首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Smith, Curtis A., Craig A. Harms, Kathleen S. Henderson, andJerome A. Dempsey. Ventilatory effects of specific carotid bodyhypocapnia and hypoxia in awake dogs. J. Appl.Physiol. 82(3): 791-798, 1997.Specific carotidbody (CB) hypocapnia in the 10-Torr (less than eupneic) rangereduced ventilation in the awake and sleeping dog to the same degree asdid CB hyperoxia [CB PO2 (PCBO2);>500 Torr; C. A. Smith, K. W. Saupe, K. S. Henderson, and J. A. Dempsey. J. Appl. Physiol. 79:689-699, 1995], suggesting a powerful inhibitory effect ofhypocapnia at the carotid chemosensor over a range ofPCO2 encountered commonly inphysiological hyperpneas. The primary purpose of this study was toassess the ventilatory effect of CB hypocapnia on the ventilatoryresponse to concomitant CB hypoxia. The secondary purpose was to assess the relative gains of the CB and central chemoreceptors to hypocapnia. In eight awake female dogs the vascularly isolated CB was perfused withhypoxic blood (mild,PCBO2 50 Torr or severe, PCBO2 36 Torr) in a background of normocapnia or hypocapnia (10 Torr lessthan eupneic arterial PCO2) in theperfusate. The systemic (and brain) circulation was normoxicthroughout, and arterial PCO2 was notcontrolled (poikilocapnia). With CB hypocapnia, the peak ventilation(range 19-27 s) in response to hypoxic CB perfusion increased 48%(mild) and 77% (severe) due to increased tidal volume. When CBhypocapnia was present, these increases in ventilation were reduced to21 and 27%, respectively. With systemic hypocapnia, with the isolatedCB maintained normocapnic and hypoxic for >70 s, the steady-statepoikilocapnic ventilatory response (i.e., to systemic hypocapnia alone)decreased 15% (mild CB hypoxia) and 27% (severe CB hypoxia) from thepeak response, respectively. We conclude that carotid body hypocapniacan be a major source of inhibitory feedback to respiratory motoroutput during the hyperventilatory response to hypoxic carotid bodystimulation.

  相似文献   

2.
Brimioulle, Serge, Philippe Lejeune, and Robert Naeije.Effects of hypoxic pulmonary vasoconstriction on pulmonary gasexchange. J. Appl. Physiol. 81(4):1535-1543, 1996.Several reports have suggested that hypoxicpulmonary vasoconstriction (HPV) might result in deterioration ofpulmonary gas exchange in severe hypoxia. We therefore investigated theeffects of HPV on gas exchange in normal and diseased lungs. Weincorporated a biphasic HPV stimulus-response curve observed in intactdogs (S. Brimioulle, P. Lejeune, J. L. Vachièry, M. Delcroix, R. Hallemans, and R. Naeije, J. Appl.Physiol. 77: 476-480, 1994) into a 50-compartment lung model (J. B. West, Respir.Physiol. 7: 88-110, 1969) to control the amount ofblood flow directed to each lung compartment according to the localhypoxic stimulus. The resulting model accurately reproduced the bloodgas modifications caused by HPV changes in dogs with acute lung injury.In single lung units, HPV had a moderate protective effect on alveolaroxygenation, which was maximal at near-normal alveolarPO2 (75-80 Torr), mixed venousPO2 (35 Torr), andPO2 at which hemoglobin is 50%saturated (24 Torr). In simulated diseased lungs associated with40-60 Torr arterial PO2,however, HPV increased arterial PO2 by 15-20 Torr. We conclude that HPV can improve arterialoxygenation substantially in respiratory failure.

