首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Analysis of a number of PSII complexes detectable in the wild-type and mutant cells of the cyanobacterium Synechocystis sp. PCC 6803 showed that the PsbH protein is present in the complexes containing CP47, including unassembled CP47. In a mutant lacking CP47, in which the PSII assembly is stopped at the level of the D1-D2-cytochrome b-559 reaction centre complex, a negligible amount of the PsbH protein was not bound to this complex but was detected in the free form. The results indicate that the PsbH protein has a high affinity for CP47 and during PSII assembly most probably first associates with CP47 and this pair is subsequently attached to the reaction centre complex. Similarly to CP47, the PsbH protein exhibits a slow light-induced degradation in the presence of protein synthesis inhibitor. The absence of the PsbH protein leads to a greatly increased D1 pool that is not associated with other PSII proteins or it is present as a part of the reaction centre complex. We conclude that PsbH is important for the prompt incorporation of the newly synthesized D1 protein into PSII complexes and for the fast D1 maturation.  相似文献   

2.
Cyanobacteria contain several genes coding for small one-helix proteins called SCPs or HLIPs with significant sequence similarity to chlorophyll a/b-binding proteins. To localize one of these proteins, ScpD, in the cells of the cyanobacterium Synechocystis sp. PCC 6803, we constructed several mutants in which ScpD was expressed as a His-tagged protein (ScpDHis). Using two-dimensional native-SDS electrophoresis of thylakoid membranes or isolated Photosystem II (PSII), we determined that after high-light treatment most of the ScpDHis protein in a cell is associated with PSII. The ScpDHis protein was present in both monomeric and dimeric PSII core complexes and also in the core subcomplex lacking CP43. However, the association with PSII was abolished in the mutant lacking the PSII subunit PsbH. In a PSII mutant lacking cytochrome b(559), which does not accumulate PSII, ScpDHis is associated with CP47. The interaction of ScpDHis with PsbH and CP47 was further confirmed by electron microscopy of PSII labeled with Ni-NTA Nanogold. Single particle image analysis identified the location of the labeled ScpDHis at the periphery of the PSII core complex in the vicinity of the PsbH and CP47. Because of the fact that ScpDHis did not form any large structures bound to PSII and because of its accumulation in PSII subcomplexes containing CP47 and PsbH we suggest that ScpD is involved in a process of PSII assembly/repair during the turnover of pigment-binding proteins, particularly CP47.  相似文献   

3.
Accumulation of monomer and dimer photosystem (PS) II reaction center core complexes has been analyzed by two-dimensional Blue-native/SDS-PAGE in Synechocystis PCC 6803 wild type and in mutant strains lacking genes psbA, psbB, psbC, psbDIC/DII, or the psbEFLJ operon. In vivo pulse-chase radiolabeling experiments revealed that mutant cells assembled PSII precomplexes only. In DeltapsbC and DeltapsbB, assembly of reaction center cores lacking CP43 and reaction center complexes was detected, respectively. In DeltapsbA, protein subunits CP43, CP47, D2, and cytochrome b559 were synthesized, but proteins did not assemble. Similarly, in DeltapsbD/C lacking D2, and CP43, the de novo synthesized proteins D1, CP47, and cytochrome b559 did not form any mutual complexes, indicating that assembly of the reaction center complex is a prerequisite for assembly with core subunits CP47 and CP43. Finally, although CP43 and CP47 accumulated in DeltapsbEFLJ, D2 was neither expressed nor accumulated. We, furthermore, show that the amount of D2 is high in the strain lacking D1, whereas the amount of D1 is low in the strain lacking D2. We conclude that expression of the psbEFLJ operon is a prerequisite for D2 accumulation that is the key regulatory step for D1 accumulation and consecutive assembly of the PSII reaction center complex.  相似文献   

