首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The future clinical use of embryonic stem cell (ESC)-based hepatocyte replacement therapy depends on the development of an efficient procedure for differentiation of hepatocytes from ESCs. Here we report that a high density of human ESC-derived fibroblast-like cells (hESdFs) supported the efficient generation of hepatocyte-like cells with functional and mature hepatic phenotypes from primate ESCs and human induced pluripotent stem cells. Molecular and immunocytochemistry analyses revealed that hESdFs caused a rapid loss of pluripotency and induced a sequential endoderm-to-hepatocyte differentiation in the central area of ESC colonies. Knockdown experiments demonstrated that pluripotent stem cells were directed toward endodermal and hepatic lineages by FGF2 and activin A secreted from hESdFs. Furthermore, we found that the central region of ESC colonies was essential for the hepatic endoderm-specific differentiation, because its removal caused a complete disruption of endodermal differentiation. In conclusion, we describe a novel in vitro differentiation model and show that hESdF-secreted factors act in concert with regional features of ESC colonies to induce robust hepatic endoderm differentiation in primate pluripotent stem cells.  相似文献   

2.
Protein phosphorylation plays an important role in the regulation of self-renewal and differentiation of embryonic stem cells. However, the responsible intracellular kinases are not well characterized. Here, we discovered that cyclin K protein was highly expressed in pluripotent embryonic stem cells but low in their differentiated derivatives or tissue-specific stem cells. Upon cell differentiation, the level of cyclin K protein was decreased. Furthermore, knockdown of cyclin K led to cell differentiation, which could be rescued by an expression construct resistant to RNA interference. Surprisingly, cyclin K did not interact with CDK9 protein in cells as thought previously. Instead, it associated with CrkRS (also known as CDK12) and CDC2L5 (also known as CDK13). Similar to cyclin K, both CDK12 and CDK13 proteins were highly expressed in murine embryonic stem cells and were decreased upon cell differentiation. Importantly, knockdown of either kinase resulted in differentiation. Thus, our studies have uncovered two novel protein kinase complexes that maintain self-renewal in embryonic stem cells.  相似文献   

3.
Human embryonic stem cells (hESCs) offer tremendous potential for not only treating neurological disorders but also for their ability to serve as vital reagents to model and investigate human disease. To further our understanding of a key protein involved in Alzheimer disease pathogenesis, we stably overexpressed amyloid precursor protein (APP) in hESCs. Remarkably, we found that APP overexpression in hESCs caused a rapid and robust differentiation of pluripotent stem cells toward a neural fate. Despite maintenance in standard hESC media, up to 80% of cells expressed the neural stem cell marker nestin, and 65% exhibited the more mature neural marker β-3 tubulin within just 5 days of passaging. To elucidate the mechanism underlying the effects of APP on neural differentiation, we examined the proteolysis of APP and performed both gain of function and loss of function experiments. Taken together, our results demonstrate that the N-terminal secreted soluble forms of APP (in particular sAPPβ) robustly drive neural differentiation of hESCs. Our findings not only reveal a novel and intriguing role for APP in neural lineage commitment but also identify a straightforward and rapid approach to generate large numbers of neurons from human embryonic stem cells. These novel APP-hESC lines represent a valuable tool to investigate the potential role of APP in development and neurodegeneration and allow for insights into physiological functions of this protein.  相似文献   

4.
One of the challenges in studying early differentiation of human embryonic stem cells (hESCs) is being able to discriminate the initial differentiated cells from the original pluripotent stem cells and their committed progenies. It remains unclear how a pluripotent stem cell becomes a lineage-specific cell type during early development, and how, or if, pluripotent genes, such as Oct4 and Sox2, play a role in this transition. Here, by studying the dynamic changes in the expression of embryonic surface antigens, we identified the sequential loss of Tra-1-81 and SSEA4 during hESC neural differentiation and isolated a transient Tra-1-81(-)/SSEA4(+) (TR-/S4+) cell population in the early stage of neural differentiation. These cells are distinct from both undifferentiated hESCs and their committed neural progenitor cells (NPCs) in their gene expression profiles and response to extracellular signalling; they co-express both the pluripotent gene Oct4 and the neural marker Pax6. Furthermore, these TR-/S4+ cells are able to produce cells of both neural and non-neural lineages, depending on their environmental cues. Our results demonstrate that expression of the pluripotent factor Oct4 is progressively downregulated and is accompanied by the gradual upregulation of neural genes, whereas the pluripotent factor Sox2 is consistently expressed at high levels, indicating that these pluripotent factors may play different roles in the regulation of neural differentiation. The identification of TR-S4+ cells provides a cell model for further elucidation of the molecular mechanisms underlying hESC neural differentiation.  相似文献   