  相似文献   

3.
Phosphocreatine hydrolysis during submaximal exercise: the effect of FIO2   总被引:1,自引:0,他引:1  
There isevidence that the concentration of the high-energy phosphatemetabolites may be altered during steady-state submaximal exerciseby the breathing of different fractions of inspiredO2 (FIO2). Whereasit has been suggested that these changes may be the result ofdifferences in time taken to achieve steady-state O2 uptake(O2) at differentFIO2 values, we postulated that they are due to a direct effect ofO2 tension. We used31P-magnetic resonancespectroscopy during constant-load, steady-state submaximal exercise todetermine 1) whether changes inhigh-energy phosphates do occur at the sameO2 with variedFIO2 and2) that these changes are not due todifferences in O2onset kinetics. Six male subjects performed steady-state submaximal plantar flexion exercise [7.2 ± 0.6 (SE) W] for 10 minwhile lying supine in a 1.5-T clinical scanner. Magnetic resonancespectroscopy data were collected continuously for 2 min beforeexercise, 10 min during exercise, and 6 min during recovery. Subjectsperformed three different exercise bouts at constant load with theFIO2 switched after 5 min ofthe 10-min exercise bout. The three exercise treatments were1)FIO2 of 0.1 switched to0.21, 2)FIO2 of 0.1 switched to1.00, and 3)FIO2 of 1.00 switched to0.1. For all three treatments, theFIO2 switch significantly (P  0.05) altered phosphocreatine:1) 55.5 ± 4.8 to 67.8 ± 4.9% (%rest); 2) 59.0 ± 4.3 to72.3 ± 5.1%; and 3) 72.6 ± 3.1 to 64.2 ± 3.4%, respectively. There were no significantdifferences in intracellular pH for the three treatments. The resultsdemonstrate that the differences in phosphocreatine concentration withvaried FIO2 are not theresult of different O2onset kinetics, as this was eliminated by the experimental design.These data also demonstrate that changes in intracellular oxygenation,at the same work intensity, result in significant changes in cell homeostasis and thereby suggest a role for metabolic control by O2 even during submaximalexercise.

  相似文献   

4.
Honda, Y., H. Tani, A. Masuda, T. Kobayashi, T. Nishino, H. Kimura, S. Masuyama, and T. Kuriyama. Effect of priorO2 breathing on ventilatoryresponse to sustained isocapnic hypoxia in adult humans.J. Appl. Physiol. 81(4):1627-1632, 1996.Sixteen healthy volunteers breathed 100%O2 or room air for 10 min in random order, then their ventilatory response to sustained normocapnic hypoxia (80% arterial O2saturation, as measured with a pulse oximeter) was studied for 20 min.In addition, to detect agents possibly responsible for the respiratorychanges, blood plasma of 10 of the 16 subjects was chemically analyzed.1) Preliminary O2 breathing uniformly andsubstantially augmented hypoxic ventilatory responses.2) However, the profile ofventilatory response in terms of relative magnitude, i.e., biphasichypoxic ventilatory depression, remained nearly unchanged.3) Augmented ventilatory incrementby prior O2 breathing wassignificantly correlated with increment in the plasma glutamine level.We conclude that preliminary O2administration enhances hypoxic ventilatory response without affectingthe biphasic response pattern and speculate that the excitatory aminoacid neurotransmitter glutamate, possibly derived from augmentedglutamine, may, at least in part, play a role in this ventilatoryenhancement.

  相似文献   

5.
Oxygen transport in conscious newborn dogs during hypoxic hypometabolism   总被引:1,自引:0,他引:1  
We questioned whether the decrease inO2 consumption(O2) during hypoxia innewborns is a regulated response or reflects a limitation inO2 availability. Experiments wereconducted on previously instrumented conscious newborn dogs.O2 was measured at a warmambient temperature (30°C, n = 7)or in the cold (20°C, n = 6),while the animals breathed air or were sequentially exposed to 15 minof fractional inspired O2(FIO2): 21, 18, 15, 12, 10, 8, and 6%. In normoxia,O2 averaged 15 ± 1 (SE)and 25 ± 1 ml · kg1 · min1in warm and cold conditions, respectively. In the warmcondition, hypometabolism (i.e., hypoxicO2 < normoxicO2) occurred at FIO2 10%, whereas in thecold condition, hypometabolism occurred atFIO2 12%. The sameresults were obtained in a separate group(n = 14) of noninstrumented puppies.For all levels of FIO2 withhypometabolism, the relationships between measures ofO2 availability (arterialO2 saturation or content, venousPO2 or saturation,x-axis) vs.O2(y-axis) had lower slopes in warm than in coldconditions. Hence, O2 during hypometabolism in the warm condition was not the maximal attainable for the level of oxygenation. The results do not support thepossibility that the hypoxic drop inO2 in the newborn reflects a limitation in O2availability. The results are compatible with the ideathat the phenomenon is one of "regulated conformism" tohypoxia.

