首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hedgehog (Hh) signalling plays a crucial role in the development and patterning of many tissues in both vertebrates and invertebrates. Aberrations in this pathway lead to severe developmental defects and cancer. Hh signal transduction in receiving cells is a well studied phenomenon; however questions still remain concerning the mechanism of repression of the pathway activator Smoothened (Smo) in the absence of Hh. Here we describe a novel repressor of the Hh pathway, Target of Wingless (Tow). Tow represents the Drosophila homolog of a conserved uncharacterised protein family. We show that Tow acts in Hh receiving cells, where its overexpression represses all levels of Hh signalling, and that this repression occurs upstream or at the level of Smo and downstream of the Hh receptor Patched (Ptc). In addition, we find that like Ptc, overexpression of Tow causes an accumulation of lipophorin in the wing disc. We demonstrate that loss of tow enhances different ptc alleles in a similar manner to another pathway repressor, Suppressor of Fused (SuFu), possibly through mediating Ptc dependant lipophorin internalisation. Combined, these results demonstrate that Tow is an important novel regulator of the Hh pathway in the wing imaginal disc, and may shed light on the mechanism of Ptc repression of Smo.  相似文献   

2.
The Hedgehog (Hh) signaling pathway plays a conserved and essential role in regulating development and homeostasis of numerous tissues. Cytoplasmic signaling is initiated by Smoothened (Smo), a G-protein-coupled receptor (GPCR) family member, whose levels and activity are regulated by the Hh receptor Patched (Ptc). In response to Hh binding to Ptc, Ptc-mediated repression of Smo is relieved, leading to Smo activation, surface accumulation, and downstream signaling. We find that downregulation of Drosophila Smo protein in Hh-responding imaginal disc cells is dependent on the activity of G-protein-coupled receptor kinase 2 (Gprk2). By analyzing gain- and null loss-of-function phenotypes, we provide evidence that Gprk2 promotes Smo internalization subsequent to its activation, most likely by direct phosphorylation. Ptc-dependent regulation of Smo accumulation is normal in gprk2 mutants, indicating that Gprk2 and Ptc downregulate Smo by different mechanisms. Finally, we show that both Drosophila G-protein-coupled receptor kinase orthologues, Gprk1 and Gprk2, act in a partially redundant manner to promote Hh signaling. Our results suggest that Smo is regulated by distinct Ptc-dependent and Gprk2-dependent trafficking mechanisms in vivo, analogous to constitutive and activity-dependent regulation of GPCRs. G-protein-coupled receptor kinase activity is also important for efficient downstream signaling.  相似文献   

3.
4.
The conserved Hedgehog (HH) signals control animal development, adult stem cell maintenance and oncogenesis. In Drosophila, the HH co-receptor Patched (PTC) controls both HH gradient formation and signalling. PTC is post-translationally downregulated by HH, which promotes its endocytosis and destabilization, but the mechanisms of PTC trafficking and its importance in the control of PTC remain to be understood. PTC interacts with E3 Ubiquitin (UB)-ligases of the C2-WW-HECT family; two of them—SMURF and NEDD4—are known to regulate its levels. We demonstrate that mutation of the PTC PY motif, which mediates binding of C2-WW-HECT family members, inhibits its internalization but not its autonomous and non-autonomous signalling activities. In addition, we show that the two related UB-C2-WW-HECT ligases NEDD4 and SU(DX) regulate PTC trafficking and finely tune its accumulation through partially redundant but distinct functions. While both NEDD4 and SU(DX) promote PTC endocytosis, only SU(DX) is able to induce its lysosomal targeting and degradation. In conclusion, PTC trafficking and homeostasis are tightly regulated by a family of UB-ligases.  相似文献   

