首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Escherihica coliumC122::Tn5 cells were γ-radiated (137Cs, 750 Gy, under N2), and lac-constitutive mutants were produced at 36% of the wild-type level (the umC strain was not deficient in spontaneous mutagenesis, and the mutational spectrum determined by sequencing 263 spontaneous lacId mutations was very similar to that for the wild-type strain). The specific nature of the umC strain's partial radiation was determined by sequencing 325 radiation-induced lacId mutations. The yields of radiation-induced mutation classes in the umC strain (as a percentage of the wild-type yield) were: 80% for A · T → G · C transitions, 70% for multi-base additions, 60% for single-base deletions, 53% for A · T → C · G transversions, 36% for G · C → A · T transitions, 25% for multi-base deletions, 21% for A · T → T · A transversions, 11% for G · C → C · G transversions, 9% for G · C → T · A transversions and 0% for multiple mutations. Based on these deficiencies and other factors, it is concluded that the umC strain is near-normal for A · T → G · C transitions, single-base deletions and possibly A · T → C · G transversions; is generally deficient for mutagenesis at G · C sites fro transversions, and is grossly deficient in multiple mutations. Damage at G · C sites seems more difficult for translesion DNA synthesis to bypass than damage at A · T sites, and especially when trying to produced a transversion. The yield of G · C → A · T transitions in the umC strain *36% of the wild-type level) argues that a basic sites are involved in no more than 64% of γ-radiation-induced base substitutions in the wild-type strain. Altogether, these data suggest that the UmuC and UmuD′ proteins facilitate, rather than being absolutely required for, translesion DNA synthesis; with the degree of facilitation being dependent both on the nature of the noncoding DNA damage, i.e., at G · C vs A · T sites, and on the nature of the misincorporated base, i.e., whether it induces transversions or transitions.  相似文献   

4.
We used a double germination phenology or “move-along” experiment (sensu Baskin and Baskin, 2003) to characterize seed dormancy in two medicinal woodland herbs, Collinsonia canadensis L. (Lamiaceae) and Dioscorea villosa L. (Dioscoreaceae). Imbibed seeds of both species were moved through the following two sequences of simulated thermoperiods: (a) 30/15 °C→20/10 °C→15/6 °C→5 °C→15/6 °C→20/10 °C→30/15 °C, and (b) 5 °C→15/6 °C→20/10 °C→30/15 °C→20/10 °C→15/6 °C→5 °C. In each sequence, seeds of both species germinated to high rates (>85%) at cool temperatures (15/6 and 20/10 °C) only if seeds were previously exposed to cold temperatures (5 °C). Seeds kept at four control thermoperiods (5, 15/6, 20/10, 30/15 °C) for 30 d showed little or no germination. Seeds of both species, therefore, have physiological dormancy that is broken by 12 weeks of cold (5 °C) stratification. Morphological studies indicated that embryos of C. canadensis have “investing” embryos at maturity (morphological dormancy absent), whereas embryos of D. villosa are undeveloped at maturity (morphological dormancy present). Because warm temperatures are required for embryo growth and cold stratification breaks physiological dormancy, D. villosa seeds have non-deep simple morphophysiological dormancy (MPD). Neither species afterripened in a 6-month dry storage treatment. Cold stratification treatments of 4 and 8 weeks alleviated dormancy in both species but C. canadensis seeds germinated at slower speeds and lower rates compared to seeds given 12 weeks of cold stratification. In their natural habitat, both species disperse seeds in mid- to late autumn and germinate in the spring after cold winter temperatures alleviate endogenous dormancy.  相似文献   

5.
LacI mutants obtained following 2 and 6 h of thymine deprivation were cloned and sequenced. The mutational spectra recovered were dissimilar. After 2 h of starvation the majority of mutations were base substitutions, largely G: C→C: G transversions. Frameshift mutations but not deletions were observed. In contrast, following 6 h of starvation, with the exception of the G: C→C: G transversion, all possible base substitutions were recovered. Moreover, several deletions but no frameshift events were observed. The differences in the mutational spectra recovered after two periods of thymine deprivation highlight the role of altered nucleotide pools and the potential influence of DNA replication mechanisms.  相似文献   