  相似文献   

6.
Gozal, David, Gavin R. Graff, José E. Torres, SanjayG. Khicha, Gautam S. Nayak, Narong Simakajornboon, and Evelyne Gozal. Cardiorespiratory responses to systemic administration of aprotein kinase C inhibitor in conscious rats. J. Appl.Physiol. 84(2): 641-648, 1998.Although proteinkinase C (PKC) is an essential component of multiple neurally mediatedevents, its role in respiratory control remains undefined. Theventilatory effects of a systemically active PKC inhibitor (Ro-32-0432;100 mg/kg ip) were assessed by whole body plethysmography duringnormoxia, hypoxia (10% O2), andhyperoxia (100% O2) inunrestrained Sprague-Dawley rats. A sustained expiratory time increaseoccurred within 8-10 min of injection in room air[mean 44.8 ± 5.2 (SE) % ], was similarto expiratory time prolongations after Ro-32-0432 administration during100% O2 (45.5 ± 8.1%; not significant), and was associated with mildminute ventilation (E) decreases.Hypercapnic ventilatory responses (5%CO2) remained unchanged afterRo-32-0432. During 10% O2,E increased from 122.6 ± 15.6 to 195.7 ± 10.1 ml/min in vehicle-treated rats(P < 0.001). In contrast, markedattenuation of E hypoxic responsesoccurred after Ro-32-0432 [86.2 ± 6.2 ml/min inroom air to 104.1 ± 7.1 ml/min in 10%O2; pre- vs. post-Ro32-0432, P < 0.001 (analysis ofvariance)]. Overall, PKC activity was reduced and increases withhypoxia were abolished in the particulate subcellular fraction of brain tissue after Ro-32-0432 treatment, indicating thatthis compound readily crosses the blood-brain barrier. We conclude thatsystemic PKC inhibition elicits significant centrally mediatedexpiratory prolongations and ventilatory reductions as well as bluntedventilatory responses to hypoxia but not to hypercapnia. Wepostulate that PKC plays an important role in signal transduction pathways within brain regions underlying respiratory control.

  相似文献   

7.
Waters, Karen A., André Laferrière, JuliePaquette, Cynthia Goodyer, and Immanuela R. Moss. Curtailedrespiration by repeated vs. isolated hypoxia in maturing piglets isunrelated to NTS ME or SP levels. J. Appl.Physiol. 83(2): 522-529, 1997.In earlydevelopment, respiratory disorders can produce recurring hypoxicepisodes during sleep. To examine possible effects of daily repeatedvs. isolated hypoxic hypoxia, cardiorespiratory functions and central,respiratory-related neuromodulator levels in 21- to 32-day-old,chronically instrumented, unsedated piglets were compared between afifth sequential daily hypoxia and an isolated hypoxia (10%O2-90%N2 for 30 min). Diaphragmaticelectromyographic activity, heart rate and arterial pressure, and pHand gas tensions were measured. In vivo microdialysis, via chronicallyimplanted guides, served to sample interstitial substance P (SP) andmethionine-enkephalin (ME) at the level of the respiratory-relatednucleus tractus solitarii (NTS). Compared with an isolated hypoxia,repeated hypoxia resulted in 1)lower respiratory frequency (f), ventilation equivalent, and arterialpH, higher arterial PO2during hypoxia, and lower f in recovery from hypoxia; and2) increased SP concentrations butno change in ME concentrations. We conclude that, in these maturingswine, repeated vs. isolated hypoxic exposure curtails respiratoryresponses to hypoxia by a mechanism(s) unrelated to SP or ME levels atthe NTS.