5.
The utility of human pluripotent stem cells is dependent on efficient differentiation protocols that convert these cells into relevant adult cell types. Here we report the robust and efficient differentiation of human pluripotent stem cells into white or brown adipocytes. We found that inducible expression of PPARG2 alone or combined with CEBPB and/or PRDM16 in mesenchymal progenitor cells derived from pluripotent stem cells programmed their development towards a white or brown adipocyte cell fate with efficiencies of 85%-90%. These adipocytes retained their identity independent of transgene expression, could be maintained in culture for several weeks, expressed mature markers and had mature functional properties such as lipid catabolism and insulin-responsiveness. When transplanted into mice, the programmed cells gave rise to ectopic fat pads with the morphological and functional characteristics of white or brown adipose tissue. These results indicate that the cells could be used to faithfully model human disease.  相似文献   

6.
Although induced pluripotent stem (iPS) cells are indistinguishable from ES cells in their expression of pluripotent markers, their differentiation into targeted cells is often limited. Here, we examined whether the limited capacity of iPS cells to differentiate into neural lineage cells could be mitigated by improving their base-line level of pluripotency, i.e. by converting them into the so-called “naive” state. In this study, we used rabbit iPS and ES cells because of the easy availability of both cell types and their typical primed state characters. Repeated passages of the iPS cells permitted their differentiation into early neural cell types (neural stem cells, neurons, and glial astrocytes) with efficiencies similar to ES cells. However, unlike ES cells, their ability to differentiate later into neural cells (oligodendrocytes) was severely compromised. In contrast, after these iPS cells had been converted to a naive-like state, they readily differentiated into mature oligodendrocytes developing characteristic ramified branches, which could not be attained even with ES cells. These results suggest that the naive-like conversion of iPS cells might endow them with a higher differentiation capacity.  相似文献   

7.
Germ cells possess the unique ability to acquire totipotency during development in vivo as well as give rise to pluripotent stem cells under the appropriate conditions in vitro. Recent studies in which somatic cells were experimentally converted into pluripotent stem cells revealed that genes expressed in primordial germ cells (PGCs), such as Oct3/4, Sox2, and Lin28, are involved in this reprogramming. These findings suggest that PGCs may be useful for identifying factors that successfully and efficiently reprogram somatic cells into toti- and/or pluripotent stem cells. Here, we show that Blimp-1, Prdm14, and Prmt5, each of which is crucial for PGC development, have the potential to reprogram somatic cells into pluripotent stem cells. Among them, Prmt5 exhibited remarkable reprogramming of mouse embryonic fibroblasts into which Prmt5, Klf4, and Oct3/4 were introduced. The resulting cells exhibited pluripotent gene expression, teratoma formation, and germline transmission in chimeric mice, all of which were indistinguishable from those induced with embryonic stem cells. These data indicate that some of the factors that play essential roles in germ cell development are also active in somatic cell reprogramming.  相似文献   

8.
microRNAs(miRNAs)是长约22 nt的非编码RNAs,广泛参与细胞的增殖、分化、病变、修复和凋亡等多种生命活动.多能干细胞(pluripotent stem cells)是指体外具有自我更新和多向分化潜能的细胞,在一定条件下可被定向诱导分化为多种细胞类型.miRNAs在多能干细胞中表达丰富,并通过调控基因表达影响其自我更新及分化.由多能干细胞向心肌细胞分化的方法主要有3种,即拟胚体形成法、与内胚层细胞共培养法和特定诱导物添加法.虽然这3种方法均可成功诱导多能干细胞向心肌细胞分化,但重复率很低. 所以,人们把研究的视野逐渐转向miRNAs--这个广泛参与细胞生命活动的小分子物质.大量研究表明,在多能干细胞中,不同的miRNAs可通过打靶不同基因影响其向心肌细胞分化.在间充质干细胞中,miR-1、miR-133 和miR-499可分别打靶Hes-1、SRF和Pdcd4| 而在胚胎干细胞中,miR-1和miR-499分别打靶 Hand2和Pacs2促进其向心肌细胞分化.miRNAs在多能干细胞向心肌分化作用机制的研究必将促进再生医学在心脏疾病治疗上的应用.  相似文献   