4.
The involvement of the PsbI protein in the assembly and repair of the photosystem II (PSII) complex has been studied in the cyanobacterium Synechocystis sp. PCC 6803. Analysis of PSII complexes in the wild-type strain showed that the PsbI protein was present in dimeric and monomeric core complexes, core complexes lacking CP43, and in reaction center complexes containing D1, D2, and cytochrome b-559. In addition, immunoprecipitation experiments and the use of a histidine-tagged derivative of PsbI have revealed the presence in the thylakoid membrane of assembly complexes containing PsbI and either the precursor or mature forms of D1. Analysis of PSII assembly in the psbI deletion mutant and in strains lacking PsbI together with other PSII subunits showed that PsbI was not required for formation of PSII reaction center complexes or core complexes, although levels of unassembled D1 were reduced in its absence. However, loss of PsbI led to a dramatic destabilization of CP43 binding within monomeric and dimeric PSII core complexes. Despite the close structural relationship between D1 and PsbI in the PSII complex, PsbI turned over much slower than D1, whereas high light-induced turnover of D1 was accelerated in the absence of PsbI. Overall, our results suggest that PsbI is an early assembly partner for D1 and that it plays a functional role in stabilizing the binding of CP43 in the PSII holoenzyme.  相似文献   

5.
Biochemical characterization of intermediates involved in the assembly of the oxygen-evolving Photosystem II (PSII) complex is hampered by their low abundance in the membrane. Using the cyanobacterium Synechocystis sp. PCC 6803, we describe here the isolation of the CP47 and CP43 subunits, which, during biogenesis, attach to a reaction center assembly complex containing D1, D2, and cytochrome b(559), with CP47 binding first. Our experimental approach involved a combination of His tagging, the use of a D1 deletion mutant that blocks PSII assembly at an early stage, and, in the case of CP47, the additional inactivation of the FtsH2 protease involved in degrading unassembled PSII proteins. Absorption spectroscopy and pigment analyses revealed that both CP47-His and CP43-His bind chlorophyll a and β-carotene. A comparison of the low temperature absorption and fluorescence spectra in the Q(Y) region for CP47-His and CP43-His with those for CP47 and CP43 isolated by fragmentation of spinach PSII core complexes confirmed that the spectroscopic properties are similar but not identical. The measured fluorescence quantum yield was generally lower for the proteins isolated from Synechocystis sp. PCC 6803, and a 1-3-nm blue shift and a 2-nm red shift of the 77 K emission maximum could be observed for CP47-His and CP43-His, respectively. Immunoblotting and mass spectrometry revealed the co-purification of PsbH, PsbL, and PsbT with CP47-His and of PsbK and Psb30/Ycf12 with CP43-His. Overall, our data support the view that CP47 and CP43 form preassembled pigment-protein complexes in vivo before their incorporation into the PSII complex.  相似文献   

6.
Photosystem I-less Synechocystis 6803 mutants carrying modified PsbH proteins, derived from different combinations of wild-type cyanobacterial and maize genes, were constructed. The mutants were analyzed in order to determine the relative importance of the intra- and extramembrane domains of the PsbH subunit in the functioning of photosystem (PS) II, by a combination of biochemical, biophysical, and physiological approaches. The results confirmed and extended previously published data showing that, besides D1, the whole PsbH protein is necessary to determine the correct structure of a QB/herbicide-binding site. The different turnover of the D1 protein and chlorophyll photobleaching displayed by mutant cells in response to photoinhibitory treatment revealed for the first time the actual role of the PsbH subunit in photoprotection. A functional PsbH protein is necessary for (i) rapid degradation of photodamaged D1 molecules, which is essential to avoid further oxidative damage to the PSII core, and (ii) insertion of newly synthesized D1 molecules into the thylakoid membrane. PsbH is thus required for both initiation and completion of the repair cycle of the PSII complex in cyanobacteria.  相似文献   