  相似文献   

8.
Dwinell, M. R., P. L. Janssen, J. Pizarro, and G. E. Bisgard. Effects of carotid body hypocapnia during ventilatory acclimatization to hypoxia. J. Appl.Physiol. 82(1): 118-124, 1997.Hypoxicventilatory sensitivity is increased during ventilatory acclimatizationto hypoxia (VAH) in awake goats, resulting in a time-dependent increasein expired ventilation (E). Theobjectives of this study were to determine whether the increasedcarotid body (CB) hypoxic sensitivity is dependent on the level of CB CO2 and whether the CBCO2 gain is changed during VAH.Studies were carried out in adult goats with CB blood gases controlled by an extracorporeal circuit while systemic (central nervous system) blood gases were regulated independently by the level of inhaled gases. Acute E responsesto CB hypoxia (CB PO2 40 Torr) and CBhypercapnia (CB PCO2 50 and 60 Torr)were measured while systemic normoxia and isocapnia were maintained. CBPO2 was then lowered to 40 Torr for 4 h while the systemic blood gases were kept normoxic and normocapnic.During the 4-h CB hypoxia, E increasedin a time-dependent manner. Thirty minutes after return to normoxia,the ventilatory response to CB hypoxia was significantly increasedcompared with the initial response. The slope of the CBCO2 response was also elevatedafter VAH. An additional group of goats(n = 7) was studied with asimilar protocol, except that CB PCO2was lowered throughout the 4-h hypoxic exposure to prevent reflexhyperventilation. CB PCO2 wasprogressively lowered throughout the 4-h CB hypoxic period to maintainE at the control level. After the 4-hCB hypoxic exposure, the ventilatory response to hypoxia was alsosignificantly elevated. However, the slope of the CBCO2 response was not elevatedafter the 4-h hypoxic exposure. These results suggest that CBsensitivity to both O2 andCO2 is increased after 4 h of CBhypoxia with systemic isocapnia. The increase in CB hypoxic sensitivityis not dependent on the level of CBCO2 maintained during the 4-hhypoxic period.

  相似文献   

9.
Albert, T. S. E., V. L. Tucker, and E. M. Renkin.Atrial natriuretic peptide levels and plasma volume contraction in acute alveolar hypoxia. J. Appl.Physiol. 82(1): 102-110, 1997.Arterial oxygentensions (PaO2), atrial natriureticpeptide (ANP) concentrations, and circulating plasma volumes (PV) weremeasured in anesthetized rats ventilated with room air or 15, 10, or8% O2(n = 5-7). After 10 min ofventilation, PaO2 values were 80 ± 3, 46 ± 1, 32 ± 1, and 35 ± 1 Torrand plasma immunoreactive ANP (irANP) levels were 211 ± 29, 229 ± 28, 911 ± 205, and 4,374 ± 961 pg/ml, respectively. AtPaO2 40 Torr, irANP responses weremore closely related to inspiredO2(P = 0.014) than toPaO2 (P = 0.168). PV was 36.3 ± 0.5 µl/g in controls but 8.5 and9.9% lower (P  0.05) for10 and 8% O2, respectively.Proportional increases in hematocrit were observed in animals withreduced PV; however, plasma protein concentrations were not differentfrom control. Between 10 and 50 min of hypoxia, small increases (+40%)in irANP occurred in 15% O2;however, there was no further change in PV, hematocrit, plasma protein,or irANP levels in the lower O2groups. Urine output tended to fall during hypoxia but was notsignificantly different among groups. These findings are compatiblewith a role for ANP in mediating PV contraction during acute alveolarhypoxia.

  相似文献   

10.
Tansley, J. G., C. Clar, M. E. F. Pedersen, and P. A. Robbins. Human ventilatory response to acute hyperoxia during andafter 8 h of both isocapnic and poikilocapnic hypoxia.J. Appl. Physiol. 82(2): 513-519, 1997.During 8 h of either isocapnic or poikilocapnic hypoxia,there may be a rise in ventilation(E) thatcannot be rapidly reversed with a return to higherPO2 (L. S. G. E. Howard and P. A. Robbins. J. Appl. Physiol. 78:1098-1107, 1995). To investigate this further, threeprotocols were compared: 1) 8-hisocapnic hypoxia [end-tidalPCO2(PETCO2 ) held atprestudy value, end-tidal PO2(PETO2) = 55 Torr],followed by 8-h isocapnic euoxia(PETO2 = 100 Torr);2) 8-h poikilocapnic hypoxia followed by 8-h poikilocapnic euoxia; and3) 16-h air-breathing control.Before and at intervals throughout each protocol, theE response to eucapnichyperoxia (PETCO2 held1-2 Torr above prestudy value,PETO2 = 300 Torr) wasdetermined. There was a significant rise in hyperoxic E over 8 hduring both forms of hypoxia (P < 0.05, analysis of variance) that persisted during the subsequent 8-heuoxic period (P < 0.05, analysis ofvariance). These results support the notion that an 8-h period ofhypoxia increases subsequenthyperoxic E, even if acid-base changes have been minimized through maintenance ofisocapnia during the hypoxic period.