9.
Aim of the present study was the isolation, culture, and characterization of amniotic membrane-derived epithelial cells (AE) from term placenta collected postpartum in buffalo. We found that cultured cells were of polygonal in shape, resistance to trypsin digestion and expressed cytokeratin-18 indicating that they were of epithelial origin. These cells have negative expression of mesenchymal stem cell markers (CD29, CD44, and CD105) and positive for pluripotency marker (OCT4) genes indicated that cultured cells were not contaminated with mesenchymal stem cells. Immunofluorescence staining with pluripotent stem cell surface markers, SSEA-1, SSEA-4, TRA-1-60, and TRA-1-81 indicated that these cells may retain pluripotent stem cell characteristics even after long period of differentiation. Differentiation potential of these cells was determined by their potential to differentiate into cells of neurogenic lineages using retinoic acid. In conclusion, we demonstrate that AE cells expressed pluripotent stem cell markers and have propensity to differentiate into cells of neurogenic lineage upon directed differentiation in vitro.  相似文献   

10.
p53 is well known as a "guardian of the genome" for differentiated cells,in which it induces cell cycle arrest and cell death after DNA damage and thus contributes to the maintenance of genomic stability.In addition to this tumor suppressor function for differentiated cells,p53 also plays an important role in stem cells.In this cell type,p53 not only ensures genomic integrity after genotoxic insults but also controls their proliferation and differentiation.Additionally,p53 provides an effective barrier for the generation of pluripotent stem celllike cells from terminally differentiated cells.In this review,we summarize our current knowledge about p53 activities in embryonic,adult and induced pluripotent stem cells.  相似文献   

11.
We have developed and validated a microporous poly(ethylene terephthalate) membrane-based indirect co-culture system for human pluripotent stem cell (hPSC) propagation, which allows real-time conditioning of the culture medium with human fibroblasts while maintaining the complete separation of the two cell types. The propagation and pluripotent characteristics of a human embryonic stem cell (hESC) line and a human induced pluripotent stem cell (hiPSC) line were studied in prolonged culture in this system. We report that hPSCs cultured on membranes by indirect co-culture with fibroblasts were indistinguishable by multiple criteria from hPSCs cultured directly on a fibroblast feeder layer. Thus this co-culture system is a significant advance in hPSC culture methods, providing a facile stem cell expansion system with continuous medium conditioning while preventing mixing of hPSCs and feeder cells. This membrane culture method will enable testing of novel feeder cells and differentiation studies using co-culture with other cell types, and will simplify stepwise changes in culture conditions for staged differentiation protocols.  相似文献   

12.
Recent methodological advances have improved the ease and efficiency of generating human induced pluripotent stem cells (hiPSCs), but this now typically results in a greater number of hiPSC clones being derived than can be wholly characterized. It is therefore imperative that methods are developed which facilitate rapid selection of hiPSC clones most suited for the downstream research aims. Here we describe a combination of procedures enabling the simultaneous screening of multiple clones to determine their genomic integrity as well as their cardiac differentiation potential within two weeks of the putative reprogrammed colonies initially appearing. By coupling splinkerette-PCR with Ion Torrent sequencing, we could ascertain the number and map the proviral integration sites in lentiviral-reprogrammed hiPSCs. In parallel, we developed an effective cardiac differentiation protocol that generated functional cardiomyocytes within 10 days without requiring line-specific optimization for any of the six independent human pluripotent stem cell lines tested. Finally, to demonstrate the scalable potential of these procedures, we picked 20 nascent iPSC clones and performed these independent assays concurrently. Before the clones required passaging, we were able to identify clones with a single integrated copy of the reprogramming vector and robust cardiac differentiation potential for further analysis.  相似文献   

13.
As our understanding of what guides the behavior of multi- and pluripotent stem cells deepens, so too does our ability to utilize certain cues to manipulate their behavior and maximize their therapeutic potential. Engineered, biologically functionalized materials have the capacity to influence stem cell behavior through a powerful combination of biological, mechanical, and topographical cues. Here, we present the development of a novel electrospun scaffold, functionalized with glycosaminoglycans (GAGs) ionically immobilized onto the fiber surface. Bound GAGs retained the ability to interact with GAG-binding molecules and, crucially, presented GAG sulfation motifs fundamental to mediating stem cell behavior. Bound GAG proved to be biologically active, rescuing the neural differentiation capacity of heparan sulfate-deficient mouse embryonic stem cells and functioning in concert with FGF4 to facilitate the formation of extensive neural processes across the scaffold surface. The combination of GAGs with electrospun scaffolds creates a biomaterial with potent applicability for the propagation and effective differentiation of pluripotent stem cells.  相似文献   