6.
The human nuclear gene for the catalytic subunit of mitochondrial DNA polymerase (POLG) contains within its coding region a CAG microsatellite encoding a polyglutamine repeat. Previous studies demonstrated an association between length variation at this repeat and male infertility, suggesting a mechanism whereby the prevalent (CAG)10 allele, which occurs at a frequency of >80% in different populations, could be maintained by selection. Sequence analysis of the POLG CAG microsatellite region of more than 1000 human chromosomes reveals that virtually all allelic variation at the locus is accounted for by length variation of the CAG repeat. Analysis of POLG from African great apes shows that a prevalent length allele is present in each species, although its exact length is species-specific. In common chimpanzee (Pan troglodytes) a number of different sequence variants contribute to the prevalent length allele, strongly supporting the idea that the length of the POLG microsatellite region, rather than its exact nucleotide or amino acid sequence, is what is maintained. Analysis of POLG in other primates indicates that the repeat has expanded from a shorter, glutamine-rich sequence, present in the common ancestor of Old and New World monkeys.  相似文献   

7.
We evaluated whether polymorphisms in genes coding molecules linked to the innate and adaptive immune response are associated with susceptibility to Helicobacter pylori infection. IL1B-511C → T, IL1B-31 T → C, IL1RN allele 2, IL2-330 T → G, TNFA-307 G → A, TLR2Arg677Trp, TLR2Arg753Gln, TLR4Asp299Gly, and TLR5392STOP polymorphisms were determined in 541 blood donors. IL2-330 T → G allele carriers had a decreased H. pylori infection risk (OR = 0.63, 95% CI = 0.43–0.93) after adjustment for demographic and environmental factors. Hence, we investigated whether the polymorphism is functional by evaluating IL-2 serum concentration in 150 blood donors and 100 children. IL-2 pro-inflammatory and anti-inflammatory properties were indirectly investigated by determining serum IFN-γ and IL-10/TGF-β levels. The polymorphism was associated with increased mean IL-2 levels in H. pylori-positive adults (2.65 pg/mL vs. 7.78 pg/mL) and children (4.19 pg/mL vs. 8.03 pg/mL). Increased IL-2 was associated with pro-inflammatory activity in adults (IFN-γ = 18.61 pg/mL vs. 25.71 pg/mL), and with anti-inflammatory activity in children (IL-10 = 6.99 vs. 14.17 pg/mL, TGF-β = 45.88 vs. 93.44 pg/mL) (p < 10−3 for all). In conclusion, in the context of H. pylori infection, IL2-330 T → G polymorphism is functional and is associated with decreased risk of infection in adults.  相似文献   

8.
Four xanthone O-glycosides, polygalaxanthones IV–VII were isolated from the roots of Polygala tenuifolia Willd., together with eight known compounds. The structures of the four xanthone O-glycosides were established as 6-O-[α- -rhamnopyranosyl-(1→2)-β- -glucopyranosyl]-1-hydroxy-3,7-dimethoxyxanthone (polygalaxanthone IV), 6-O-[α- -rhamnopyranosyl-(1→2)-β- -glucopyranosyl]-1,3-dihydroxy-7-methoxyxanthone (polygalaxanthone V), 6-O-(β- -glucopyranosyl)-1,2,3,7-tetramethoxyxanthone (polygalaxanthone VI), and 3-O-[α- -rhamnopyranosyl-(1→2)-β- -glucopyranosyl]-1,6-dihydroxy-2,7-dimethoxyxanthone (polygalaxanthone VII), respectively, on the basis of analysis of spectroscopic evidence.  相似文献   

9.
Three main saponins were isolated from the seeds of Albizzia lucida. Their structures were established by spectral analyses and chemical and enzymatic transformations as 3-O-[β- -xylopyranosyl(1→2)-α- -arabinopyranosyl (1→6)] [β- -glucopyranosyl (1→2)] β- -glucopyranosyl echinocystic acid; 3-O-[α- -arabinopyranosyl (1→6)][β- -glucopyranosyl (1→2)]-β- -glucopyranosyl echinocystic acid and 3-O-[β- -xylopyranosyl (1→2)-β- -fucopyranosyl (1→6)-2-acetamido-2-deoxy-β- -glucopyranosyl echinocystic acid, characterized as its methyl ester.  相似文献   