  相似文献   

11.
Gautier, Henry, Cristina Murariu, and Monique Bonora.Ventilatory and metabolic responses to ambient hypoxia orhypercapnia in rats exposed to CO hypoxia. J. Appl. Physiol.83(1): 253-261, 1997.We have investigated at ambienttemperatures (Tam) of 25 and5°C the effects of ambient hypoxia(Hxam; fractional inspired O2 = 0.14) and hypercapnia(fractional inspiredCO2 = 0.04) on ventilation (),O2 uptake(O2), andcolonic temperature (Tc) in 12 conscious rats before and after carotid body denervation (CBD). Therats were concomitantly exposed to CO hypoxia (HxCO; fractional inspired CO = 0.03-0.05%), which decreases arterial O2 saturation by ~25-40%.The results demonstrate the following. 1) AtTam of 5°C, in both intact andCBD rats,/O2 islarger when Hxam orCO2 is associated withHxCO than with normoxia. At Tam of 25°C, this is also thecase except for CO2 in CBD rats. 2) AtTam of 5°C, the changes inO2 andTc seem to result from additiveeffects of the separate changes induced byHxam,CO2, andHxCO. It is concluded that, inconscious rats, central hypoxia does not depress respiratory activity.On the contrary, particularly whenO2 is augmented during acold stress, both/O2during HxCO and the ventilatoryresponses to Hxam andCO2 are increased. The mechanismsinvolved in this relative hyperventilation are likely to involvediencephalic integrative structures.

  相似文献   

12.
We usedfluorescent-labeled microspheres in pentobarbital-anesthetized dogs tostudy the effects of unilateral alveolar hypoxia on the pulmonary bloodflow distribution. The left lung was ventilated with inspiredO2 fraction of 1.0, 0.09, or 0.03 in random order; the right lung was ventilated with inspiredO2 fraction of 1.0. The lungs wereremoved, cleared of blood, dried at total lung capacity, then cubed toobtain ~1,500 small pieces of lung (~1.7 cm3). The coefficient ofvariation of flow increased (P < 0.001) in the hypoxic lung but was unchanged in the hyperoxic lung.Most (70-80%) variance in flow in the hyperoxic lung wasattributable to structure, in contrast to only 30-40% of thevariance in flow in the hypoxic lung(P < 0.001). When adjusted for thechange in total flow to each lung, 90-95% of the variance in thehyperoxic lung was attributable to structure compared with 70-80%in the hypoxic lung (P < 0.001). Thehilar-to-peripheral gradient, adjusted for change in total flow,decreased in the hypoxic lung (P = 0.005) but did not change in the hyperoxic lung. We conclude thathypoxic vasoconstriction alters the regional distribution of flow inthe hypoxic, but not in the hyperoxic, lung.

  相似文献   

13.
Gelfand, R., C. J. Lambertsen, J. M. Clark, and E. Hopkin.Hypoxic ventilatory sensitivity in men is not reduced by prolongedhyperoxia (Predictive Studies V and VI). J. Appl.Physiol. 84(1): 292-302, 1998.Potential adverseeffects on the O2-sensing functionof the carotid body when its cells are exposed to toxic O2 pressures were assessed duringinvestigations of human organ tolerance to prolonged continuous andintermittent hyperoxia (Predictive Studies V and VI). Isocapnic hypoxicventilatory responses (HVR) were determined at 1.0 ATA before and aftersevere hyperoxic exposures: 1)continuous O2 breathing at 1.5, 2.0, and 2.5 ATA for 17.7, 9.0, and 5.7 h and2) intermittentO2 breathing at 2.0 ATA (30 minO2-30 min normoxia) for 14.3 O2 h within 30-h total time. Postexposure curvature of HVR hyperbolas was not reduced compared withpreexposure controls. The hyperbolas were temporarily elevated tohigher ventilations than controls due to increments in respiratory frequency that were proportional toO2 exposure time, notO2 pressure. In humans, prolongedhyperoxia does not attenuate the hypoxia-sensing function of theperipheral chemoreceptors, even after exposures that approach limits ofhuman pulmonary and central nervous system O2 tolerance. Current applicationsof hyperoxia in hyperbaric O2therapy and in subsea- and aerospace-related operations are guided byand are well within these exposure limits.

