the most important to our work. Each of the eluted peaks was recovered by lyophilisation, and this product checked for homogeneity by ion-pair RP-HPLC on a C18 μBondapak analytical column, with utraviolet detection as before. All recovered peaks were found to be homogeneous by this criterion.These chromatographically homogeneous compounds were investigated by modern physicochemical instrumentation to determine their structure. The molecular weight of each of the species was determined by fast atom bombardment mass spectrometry. High-field proton magnetic resonance at 270 MHz provided structural and conformational information. Polarimetry and ultraviolet absorption were also used to characterise the compound. α-EGF, for example, had a molecular weight of 6040 corresponding to the 53 amino acid residue peptide previously designated EGF; β-EGF had a molecular weight of 5930. This molecular weight differential of 110 suggested the hypothesis that β-EGF was a 52 residue peptide corresponding to α-EGF minus the terminal asparagine at position 1. Proton magnetic resonance difference spectroscopy (β spectrum subtracted from α) provided powerful confirmatory evidence for this hypothesis.All materials recovered from RP-HPLC were tested in the sheep and found to retain their biological activity.  相似文献   

18.
Endogenous prostacyclin production is best assessed by the measurement of its excreted metabolites, of which a major one is 2,3-dinor-6-ketoprostaglandin F (2,3-dinor-6-keto-PGF). Gas chromatographic—mass spectrometric (GC—MS) assays have been developed for this compound but are cumbersome and time-consuming. We now report a modified assay for the measurement of 2,3-dinor-6-keto-PGF employing GC—MS in which sample preparation time is markedly shortened by replacing a number of extraction steps with reversed-phase column extraction and by modifying derivatization procedures. Precision of the assay is ± 5% and the accuracy is 98%. The lower limit of detection in urine is approximately 15 pg/mg creatinine. Normal urinary levels of this metabolite were found to be 141 ± 54 pg/mg creatinine (mean ± S.D.). Urinary excretion of 2,3-dinor-6-keto-PGF is markedly altered in situations associated with abnormalities of prostacyclin generation when quantified using this assay. Thus, this assay provides a sensitive and accurate method to assess endogenous prostacyclin production and to further explore the role of this compound in human health and disease.  相似文献   

19.
The electronic spectra of NCS? and I? adducts of cobalt(II) human carbonic anhydrase I are pH dependent at pH values below 7. The pKa of such equilibrium is dependent on the anion concentration and varies between 4.6 and 6.6. The 1H NMR spectra show that the three histidine residues are bound to the metal ion over the entire pH range investigated. It is supposed that a Glu residue triggers the change in stereochemistry around the metal ion. It is possible that such a Glu residue is Glu 106 present in the active cavity.  相似文献   

20.
1H NMR spectroscopy was applied to study the reactions of cis-[Pd(L)(H2O)2]2+ complexes (L is en, pic and dpa) with the N-acetylated tripeptides L-methionylglycylglycine, MeCOMet–Gly–Gly, and glycyl–L-methionyl–glycine, MeCOGly–Met–Gly. All reactions were performed in the pH range 2.0–2.5 with equimolar amounts of the cis-[Pd(L)(H2O)2]2+ complex and the tripeptide at 60 °C. The hydrolytic reactions of the cis-[Pd(en)(H2O)2]2+, cis-[Pd(pic)(H2O)2]2+ and cis-[Pd(dpa)(H2O)2]2+ complexes with MeCOMet–Gly–Gly were regioselective and only the amide bond involving the carboxylic group of methionine was cleaved. However, in the reactions of these three Pd(II) complexes with MeCOGly–Met–Gly, two amide bonds, Met–Gly and MeCO–Gly, were cleaved. From UV–Vis spectrophotometry studies, it was found that the rate-determining step of these hydrolytic reactions is the monodentate coordination of the corresponding Pd(II) complex to the sulfur atom of the methionine side chain. The rate of the cleavage of these amide bonds is dependent on the nature of the bidentate coordinated diamine ligand L (en > pic > dpa). The hydrolytic reaction of cis-[Pd(L)(H2O)2]2+-type complexes with MeCOMet–Gly–Gly, containing the methionine side chain in the terminal position of the peptide, is regioselective while in the reaction of these Pd(II) complexes with MeCOGly–Met–Gly, none selective cleavage of the peptide occurs. This study contributes to a better understanding of the selective cleavage of methionine-containing peptides employing palladium(II) complexes as catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号