7.
The PsbH protein belongs to a group of small protein subunits of photosystem II (PSII) complex. This protein is predicted to have a single transmembrane helix and it is important for the assembly of the PSII complex as well as for the proper function at the acceptor side of PSII. To identify the location of the PsbH subunit, the PSII complex with His-tagged PsbH protein was isolated from the cyanobacterium Synechocystis sp. PCC 6803 and labeled by Ni(2+)-nitrilo triacetic acid Nanogold. Electron microscopy followed by single particle image analysis identified the location of the labeled His-tagged PsbH protein at the periphery of the dimeric PSII complex. These results indicate that the N terminus of the PsbH protein is located at the stromal surface of the PSII complex and close to the CP47 protein.  相似文献   

8.
The reaction center core of photosystem II, a multiprotein membrane bound complex, is composed of a heterodimer of two proteins, D1 and D2. A random mutagenesis technique was used to isolate a photosystem II deficient mutant, CP6t16, of the unicellular cyanobacterium, Synechocystis sp. PCC 6803. Nucleotide sequence analysis showed that the primary lesion in CP6t16 is an ochre mutation introducing a translational stop codon in the psbE gene, encoding the alpha-subunit of cytochrome b559, an integral component of the PSII complex. Analysis of the protein composition of CP6t16 thylakoid membranes isolated in the presence of serine protease inhibitors revealed that, in the absence of cytochrome b559, the D2 protein is also absent. However, the D1 protein is stably incorporated in these membranes, suggesting that the synthesis and integration of D1 are independent of those of D2 and cytochrome b559.  相似文献   

9.
Properties of the Photosystem II (PSII) complex were examined in the wild-type (control) strain of the cyanobacterium Synechocystis PCC 6803 and its site-directed mutant D1-His252Leu in which the histidine residue 252 of the D1 polypeptide was replaced by leucine. This mutation caused a severe blockage of electron transfer between the PSII electron acceptors Q(A) and Q(B) and largely inhibited PSII oxygen evolving activity. Strong illumination induced formation of a D1-cytochrome b-559 adduct in isolated, detergent-solubilized thylakoid membranes from the control but not the mutant strain. The light-induced generation of the adduct was suppressed after prior modification of thylakoid proteins either with the histidine modifier platinum-terpyridine-chloride or with primary amino group modifiers. Anaerobic conditions and the presence of radical scavengers also inhibited the appearance of the adduct. The data suggest that the D1-cytochrome adduct is the product of a reaction between the oxidized residue His(252) of the D1 polypeptide and the N-terminal amino group of the cytochrome alpha subunit. As the rate of the D1 degradation in the control and mutant strains is similar, formation of the adduct does not seem to represent a required intermediary step in the D1 degradation pathway.  相似文献   

10.
To establish a system for over-production of PSII-L protein which is a component of photosystem II (PSII) complex, a plasmid designated as pMAL-psbL was constructed and expressed in Escherichia coli JM109. A fusion protein of PSII-L and maltose-binding proteins (53 kDa on SDS-PAGE) was accumulated in E. coli cells to a level of 10% of the total protein upon isopropyl--D-thiogalactopyranoside (IPTG) induction. The carboxyl-terminal part of 5.0 kDa was cleaved from the fusion protein and purified by an anion exchange column chromatography in the presence of detergents. This 5.0 kDa protein was identified as PSII-L by amino-terminal amino acid sequence analysis and the chromatographic behavior on an anion exchange gel. A few types of mutant PSII-L were also prepared by the essentially same procedure except for using plasmids which contain given mutations in psbL gene. Plastoquinone-9 (PQ-9) depleted PSII reaction center core complex consisting of D1, D2, CP47, cytochrome b-559 (cyt b-559), PSII-I and PSII-W was reconstituted with PQ-9 and digalactosyldiglyceride (DGDG) together with the wild-type or mutant PSII-L produced in E. coli or isolated PSII-L from spinach. Significant difference between the wild-type PSII-L proteins from E. coli and spinach was not recognized in the effectiveness to recover the photo-induced electron transfer activity in the resulting complexes. The analysis of stoichiometry of PQ-9 per reaction center in the PQ-9 reconstituted PS II revealed that two molecules of PQ-9 were reinserted into a reaction center independent of the presence or absence of PSII-L. These results suggest that PSII-L recovers the electron transfer activity in the reconstituted RC by a mechanism different from the stabilization of PQ-9 in the QA site of PSII. Ubiquinone-10 (UQ-10), but not plastoquinone-2 (PQ-2), substituted PQ-9 for recovering the PSII-L supported electron transfer activity in the reconstituted PSII reaction center complexes. The results obtained with the mutant PSII-L proteins revealed that the carboxyl terminal part rather than amino terminal part of PSII-L is crucial for recovering the electron transfer activity in the reconstituted complexes.  相似文献   