  相似文献   

14.
Akilesh, Manjapra R., Matthew Kamper, Aihua Li, and EugeneE. Nattie. Effects of unilateral lesions of retrotrapezoid nucleuson breathing in awake rats. J. Appl.Physiol. 82(2): 469-479, 1997.In anesthetizedrats, unilateral retrotrapezoid nucleus (RTN) lesions markedlydecreased baseline phrenic activity and the response toCO2 (E. E. Nattie and A. Li.Respir. Physiol. 97: 63-77,1994). Here we evaluate the effects of such lesions on restingbreathing and on the response to hypercapnia and hypoxia inunanesthetized awake rats. We made unilateral injections [24 ± 7 (SE) nl] of ibotenic acid (IA; 50 mM), an excitatoryamino acid neurotoxin, in the RTN region(n = 7) located by stereotaxic coordinates and by field potentials induced by facial nervestimulation. Controls (n = 6) receivedRTN injections (80 ± 30 nl) of mock cerebrospinal fluid. A secondcontrol consisted of four animals with IA injections (24 ± 12 nl)outside the RTN region. Injected fluorescent beads allowed anatomicidentification of lesion location. Using whole body plethysmography, wemeasured ventilation in the awake state during room air, 7%CO2 in air, and 10%O2 breathing before and for 3 wkafter the RTN injections. There was no statistically significant effectof the IA injections on resting room air breathing in the lesion groupcompared with the control groups. We observed no apnea. The response to7% CO2 in the lesion groupcompared with the control groups was significantly decreased, by 39%on average, for the final portion of the 3-wk study period. There wasno lesion effect on the ventilatory response to 10%O2. In this unanesthetized model,other areas suppressed by anesthesia, e.g., the reticular activatingsystem, hypothalamus, and perhaps the contralateral RTN, may providetonic input to the respiratory centers that counters the loss of RTNactivity.

  相似文献   

15.
Curtis, Scott E., Thomas A. Walker, W. E. Bradley, andStephen M. Cain. Raising P50increases tissue PO2 in canineskeletal muscle but does not affect criticalO2 extraction ratio.J. Appl. Physiol. 83(5):1681-1689, 1997.Affinity of hemoglobin (Hb) forO2 determines in part the rate ofO2 diffusion from capillaries tomyocytes by altering capillary PO2.We hypothesized that a decrease in HbO2 affinity (increasedP50) would increase capillary and tissue PO2(PtiO2) andimprove O2 consumption duringischemia. To test this hypothesis, blood flow to the pump-perfused lefthindlimb of 18 anesthetized and paralyzed dogs was progressively decreased over 90 min while hindlimb O2 consumption andO2 delivery (O2)and PtiO2 weremeasured at the muscle surface. Arterial PO2 was maintained at 150 ± 10 Torr in all dogs. We increased P50by 12.3 ± 0.9 (SE) Torr in nine dogs with RSR-13, an allosteric modifier of Hb. This decreased arterialO2 saturation to 90-92% butincreased meanPtiO2 from 35.5 ± 11.6 to 44.1 ± 15.2 (SD) Torr(P < 0.05) with no change incontrols (n = 9).O2 extraction ratio at criticalO2was 74 ± 2% in controls and 79 ± 1% in RSR-13-treated dogs(P = not significant).PtiO2 was30-40% higher in the RSR-13-treated group at anyO2above critical but did not differ between groups below criticalO2.Perfusion heterogeneity and convergence of the dissociation curvesnear criticalO2 may have mitigated any effect of increasedP50 onO2 diffusion. Still, increasingP50 by 12 Torr with RSR-13significantly increased PtiO2 atO2values above critical.