5.
6.
Hedgehog (Hh) proteins are secreted molecules that play an essential role in development and tumorigenesis. In Drosophila cultured cells, phosphorylation of the kinesin-like Costal2 (Cos2) protein at Ser572 is triggered by the kinase fused (Fu) upon Hh pathway activation. Here, we validate the first phospho-antibody for one of the Hh pathway components, Cos2, as a universal in situ readout of Hh signal transduction. For the first time, this tool allows the visualisation of a gradient of signalling activity and therefore the range of the activating Hh ligand in different tissues. We also show that, in vivo, Fu kinase is activated by and necessary to transduce all levels of intracellular Hh signalling. Our study fills a gap in the understanding of the Hh pathway by showing that the molecular cascade leading to Cos2 phosphorylation is conserved in all cells activated by Hh. Therefore, we propose that the extracellular Hh information is conveyed to an intracellular signal through graded Fu kinase activity.  相似文献   

7.
The tumor suppressor morphogen, Patched (Ptc), has an extensive homology to the Niemann-Pick-C 1 (NPC1) protein. The NPC disease is a paediatric, progressive and fatal neurodegenerative disorder thought to be due to an abnormal accumulation of cholesterol in neurons. Here, we report that patched mutant adults develop a progressive neurodegenerative disease and their brain contains membranous and lamellar inclusions. There is also a significant reduction in the number of synaptic terminals in the brain of the mutant adults. Interestingly, feeding cholesterol to wild type flies generates inclusions in the brain, but does not cause the disease. However, feeding cholesterol to mutant flies increases synaptic connections and suppresses the disease. Our results suggest that sequestration of cholesterol in the mutant brain in the form of membranous material and inclusions affects available pool of cholesterol for cellular functions. This, in turn, negatively affects the synaptic number and contributes to the disease-state. Consistent with this, in ptc mutants there is a reduction in the pool of cholesterol esters, and cholesterol-mediated suppression of the disease accompanies an increase in cholesterol esters. We further show that Ptc does not function directly in this process since gain of function for Hedgehog also induces the same disease with a reduction in the level of cholesterol esters. We believe that loss of function for ptc causes neurodegeneration via two distinct ways: de-repression of genes that interfere with lipid trafficking, and de-repression of genes outside of the lipid trafficking; the functions of both classes of genes ultimately converge on synaptic connections.  相似文献   

8.
Dystrophin and Dystroglycan are the two central components of the multimeric Dystrophin Associated Protein Complex, or DAPC, that is thought to provide a mechanical link between the extracellular matrix and the actin cytoskeleton, disruption of which leads to muscular dystrophy in humans. We present the characterization of the Drosophila ‘crossveinless’ mutation detached (det), and show that the gene encodes the fly ortholog of Dystrophin. Our genetic analysis shows that, in flies, Dystrophin is a non-essential gene, and the sole overt morphological defect associated with null mutations in the locus is the variable loss of the posterior crossvein that has been described for alleles of det. Null mutations in Drosophila Dystroglycan (Dg) are similarly viable and exhibit this crossvein defect, indicating that both of the central DAPC components have been co-opted for this atypical function of the complex. In the developing wing, the Drosophila DAPC affects the intercellular signalling pathways involved in vein specification. In det and Dg mutant wings, the early BMP signalling that initiates crossvein specification is not maintained, particularly in the pro-vein territories adjacent to the longitudinal veins, and this results in the production of a crossvein fragment in the intervein between the two longitudinal veins. Genetic interaction studies suggest that the DAPC may exert this effect indirectly by down-regulating Notch signalling in pro-vein territories, leading to enhanced BMP signalling in the intervein by diffusion of BMP ligands from the longitudinal veins.  相似文献   