10.
Five isoflavone glycosides, named derriscandenosides A–E (15), were isolated from the stems of Derris scandens, together with ten known compounds comprising one isoflavone, two benzoic acid derivatives, three glucosyl isoflavones and four rhamnosyl-(1→6)-glucosyl isoflavones. The structures of the glycosides were assigned on the basis of spectroscopic data, especially of the acetate derivatives. Three known rhamnosyl-(1→6)-glucosyl isoflavones isolated from a crude fraction were retested for hypotensive activity with varying results.  相似文献   

11.
Mutations in POLG, encoding POLγA, the catalytic subunit of the mitochondrial DNA polymerase, cause a spectrum of disorders characterized by mtDNA instability. However, the molecular pathogenesis of POLG-related diseases is poorly understood and efficient treatments are missing. Here, we generate the PolgA449T/A449T mouse model, which reproduces the A467T change, the most common human recessive mutation of POLG. We show that the mouse A449T mutation impairs DNA binding and mtDNA synthesis activities of POLγ, leading to a stalling phenotype. Most importantly, the A449T mutation also strongly impairs interactions with POLγB, the accessory subunit of the POLγ holoenzyme. This allows the free POLγA to become a substrate for LONP1 protease degradation, leading to dramatically reduced levels of POLγA in A449T mouse tissues. Therefore, in addition to its role as a processivity factor, POLγB acts to stabilize POLγA and to prevent LONP1-dependent degradation. Notably, we validated this mechanism for other disease-associated mutations affecting the interaction between the two POLγ subunits. We suggest that targeting POLγA turnover can be exploited as a target for the development of future therapies.  相似文献   

12.
A novel polysaccharide designated EPS-1A with an average molecular weight around 40 kDa was fractionated and purified by anion-exchange and gel-filtration chromatography from the crude exopolysaccharide (EPS) isolated from fermentation broth of Cs-HK1, a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis. The structural characteristics of EPS-1A were determined with various methods (e.g. GC, GC–MS, FT-IR, 1H NMR and 13C NMR) and through acid hydrolysis, methylation, periodate-oxidation and Smith degradation. The results suggested that EPS-1A was composed of glucose, mannose and galactose at 15.2:3.6:1.0 M ratio. EPS-1A was a slightly branched polysaccharide and its backbone was composed of (1 → 6)-α-d-glucose residues (77%) and (1 → 6)-α-d-mannose residues (23%). Branching occurred at O-3 position of (1 → 6)-α-d-mannose residues of the backbone with (1 → 6)-α-d-mannose residues and (1 → 6)-α-d-glucose residues, and terminated with β-d-galactose residues.  相似文献   

13.
Oligomeric procyanidins were isolated from the leaves and flowers of hawthorn (Crataegus laevigata). A trimer, epicatechin-(4β→8)-epicatechin-(4β→6)-epicatechin, and a pentamer consisting of (−)-epicatechin units linked through C-4β/C-8 bonds have been isolated from hawthorn for the first time, in addition to known procyanidins including dimers B-2, B-4 and B-5, trimers C-1 and epicatechin-(4β→6)-epicatechin-(4β→8)-epicatechin, and tetramer D-1. A fraction containing a hexamer was also found.  相似文献   

14.
Mutations in the polymerase γ (POLG) gene are among the most common causes of mitochondrial disease and more than 160 POLG mutations have been reported. However, a large proportion of patients suspected of having POLG mutations only have one (heterozygous) definitive pathogenic mutation identified. Using oligonucleotide array CGH, we identified a compound heterozygous large intragenic deletion encompassing exons 15–21 of this gene in a child with Alpers syndrome due to mtDNA depletion. This is the first large POLG deletion reported and the findings show the clinical utility of using array CGH in cases where a single heterozygous mutation has been identified in POLG.  相似文献   

15.
Two apiose-containing kaempferol triosides, together with nine known flavonoids were isolated from the leaves of Silphium perfoliatum L. Their structures were elucidated by acid hydrolysis and spectroscopic methods including UV, LSI MS, FAB MS, CI MS, 1H, 13C and 2D-NMR, DEPT, HMQC and HMBC experiments. The two new compounds were identified as kaempferol 3-O-β- -apiofuranoside 7-O-α- -rhamnosyl-(1′→6)-O-β- -galactopyranoside and kaempferol 3-O-β- -apiofuranoside 7-O-α- -rhamnosyl-(1→ 6)-O-β- (2-O-E-caffeoylgalactopyranoside).  相似文献   

16.
A new steroidal glycoside, agaveside D, isolated from the fruits of Agave cantata was characterized as 3β-{α- -rhamnopyranosyl-(1→2), β- -glycopyranosyl-(1→3)-β- -glucopyranosyl[β- -xylopyransoyl-(1→4)-α- -rhamnopyranosyl-(1→2)]-β- -glucopyranosyl}-25R-5α- spirostane on the basis of chemical degradation and spectrometry.  相似文献   

17.

