首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
We have determined that hMOF, the human ortholog of the Drosophila MOF gene (males absent on the first), encoding a protein with histone acetyltransferase activity, interacts with the ATM (ataxia-telangiectasia-mutated) protein. Cellular exposure to ionizing radiation (IR) enhances hMOF-dependent acetylation of its target substrate, lysine 16 (K16) of histone H4 independently of ATM function. Blocking the IR-induced increase in acetylation of histone H4 at K16, either by the expression of a dominant negative mutant DeltahMOF or by RNA interference-mediated hMOF knockdown, resulted in decreased ATM autophosphorylation, ATM kinase activity, and the phosphorylation of downstream effectors of ATM and DNA repair while increasing cell killing. In addition, decreased hMOF activity was associated with loss of the cell cycle checkpoint response to DNA double-strand breaks. The overexpression of wild-type hMOF yielded the opposite results, i.e., a modest increase in cell survival and enhanced DNA repair after IR exposure. These results suggest that hMOF influences the function of ATM.  相似文献   

5.
6.
Donor cell type, cell-cycle stage, and passage number of cultured cells all affect the developmental potential of cloned embryos. Because acetylation of the histones on nuclear chromatin is an important aspect of gene activation, the present study investigated the differences in histone acetylation of bovine fibroblast and cumulus cells at various passages and cell-cycle stages. The acetylation was qualitatively analyzed by epifluorescent confocal microscopy and quantitatively by immunofluorescent flow cytometry. Specifically, we studied levels of histone H4 acetylated at lysine 8 and histone H3 acetylated at lysine 18; acetylation at these lysine residues is among the most common for these histone molecules. We also studied levels of linker histone H1 in donor cells. Our results show that stage of cell cycle, cell type, and number of cell passages all had an effect on histone content. Histone H1 and acetyl histone H3 increased with cell passage (passages 5-15) in G0/G1- and G2/M-stage cumulus and fibroblast cells. We also found that acetyl histone H4 was lower in early versus late cell passages (passage 5 vs. 15) for G0/G1-stage cumulus cells. In both cell types examined, acetyl histones increased with cell-cycle progression from G0/G1 into the S and G2/M phases. These results indicate that histone acetylation status is remodeled by in vitro cell culture, and this may have implications for nuclear transfer.  相似文献   

7.
The packaging of eukaryotic DNA into chromatin is likely to be crucial for the maintenance of genomic integrity. Histone acetylation and deacetylation, which alter chromatin accessibility, have been implicated in DNA damage tolerance. Here we show that Schizosaccharomyces pombe Hst4, a homolog of histone deacetylase Sir2, participates in S-phase-specific DNA damage tolerance. Hst4 was essential for the survival of cells exposed to the genotoxic agent methyl methanesulfonate (MMS) as well as for cells lacking components of the DNA damage checkpoint pathway. It was required for the deacetylation of histone H3 core domain residue lysine 56, since a strain with a point mutation of its catalytic domain was unable to deacetylate this residue in vivo. Hst4 regulated the acetylation of H3 K56 and was itself cell cycle regulated. We also show that MMS treatment resulted in increased acetylation of histone H3 lysine 56 in wild-type cells and hst4Delta mutants had constitutively elevated levels of histone H3 K56 acetylation. Interestingly, the level of expression of Hst4 decreased upon MMS treatment, suggesting that the cell regulates access to the site of DNA damage by changing the level of this protein. Furthermore, we find that the phenotypes of both K56Q and K56R mutants of histone H3 were similar to those of hst4Delta mutants, suggesting that proper regulation of histone acetylation is important for DNA integrity. We propose that Hst4 is a deacetylase involved in the restoration of chromatin structure following the S phase of cell cycle and DNA damage response.  相似文献   

8.
hMOF is the major acetyltransferase of histone H4 lysine 16 (H4K16) in humans, but its biological function is not well understood. In this study, hMOF was found to be more frequently highly expressed in non-small cell lung cancer (NSCLC) than corresponding normal tissues (P < 0.001). In addition, up-regulation of H4K16 acetylation was also more frequent in NSCLC than normal tissues (P = 0.002). Furthermore, hMOF promotes the cell proliferation, migration and adhesion of NSCLC cell lines. Microarray analysis and chromatin immunoprecipitation (ChIP) assays suggest that hMOF modulates proliferation and metastasis by regulating histone H4K16 acetylation at the promoter regions of downstream target genes. Moreover, hMOF promotes S phase entry via Skp2. These findings suggest that hMOF contributes to NSCLC tumorigenesis.  相似文献   

9.
Patterns of histone acetylation   总被引:9,自引:0,他引:9  
  相似文献   

10.
The Ataxia-telangiectasia mutated (ATM) kinase and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are activated by DNA double-strand breaks (DSBs). These DSBs occur in the context of chromatin but how chromatin influences the activation of these kinases is not known. Here we show that loss of the replication-dependent chromatin assembly factors ASF1A/B or CAF-1 compromises ATM activation, while augmenting DNA-PKcs activation, in response to DNA DSBs. Cells deficient in ASF1A/B or CAF-1 exhibit reduced histone H4 lysine 16 acetylation (H4K16ac), a histone mark known to promote ATM activation. ASF1A interacts with the histone acetyl transferase, hMOF that mediates H4K16ac. ASF1A depletion leads to increased recruitment of DNA-PKcs to DSBs. We propose normal chromatin assembly and H4K16ac during DNA replication is required to regulate ATM and DNA-PKcs activity in response to the subsequent induction of DNA DSBs.  相似文献   