9.
Zhang Y  Mao F  Lu Y  Wu W  Zhang L  Zhao Y 《Cell research》2011,21(10):1436-1451
The Hedgehog (Hh) family of secreted proteins is essential for development in both vertebrates and invertebrates. As one of main morphogens during metazoan development, the graded Hh signal is transduced across the plasma membrane by Smoothened (Smo) through the differential phosphorylation of its cytoplasmic tail, leading to pathway activation and the differential expression of target genes. However, how Smo transduces the graded Hh signal via the Costal2 (Cos2)/Fused (Fu) complex remains poorly understood. Here we present a model of the cell response to a Hh gradient by translating Smo phosphorylation information to Fu dimerization and Cubitus interruptus (Ci) nuclear localization information. Our findings suggest that the phosphorylated C-terminus of Smo recruits the Cos2/Fu complex to the membrane through the interaction between Smo and Cos2, which further induces Fu dimerization. Dimerized Fu is phosphorylated and transduces the Hh signal by phosphorylating Cos2 and Suppressor of Fu (Su(fu)). We further show that this process promotes the dissociation of the full-length Ci (Ci155) and Cos2 or Su(fu), and results in the translocation of Ci155 into the nucleus, activating the expression of target genes.  相似文献   

10.
Through scaffold morphing of a known Smoothened antagonist Antag691, a series of novel phenyl imidazole derivatives were developed. Structure–activity-relationship studies and lead optimization led to the discovery of potent, selective and orally bioavailable Smoothened antagonist 19 that is suitable for in vivo studies.  相似文献   

11.
12.
Smoothened (Smo) antagonists are emerging as new therapies for the treatment of neoplasias with aberrantly reactivated hedgehog (Hh) signaling pathway. A novel series of 4-[3-(quinolin-2-yl)-1,2,4-oxadiazol-5-yl]piperazinyl ureas as smoothened antagonists was recently described, herein the series has been further optimized through the incorporation of a basic amine into the urea. This development resulted in identification of some exceptionally potent smoothened antagonists with low serum shifts, however, reductive ring opening on the 1,2,4-oxadiazole in rats limits the applicability of these compounds in in vivo studies.  相似文献   

13.
The Hedgehog (Hh-) signalling pathway is a key developmental pathway and there is a growing body of evidence showing that this pathway is aberrantly reactivated in a number of human tumors. Novel agents capable of inhibiting this pathway are sought, and an entirely novel series of smoothened (Smo) antagonists capable of inhibiting the pathway have been identified through uHTS screening. Extensive exploration of the scaffold identified the key functionalities necessary for potency, enabling potent nanomolar Smo antagonists like 91 and 94 to be developed. Optimization resulted in the most advanced compounds displaying low serum shift, clean off-targets profile, and moderate clearance in both rats and dogs. These compounds are valuable tools with which to probe the biology of the Hh-pathway.  相似文献   

14.
The Hedgehog (Hh-) signaling pathway is a key developmental pathway which controls patterning, growth and cell migration in most tissues, but evidence has accumulated showing that many human tumors aberrantly reactivate this pathway. Smoothened antagonists offer opportunities for the treatment of malignancies dependent on the Hh pathway, and the most advanced clinical candidates are demonstrating encourage initial results. A novel series of [6,5]-bicyclic tetrahydroimidazo[1,5-a]pyrazine-1,3(2H,5H)-dione smoothened antagonists has been identified, and the series has been extensively explored to ascertain the key detriments for activity, demonstrating that the trans-2-phenylcyclopropyl and hydantoin ring systems are critical for potency, while a variety of urea substituents can be tolerated. The combination of these optimal groups gives smoothened antagonists with activity in the low nanomolar range.  相似文献   

15.
Mutations in the Drosophila trol gene cause cell cycle arrest of neuroblasts in the larval brain. Here, we show that trol encodes the Drosophila homolog of Perlecan and regulates neuroblast division by modulating both FGF and Hh signaling. Addition of human FGF-2 to trol mutant brains in culture rescues the trol proliferation phenotype, while addition of a MAPK inhibitor causes cell cycle arrest of the regulated neuroblasts in wildtype brains. Like FGF, Hh activates stem cell division in the larval brain in a Trol-dependent fashion. Coimmunoprecipitation studies are consistent with interactions between Trol and Hh and between mammalian Perlecan and Shh that are not competed with heparin sulfate. Finally, analyses of mutations in trol, hh, and ttv suggest that Trol affects Hh movement. These results indicate that Trol can mediate signaling through both of the FGF and Hedgehog pathways to control the onset of stem cell proliferation in the developing nervous system.  相似文献   