11.
Ma J  Peng L  Guo J  Lu Q  Lu C  Zhang L 《The Plant cell》2007,19(6):1980-1993
To elucidate the molecular mechanism of photosystem II (PSII) assembly, we characterized the low psii accumulation2 (lpa2) mutant of Arabidopsis thaliana, which is defective in the accumulation of PSII supercomplexes. The levels and processing patterns of the RNAs encoding the PSII subunits are unaltered in the mutant. In vivo protein-labeling experiments showed that the synthesis of CP43 (for chlorophyll a binding protein) was greatly reduced, but CP47, D1, and D2 were synthesized at normal rates in the lpa2-1 mutant. The newly synthesized CP43 was rapidly degraded in lpa2-1, and the turnover rates of D1 and D2 were higher in lpa2-1 than in wild-type plants. The newly synthesized PSII proteins were assembled into PSII complexes, but the assembly of PSII was less efficient in the mutant than in wild-type plants. LPA2 encodes an intrinsic thylakoid membrane protein, which is not an integral subunit of PSII. Yeast two-hybrid assays indicated that LPA2 interacts with the PSII core protein CP43 but not with the PSII reaction center proteins D1 and D2. Moreover, direct interactions of LPA2 with Albino3 (Alb3), which is involved in thylakoid membrane biogenesis and cell division, were also detected. Thus, the results suggest that LPA2, which appears to form a complex with Alb3, is involved in assisting CP43 assembly within PSII.  相似文献   

12.
The carboxyl terminus of the CP43 subunit of photosystem II (PSII) in the thermophilic cyanobacterium, Synechococcus elongatus, was genetically tagged with six consecutive histidine residues to create a metal binding site on the PSII supramolecular complex. The histidine-tagging enabled rapid isolation of an intact cyanobacterial PSII core complex from dodecyl maltoside-solubilized thylakoids by a simple one-step Ni(2+)-affinity column chromatography. The isolated core complex was in a dimeric form with a molecular mass of about 580 kDa, consisting of five major intrinsic membrane proteins (CP47, CP43, D1, D2 and cytochrome b-559), three extrinsic proteins (33 kDa, 12 kDa, and cytochrome c-550), and a few low molecular mass membrane proteins, and evolved oxygen at a rate as high as 3,400 mumol (mg Chl)-1 h-1 at 45 degrees C with ferricyanide as an electron acceptor. The core complex emitted thermoluminescence B2-, B1- and Q-bands arising from S2QB-, S3QB- and S2QA- charge recombinations at respective emission temperatures of 45, 38 and 20 degrees C, all of which were higher by about 15 degrees C as compared with those in mesophilic spinach BBY membranes. These results indicated that the isolated core complex well retained the intact properties of thermoluminescence of thermophilic cyanobacterial cells, the deeper stabilization of PSII charge pairs. The isolated complex was extremely stable in terms of both protein composition and function, exhibiting no release of extrinsic proteins, no proteolytic degradation in any of its subunits, accompanied by only a slight (less than 10%) loss in oxygen evolution, after dark-incubation at 20 degrees C for 8 d. These properties of the thermophilic PSII core complex are highly useful for various types of studies on PSII.  相似文献   