14.
Specification to primordial germ cells (PGCs) is mediated by mesoderm-induction signals during gastrulation. We found that Akt activation during in vitro mesodermal differentiation of embryonic stem cells (ESCs) generated self-renewing spheres with differentiation states between those of ESCs and PGCs. Essential regulators for PGC specification and their downstream germ cell-specific genes were expressed in the spheres, indicating that the sphere cells had commenced differentiation to the germ lineage. However, the spheres did not proceed to spermatogenesis after transplantation into testes. Sphere cell transfer to the original feeder-free ESC cultures resulted in chaotic differentiation. In contrast, when the spheres were cultured on mouse embryonic fibroblasts or in the presence of ERK-cascade and GSK3 inhibitors, reversion to the ESC-like state was observed. These results indicate that Akt signaling promotes a novel metastable and pluripotent state that is intermediate to those of ESCs and PGCs.  相似文献   

15.
16.
The mammalian target of rapamycin (mTOR) pathway regulates stem cell regeneration and differentiation in response to growth factors, nutrients, cellular energetics, and various extrinsic stressors. Inhibition of mTOR activity has been shown to enhance the regenerative potential of pluripotent stem cells. DEPTOR is the only known endogenous inhibitor of all known cellular mTOR functions. We show that DEPTOR plays a key role in maintaining stem cell pluripotency by limiting mTOR activity in undifferentiated embryonic stem cells (ESCs). DEPTOR levels dramatically decrease with differentiation of mouse ESCs, and knockdown of DEPTOR is sufficient to promote ESC differentiation. A strong decrease in DEPTOR expression is also observed during human ESCs differentiation. Furthermore, reduction in DEPTOR level during differentiation is accompanied by a corresponding increase in mTOR complex 1 activity in mouse ESCs. Our data provide evidence that DEPTOR is a novel stemness factor that promotes pluripotency and self-renewal in ESCs by inhibiting mTOR signaling.  相似文献   

17.
Stem cell maintenance depends on their surrounding microenvironment, and aberrancies in the environment have been associated with tumorigenesis. However, it remains to be elucidated whether an environmental aberrancy can act as a carcinogenic stress for cellular transformation of differentiating stem cells into cancer stem cells. Here, utilizing mouse embryonic stem cells as a model, it was illustrated that environmental aberrancy during differentiation leads to the emergence of pluripotent cells showing cancerous characteristics. Analogous to precancerous stages, DNA lesions were spontaneously accumulated during embryonic stem cell differentiation under aberrational environments, which activates barrier responses such as senescence and apoptosis. However, overwhelming such barrier responses, piled-up spheres were subsequently induced from the previously senescent cells. The sphere cells exhibit aneuploidy and dysfunction of the Arf-p53 module as well as enhanced tumorigenicity and a strong self-renewal capacity, suggesting development of cancerous stem cells. Our current study suggests that stem cells differentiating in an aberrational environment are at risk of cellular transformation into malignant counterparts.  相似文献   

18.
Cartilage and tendon injuries are a significant source of animal wastage and financial loss within the horse-racing industry. Moreover, both cartilage and tendon have limited intrinsic capacity for self-repair, and the functionally inferior tissue produced within a lesion may reduce performance and increase the risk of reinjury. Stem cells offer tremendous potential for accelerating and improving tissue healing, and adult mesenchymal stem cells (MSCs) are already used to treat cartilage and tendon injuries in horses. However, MSCs are scarce in the bone marrow isolates used, have limited potential for proliferation and differentiation in vitro, and do not appear to noticeably improve long-term functional repair. Embryonic stem cells (ESCs) or induced pluripotent stem (iPS) cells could overcome many of the limitations and be used to generate tissues of value for equine regenerative medicine. To date, six lines of putative ESCs have been described in the horse. All expressed stem cell-associated markers and exhibited longevity and pluripotency in vitro, but none have been proven to exhibit pluripotency in vivo. Moreover, it is becoming clear that the markers used to characterize the putative ESCs were inadequate, primarily because studies in domestic species have revealed that they are not specific to ESCs or the pluripotent inner cell mass, but also because the function of most in the maintenance of pluripotency is not known. Future derivation and validation of equine embryonic or other pluripotent stem cells would benefit greatly from a reliable panel of molecular markers specific to pluripotent cells of the developing horse embryo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号