11.
Modulation of ISWI function by site-specific histone acetylation   总被引:10,自引:0,他引:10       下载免费PDF全文
  相似文献   

12.
13.
14.
15.
Wang F  Kou Z  Zhang Y  Gao S 《Biology of reproduction》2007,77(6):1007-1016
Epigenetic reprogramming is thought to play an important role in the development of cloned embryos reconstructed by somatic cell nuclear transfer (SCNT). In the present study, dynamic reprogramming of histone acetylation and methylation modifications was investigated in the first cell cycle of cloned embryos. Our results demonstrated that part of somatic inherited lysine acetylation on core histones (H3K9, H3K14, H4K16) could be quickly deacetylated following SCNT, and reacetylation occurred following activation treatment. However, acetylation marks of the other lysine residues on core histones (H4K8, H4K12) persisted in the genome of cloned embryos with only mild deacetylation occurring in the process of SCNT and activation treatment. The somatic cloned embryos established histone acetylation modifications resembling those in normal embryos produced by intracytoplasmic sperm injection through these two different programs. Moreover, treatment of cloned embryos with a histone deacetylase inhibitor, Trichostatin A (TSA), improved the histone acetylation in a manner similar to that in normal embryos, and the improved histone acetylation in cloned embryos treated with TSA might contribute to improved development of TSA-treated clones. In contrast to the asymmetric histone H3K9 tri- and dimethylation present in the parental genomes of fertilized embryos, the tri- and dimethylations of H3K9 were gradually demethylated in the cloned embryos, and this histone H3K9 demethylation may be crucial for gene activation of cloned embryos. Together, our results indicate that dynamic reprogramming of histone acetylation and methylation modifications in cloned embryos is developmentally regulated.  相似文献   

16.
17.
The primary structure of Histone Acetyltransferase 1 (Hat1) has been conserved throughout evolution; however, despite its ubiquity, its cellular function is not well characterized. To study its in vivo acetylation pattern and function, we utilized shRNAmir against Hat1 expressed in the well-substantiated HeLa (human cervical cancer) cell line. To reduce the interference by enzymes with similar HAT specificity, we used HeLa cells expressing histone acetyltransferase Tip60 with mutated acetyl-CoA binding site that abrogates its enzyme activity (mutant HeLa-tip60). Two shRNAmir were identified that reduced the expression of the cytoplasmic and nuclear forms of Hat1. Cytosolic protein preparations from these two clones showed decreased levels of acetylation of lysine 5 (K5) and K12 on histone H4, with the concomitant loss of the acetylation of histone H2A at K5. This pattern of decreased acetylation of H2AK5 was well defined in preparations of histone protein and insoluble nuclear-protein (INP) fractions as well. Abrogating the Hat1 expression caused a 74 % decrease in colony-forming efficiency of mutant HeLa-tip60 cells, reduced the size of the colonies by 50 %, and decreased the amounts of proteins with molecular weights below 35 kDa in the INP fractions.  相似文献   

18.
In Drosophila, males absent on the first (MOF) acetylates histone H4 at lysine 16 (H4K16ac). This acetylation mark is highly enriched on the male X chromosome and is required for dosage compensation in Drosophila but not utilized for such in mammals. Recently, we and others reported that mammalian MOF, through H4K16ac, has a critical role at multiple stages in the DNA damage response (DDR) and double-strand break repair pathways. The goal of this study was to test whether mof is similarly required for the response to ionizing radiation (IR) in Drosophila. We report that Drosophila mof mutations in males and females, as well as mof knockdown in SL-2 cells, reduce post-irradiation survival. MOF depletion in SL-2 cells also results in an elevated frequency of metaphases with chromosomal aberrations, suggesting that MOF is involved in DDR. Mutation in Drosophila mof also results in a defective mitotic checkpoint, enhanced apoptosis, and a defective p53 response post-irradiation. In addition, IR exposure enhanced H4K16ac levels in Drosophila as it also does in mammals. These results are the first to demonstrate a requirement for MOF in the whole animal IR response and suggest that the role of MOF in the response to IR is conserved between Drosophila and mammals.  相似文献   

19.
Yeast disruptor of telomeric silencing-1 (DOT1) is involved in gene silencing and in the pachytene checkpoint during meiotic cell cycle. Here we show that the Dot1 protein possesses intrinsic histone methyltransferase (HMT) activity. When compared with Rmt1, another putative yeast HMT, Dot1 shows very distinct substrate specificity. While Rmt1 methylates histone H4, Dot1 targets histone H3. In contrast to Rmt1, which can only modify free histones, Dot1 activity is specific to nucleosomal substrates. This was also confirmed using native chromatin purified from yeast cells. We also demonstrate that, like its mammalian homolog PRMT1, Rmt1 specifically dimethylates an arginine residue at position 3 of histone H4 N-terminal tail. In surprising contrast, methylation by Dot1 occurs in the globular domain of nucleosomal histone H3. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis suggests that H3 lysine 79 is trimethylated by Dot1. The intrinsic nucleosomal histone H3 methyltransferase activity of Dot1 is certainly a key aspect of its function in gene silencing at telomeres, most likely by directly modulating chromatin structure and Sir protein localization. In agreement with a role in regulating localization of histone deacetylase complexes like SIR, an increase of bulk histone acetylation is detected in dot1- cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号