13.
A Synechocystis 6803 mutant carrying a chimaeric photosystem II (PSII), in which the Zea mays PsbH subunit (7.7 kDa calculated molecular mass) replaces the cyanobacterial copy (7.0 kDa), was constructed. With the exception of the N-terminal 12 amino acid extension, which has a phosphorylatable threonine, the eukaryotic polypeptide is 78% homologous to its bacterial counterpart. Biochemical characterization of this mutant shows that it expresses the engineered gene correctly and is competent for photoautotrophic growth. Fluorescence analysis and oxygen evolution measurements in the presence of exogenous acceptors indicate that the observed phenotype results from a chimaeric PSII rather than from the absence of function associated with PsbH, suggesting that the heterologous protein is assembled into a functional PSII. Inhibition of oxygen evolution by herbicides belonging to different classes shows that the sensitivity of the mutant PSII is changed only towards phenolic compounds. This result indicates slight conformational modification of the QB/herbicide binding pocket of the D1 polypeptide caused by the bulky PsbH protein in the mutant, and also suggests close structural interaction of the D1 and PsbH subunits in the topological arrangement of PSII.  相似文献   

14.
Cells of the psbH deletion mutant IC7 of the cyanobacterium Synechocystis PCC 6803 grown in the absence of glucose contain strongly reduced levels of chlorophyll when compared with cells grown in the presence of glucose, or compared with wild-type (WT) cells. Low-temperature fluorescence emission spectra revealed decreased content of both active PS II (Photosystem II) and PS I (Photosystem I) complexes. Analysis of thylakoid membrane complexes of IC7 by native electrophoresis showed a similar set of chlorophyll–proteins, namely a PS II core complex and trimeric and monomeric PS II complexes, as in WT. However, in contrast to WT, the 35S-methionine protein labeling pattern of the mutant exhibited no preferential labeling of the D1 protein in the PS II core complexes, and the labeled D1 and D2 proteins accumulated predominantly in the PS II reaction center lacking CP47. The results show that in autotrophically grown cells of the psbH deletion mutant, selective D1 turnover is inhibited and synthesis of CP47 becomes a limiting step in the PS II assembly.  相似文献   

15.
Photosystem II (PSII) is a multiprotein complex that functions as a light-driven water:plastoquinone oxidoreductase in photosynthesis. Assembly of PSII proceeds through a number of distinct intermediate states and requires auxiliary proteins. The photosynthesis affected mutant 68 (pam68) of Arabidopsis thaliana displays drastically altered chlorophyll fluorescence and abnormally low levels of the PSII core subunits D1, D2, CP43, and CP47. We show that these phenotypes result from a specific decrease in the stability and maturation of D1. This is associated with a marked increase in the synthesis of RC (the PSII reaction center-like assembly complex) at the expense of PSII dimers and supercomplexes. PAM68 is a conserved integral membrane protein found in cyanobacterial and eukaryotic thylakoids and interacts in split-ubiquitin assays with several PSII core proteins and known PSII assembly factors. Biochemical analyses of thylakoids from Arabidopsis and Synechocystis sp PCC 6803 suggest that, during PSII assembly, PAM68 proteins associate with an early intermediate complex that might contain D1 and the assembly factor LPA1. Inactivation of cyanobacterial PAM68 destabilizes RC but does not affect larger PSII assembly complexes. Our data imply that PAM68 proteins promote early steps in PSII biogenesis in cyanobacteria and plants, but their inactivation is differently compensated for in the two classes of organisms.  相似文献   

16.
Photosystem II (PSII) composition was studied in a mutant of the cyanobacteriumSynechosystis 6803 in which synthesis of the reaction center polypeptide D1 has been inactivated. The mutant thylakoids had lost also the other reaction center polypeptide D2 and the chlorophylla-binding protein CP47. Cytochromeb559 and the chlorophylla-binding protein CP43 accumulated to almost wild-type amounts in mutant thylakoids. Also the 33 kDa polypeptide involved in water oxidation was present and membrane-bound in mutant thylakoids. The intrinsic 22 kDa polypeptide, so far known only from plants, was detected both in wild-type and mutant thylakoids.  相似文献   