16.
In many species, the germ cells, precursors of sperm and egg, migrate during embryogenesis. The signals that regulate this migration are thus essential for fertility. In flies, lipid signals have been shown to affect germ cell guidance. In particular, the synthesis of geranylgeranyl pyrophosphate through the 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (Hmgcr) pathway is critical for attracting germ cells to their target tissue. In a genetic analysis of signaling pathways known to affect cell migration of other migratory cells, we failed to find a role for the Hedgehog (Hh) pathway in germ cell migration. However, previous reports had implicated Hh as a germ cell attractant in flies and suggested that Hh signaling is enhanced through the action of the Hmgcr pathway. We therefore repeated several critical experiments and carried out further experiments to test specifically whether Hh is a germ cell attractant in flies. In contrast to previously reported findings and consistent with findings in zebrafish our data do not support the notion that Hh has a direct role in the guidance of migrating germ cells in flies.  相似文献   

17.
The Hedgehog (Hh-) signaling pathway is a key developmental pathway which gets reactivated in many human tumors, and smoothened (Smo) antagonists are emerging as novel agents for the treatment of malignancies dependent on the Hh-pathway, with the most advanced compounds demonstrating encouraging results in initial clinical trials. A novel series of potent bicyclic hydantoin Smo antagonists was reported in the preceding article, these have been resolved, and optimized to identify potent homochiral derivatives with clean off-target profiles and good pharmacokinetic properties in preclinical species. While showing in vivo efficacy in mouse allograft models, unsubstituted bicyclic tetrahydroimidazo[1,5-a]pyrazine-1,3(2H,5H)-diones were shown to epimerize in plasma. Alkylation of the C-8 position blocks this epimerization, resulting in the identification of MK-5710 (47) which was selected for further development.  相似文献   

18.
Vertebrate inner ear development is initiated by the specification of the otic placode, an ectodermal structure induced by signals from neighboring tissue. Although several signaling molecules have been identified as candidate otic inducers, many details of the process of inner ear induction remain elusive. Here, we report that otic induction is responsive to the level of Hedgehog (Hh) signaling activity in Xenopus, making use of both gain- and loss-of-function approaches. Ectopic activation of Hedgehog signaling resulted in the development of ectopic vesicular structures expressing the otic marker genes XPax-2, Xdll-3, and Xwnt-3A, thus revealing otic identity. Induction of ectopic otic vesicles was also achieved by misexpression of two different inhibitors of Hh signaling: the putative Hh antagonist mHIP and XPtc1deltaLoop2, a dominant-negative form of the Hh receptor Patched. In addition, misexpression of XPtc1deltaLoop2 as well as treatment of Xenopus embryos with the specific Hh signaling antagonist cyclopamine resulted in the formation of enlarged otic vesicles. In summary, our observations suggest that a defined level of Hh signaling provides a restrictive environment for otic fate in Xenopus embryos.  相似文献   

19.
    
  相似文献   

20.
Spatial gradients of Hedgehog signalling play a central role in many patterning events during animal development, regulating cell fate determination and tissue growth in a variety of tissues and developmental stages. Experimental evidence suggests that many of the proteins responsible for regulating Hedgehog signalling and transport are themselves targets of Hedgehog signalling, leading to multiple levels of feedback within the system. We use mathematical modelling to analyse how these overlapping feedbacks combine to regulate patterning and potentially enhance robustness in the Drosophila wing imaginal disc. Our results predict that the regulation of Hedgehog transport and stability by glypicans, as well as multiple overlapping feedbacks in the Hedgehog response network, can combine to enhance the robustness of positional specification against variability in Hedgehog levels. We also discuss potential trade-offs between robustness and additional features of the Hedgehog gradient, such as signalling range and size regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号