  相似文献   

16.
Quezado, Zenaide M. N., Charles Natanson, WaheedullahKarzai, Robert L. Danner, Cezar A. Koev, Yvonne Fitz, Donald P. Dolan, Steven Richmond, Steven M. Banks, Laura Wilson, and Peter Q. Eichacker. Cardiopulmonary effects of inhaled nitric oxide in normal dogs andduring E. coli pneumonia and sepsis.J. Appl. Physiol. 84(1): 107-115, 1998.We investigated the effect of inhaled nitric oxide (NO) atincreasing fractional inspired O2concentrations (FIO2) onhemodynamic and pulmonary function during Escherichia coli pneumonia. Thirty-eight conscious,spontaneously breathing, tracheotomized 2-yr-old beagles hadintrabronchial inoculation with either 0.75 or 1.5 × 1010 colony-forming units/kg ofE. coli 0111:B4(infected) or 0.9% saline (noninfected) in one or four pulmonarylobes. We found that neither the severity nor distribution (lobar vs.diffuse) of bacterial pneumonia altered the effects of NO. However, in infected animals, with increasingFIO2 (0.08, 0.21, 0.50, and0.85), NO (80 parts/million) progressively increased arterial PO2 [0.3 ± 0.6, 3 ± 1, 13 ± 4, 10 ± 9 (mean ± SE) Torr, respectively] and decreased the mean arterial-alveolarO2 gradient (0.5 ± 0.3, 4 ± 2, 8 ± 7, 10 ± 9 Torr, respectively). Incontrast, in noninfected animals, the effect of NO was significantlydifferent and opposite; NO progressively decreased meanPO2 with increasingFIO2 (2 ± 1, 5 ± 3, 2 ± 3, and 12 ± 5 Torr, respectively;P < 0.05 compared with infectedanimals) and increased mean arterial-alveolarO2 gradient (0.3 ± 0.04, 2 ± 2, 1 ± 3, 11 ± 5 Torr; P < 0.05 compared with infected animals). In normal and infectedanimals alike, only at FIO20.21 did NO significantly lower mean pulmonary artery pressure,pulmonary artery occlusion pressure, and pulmonary vascular resistanceindex (all P < 0.01).However, inhaled NO had no significant effect on increases in meanpulmonay artery pressure associated with bacterial pneumonia. Thus,during bacterial pneumonia, inhaled NO had only modest effects onoxygenation dependent on highFIO2 and did not affectsepsis-induced pulmonary hypertension. These data do not support a rolefor inhaled NO in bacterial pneumonia. Further studies are necessary todetermine whether, in combination with ventilatory support, NO may havemore pronounced effects.

  相似文献   

17.
Saiki, Chikako, and Jacopo P. Mortola. Effect of2,4-dinitrophenol on the hypometabolic response to hypoxia of conscious adult rats. J. Appl. Physiol. 83(2):537-542, 1997.During acute hypoxia, a hypometabolic response iscommonly observed in many newborn and adult mammalian species. Wehypothesized that, if hypoxic hypometabolism were entirely a regulatedresponse with no limitation in O2availability, pharmacological uncoupling of the oxidativephosphorylation should raise O2consumption(O2) bysimilar amounts in hypoxia and normoxia. Metabolic, ventilatory, andcardiovascular measurements were collected from conscious rats in airand in hypoxia, both before and after intravenous injection of themitochondrial uncoupler 2,4-dinitrophenol (DNP). In hypoxia (10%O2 breathing, 60% arterialO2 saturation),O2, as measured by anopen-flow technique, was less than in normoxia (~80%). SuccessiveDNP injections (6 mg/kg, 4 times) progressively increasedO2 in both normoxia andhypoxia by similar amounts. Body temperature slightly increased innormoxia, whereas it did not change in hypoxia. The DNP-stimulatedO2 during hypoxia couldeven exceed the control normoxic value. A single DNP injection (17 mg/kg iv) had a similar metabolic effect; it also resulted inhypotension and a drop in systemic vascular resistance. We concludethat pharmacological stimulation ofO2 counteracts theO2 drop determined byhypoxia and stimulates O2not dissimilarly from normoxia. Hypoxic hypometabolism is likely toreflect a regulated process of depression of thermogenesis, with nolimitation in cellular O2availability.