17.
In green plant-like photosynthesis, oxygen evolution is catalyzed by a thylakoid membrane-bound protein complex, photosystem II. Cytochrome b559, a protein component of the reaction center of this complex, is absent in a genetically engineered mutant of the cyanobacterium, Synechocystis 6803 [Pakrasi, H.B., Williams, J.G.K., and Arntzen, C.J. (1988). EMBO J. 7, 325-332]. In this mutant, the genes psbE and psbF, encoding cytochrome b559, were deleted by targeted mutagenesis. Two other protein components, D1 and D2 of the photosystem II reaction center, are also absent in this mutant. However, two chlorophyll-binding proteins, CP47 and CP43, as well as a manganese-stabilizing extrinsic protein component of photosystem II are stably assembled in the thylakoids of this mutant. Thus, this deletion mutation destabilizes the reaction center of photosystem II only. The mutant also lacks a fluorescence maximum peak at 695 nm (at 77 K) even though the CP47 protein, considered to be the origin of this fluorescence peak, is present in this mutant. We propose that the fluorescence at 695 nm originates from an interaction between the reaction center of photosystem II and CP47. The deletion mutant shows the absence of variable fluorescence at room temperature, indicating that its photosystem II complex is photochemically inactive. Also, photoreduction of QA, the primary acceptor quinone in photosystem II, could not be detected in the mutant. We conclude that cytochrome b559 plays at least an essential structural role in the reaction center of photosystem II.  相似文献   

18.
19.
Preparation of a minimum PSII core complex from spinach is described, containing four Mn per reaction center (RC) and exhibiting high O2 evolving activity [approximately 4000 micromol of O2 (mg of chl)(-1) x h(-1)]. The complex consists of the CP47 and CP43 chlorophyll binding proteins, the RC D1/D2 pair, the cytochrome b559 subunits, and the Mn-stabilizing psbO (33 kDa) protein, all present in the same stoichiometric amounts found in the parent PSII membranes. Several small subunits are also present. The cyt b559 content is 1.0 per RC in core complexes and PSII membranes. The total chlorophyll content is 32 chl a and <1 chl b per RC, the lowest yet reported for any active PSII preparation. The core complex exhibits the characteristic EPR signals seen in the S2 state of higher plant PSII. A procedure for preparing low-temperature samples of very high optical quality is developed, allowing detailed optical studies in the S1 and S2 states of the system to be made. Optical absorption, CD, and MCD spectra reveal unprecedented detail, including a prominent, well-resolved feature at 683.5 nm (14630 cm(-1)) with a weaker partner at 187 cm(-1) to higher energy. On the basis of band intensity, CD, and MCD arguments, these features are identified as the exciton split components of P680 in an intact, active reaction center special pair. Comparisons are made with solubilized D1/D2/cyt b559 material and cyanobacterial PSII.  相似文献   

20.
The supramolecular organization of photosystem II (PSII) was characterized in distinct domains of the thylakoid membrane, the grana core, the grana margins, the stroma lamellae, and the so-called Y100 fraction. PSII supercomplexes, PSII core dimers, PSII core monomers, PSII core monomers lacking the CP43 subunit, and PSII reaction centers were resolved and quantified by blue native PAGE, SDS-PAGE for the second dimension, and immunoanalysis of the D1 protein. Dimeric PSII (PSII supercomplexes and PSII core dimers) dominate in the core part of the thylakoid granum, whereas the monomeric PSII prevails in the stroma lamellae. Considerable amounts of PSII monomers lacking the CP43 protein and PSII reaction centers (D1-D2-cytochrome b559 complex) were found in the stroma lamellae. Our quantitative picture of the supramolecular composition of PSII, which is totally different between different domains of the thylakoid membrane, is discussed with respect to the function of PSII in each fraction. Steady state electron transfer, flash-induced fluorescence decay, and EPR analysis revealed that nearly all of the dimeric forms represent oxygen-evolving PSII centers. PSII core monomers were heterogeneous, and a large fraction did not evolve oxygen. PSII monomers without the CP43 protein and PSII reaction centers showed no oxygen-evolving activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号