Background  

DNA polymerase γ (POLG) is the only known mitochondrial DNA (mtDNA) polymerase. It mediates mtDNA replication and base excision repair. Mutations in the POLG gene lead to reduction of functional mtDNA (mtDNA depletion and/or deletions) and are therefore predicted to result in defective oxidative phosphorylation (OXPHOS). Many mutations map to the polymerase and exonuclease domains of the enzyme and produce a broad clinical spectrum. The most frequent mutation p.A467T is localised in the linker region between these domains. In compound heterozygote patients the p.A467T mutation has been described to be associated amongst others with fatal childhood encephalopathy. These patients have a poorer survival rate compared to homozygotes.  相似文献   

18.
The water-soluble polysaccharide (BCPS-1) was isolated from Bupleurum chinense DC. BCPS-1 (Mw = 29 kDa) was composed of Ara; Gal; Glc with a molar ratio of 2.1:2.5:1. According to FT-IR, partial acid hydrolysis, periodate oxidation and Smith degradation, methylation and GC-MS analysis, the results indicate BCPS-1 had a backbone of (1→5)-linked Ara, (1→4)-linked Gal and (1→3)-linked Gal residues with occasionally branches at O-6. The branches were composed of (1→4)-linked Glc, and terminated with Gal residues. The in vitro antioxidant activity evaluated by DPPH radical scavenging method showed that BCPS-1 had a significant antioxidant effect in a concentration-dependent manner.  相似文献   

19.
Each of the cell walls of four representatives of the genus Kribbella (order Actinomycetales; suborder Propionibacterineae; family Nocardioidaceae) contains a neutral polysaccharide and an acidic polysaccharide with unusual structures. Common to all four strains studied is a mannan with the following repeating unit: In the cell wall of the strain VKM Ac-2541, a teichulosonic acid was identified with a monosaccharide component that has not hitherto been found in Gram-positive bacteria, viz., pseudaminic acid, and an unusual linkage type in the polymeric chain,

where R = Н (45%), α-d-Galp3OMe (37%) or α-d-Galp2,3OMe (18%).The anionic cell wall components of three other strains are represented by teichuronic acids with a rare constituent, viz., a diaminosugar, 2,3-diacetamido-2,3-dideoxyglucopyranose. The structures of their repeating units differ in the nature of the acidic components:→4)-β-d-Manp2,3NAcA-(1→6)-α-d-Glcp2,3NAc-(1→ (VKM Ас-2538 and VKM Ас-2540) and →4)-β-d-ManpNAcA-(1→6)-α-d-Glcp2,3NAc-(1→ (VKM Ас-2539).The structures of all the glycopolymers were established by chemical and NMR spectroscopic methods; they are identified in Gram-positive bacteria for the first time.  相似文献   

20.
Summary In Klebsiella pneumoniae the gene products involved in the degradation of the ketose l-sorbose are encoded in the sor operon. It comprises, besides structural genes for uptake and catabolism, a promoter-proximal gene sorC, encoding a protein SorC of Mr 40 kDa, for which no enzymatic function has been detected. All sor genes are coordinately expressed and inducible by l-sorbose. Polar insertions and frameshift mutations in sorC cause a pleiotropic negative effect on the expression of all other sor genes. This defect is complemented in trans by the wild-type sorC + allele for frameshift mutations, but not for polar insertions. A single promoter for all sor genes, for which SorC is the activator, thus seems to be located in front of sorC. The repressor activity of SorC was demonstrated by complementation of constitutive sorC alleles with a sorC + allele leading to inducible expression of all sor genes, including sorC, which, as visualized by the use of a series of lacZ fusions, thus autoregulates its expression, both as an activator and a repressor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号