  相似文献   

18.
Johnson, Stephen M., Rebecca A. Johnson, and Gordon S. Mitchell. Hypoxia, temperature, andpH/CO2 effects on respiratory discharge from a turtle brain stem preparation. J. Appl. Physiol. 84(2): 649-660, 1998.An in vitrobrain stem preparation from adult turtles (Chrysemyspicta) was used to examine the effects of anoxia andincreased temperature and pH/CO2on respiration-related motor output. At pH ~7.45, hypoglossal (XII)nerve roots produced patterns of rhythmic bursts (peaks) of discharge(0.74 ± 0.07 peaks/min, 10.0 ± 0.6 s duration) that werequantitatively similar to literature reports of respiratory activity inconscious, vagotomized turtles. Respiratory discharge was stable for 6 h at 22°C; at 32°C, peak amplitude and frequency progressivelyand reversibly decreased with time. Two hours of hypoxia had no effecton respiratory discharge. Acutely increasing bath temperature from 22 to 32°C decreased episode and peak duration and increased peakfrequency. Changes in pH/CO2increased peak frequency from zero at pH 8.00-8.10 to maxima of0.81 ± 0.01 and 1.44 ± 0.02 peaks/min at 22°C (pH 7.32) and32°C (pH 7.46), respectively;pH/CO2 sensitivity was similar atboth temperatures. We conclude that1) insensitivity to hypoxiaindicates that rhythmic discharge does not reflect gasping behavior,2) increased temperature altersrespiratory discharge, and 3)central pH/CO2 sensitivity isunaffected by temperature in this preparation (i.e.,Q10 ~1.0).

  相似文献   

19.
Engelen, Marielle, Janos Porszasz, Marshall Riley, KarlmanWasserman, Kazuhira Maehara, and Thomas J. Barstow. Effects ofhypoxic hypoxia on O2 uptake andheart rate kinetics during heavy exercise. J. Appl.Physiol. 81(6): 2500-2508, 1996.It is unclearwhether hypoxia alters the kinetics ofO2 uptake(O2) during heavy exercise[above the lactic acidosis threshold (LAT)] and how thesealterations might be linked to the rise in blood lactate. Eight healthyvolunteers performed transitions from unloaded cycling to the sameabsolute heavy work rate for 8 min while breathing one of threeinspired O2 concentrations: 21%(room air), 15% (mild hypoxia), and 12% (moderate hypoxia). Breathing12% O2 slowed the time constantbut did not affect the amplitude of the primary rise inO2 (period of first2-3 min of exercise) and had no significant effect on either thetime constant or the amplitude of the slowO2 component (beginning2-3 min into exercise). Baseline heart rate was elevated inproportion to the severity of the hypoxia, but the amplitude andkinetics of increase during exercise and in recovery were unaffected bylevel of inspired O2.We conclude that the predominant effect of hypoxia during heavyexercise is on the early energetics as a slowed time constant forO2 and an additionalanaerobic contribution. However, the sum total of the processesrepresenting the slow component of O2 is unaffected.

  相似文献   

20.
Castiglioni, P., R. Tommasini, M. Morpurgo, and M. DiRienzo. Modulation of pulmonary arterial input impedance during transition from inspiration to expiration. J. Appl.Physiol. 83(6): 2123-2130, 1997.We investigatedwhether respiration influences pulmonary arterial input impedanceduring transition from inspiration to expiration in five anesthetized,spontaneously breathing dogs. Impedance (Z) was separately assessed forheart beats occurring in inspiration, in expiration, and during thetransition from inspiration to expiration (transitional beat).Transitional beats were scored by the ratio between the fraction ofbeat falling in expiration and the total beat duration[expiratory fraction (Efr)] to quantify theirposition within the transition. In transitional beats, input resistancelinearly increased with Efr; Zmodulus at the heart-rate frequency(fHR) decreased up to50% for Efr = 50%. Z phase at fHR was greaterthan in inspiration for Efr <40% and lower for Efr >50%.Unlike blood flow velocity, mean value and first harmonic of pulmonaryarterial pressure were correlated toEfr and paralleled the changes ofinput resistance and Z at fHR.This indicates that respiration influences Z through modifications inarterial pressure. The evidence of important respiratory influences onZ function may help the pathophysiological interpretation of dysfunctions of the right heart pumping action, such as the so-called cor pulmonale.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号