首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An unusual case of isolated ACTH deficiency with coexisting chronic thyroiditis in a 53-year-old man is reported. The patient was admitted with a 2-year history of generalized fatigue, a 13-kg weight loss, muscular weakness, and frequent hypotensive and hypoglycemic attacks. On admission serum thyroxine and triiodothyronine were significantly elevated. Basal TSH concentration was not detected and TSH showed no response to TRH, but one month after replacement therapy with hydrocortisone it was shown that serum T3, T4 and TSH response were all within normal limits. Thyroid antibodies were positive and biopsy of the thyroid gland showed chronic thyroiditis. Arginine and 1-Dopa provoked a subnormal rise in GH with a maximum of 5.6 ng/ml and 5.0, respectively. One month after treatment with hydrocortisone, GH response to 1-Dopa and arginine increased to the normal range. Prolactin response to TRH was normal and FSH response to LHRH was also normal. LH showed an exaggerated response to LHRH, although a normal response was revealed after treatment with hydrocortisone. We also presented a summary of 44 Japanese cases, 23 males (mean age; 46 yrs old) and 21 females (mean age; 48 yrs old), with isolated ACTH deficiency.  相似文献   

2.
Blood concentrations of anterior pituitary hormones, ACTH, GH, TSH, PRL, LH, and FSH were determined in corticotropin releasing factor (CRF) test (synthetic ovine CRF 1.0 microgram per kg body weight) and growth hormone releasing factor (GRF) test (synthetic human pancreatic GRF-44 100 micrograms) in 2 female sibling patients with congenital isolated TSH deficiency, in their mother, in 2 patients with congenital primary hypothyroidism and in 8 normal controls. The patients with isolated TSH deficiency showed normally increased plasma ACTH and serum GH after CRF and GRF, respectively, and also showed an abnormal GH response to CRF. The serum GH showed a rapid increase to maximum levels (12.9 ng/ml) within 30 to 60 min followed by decrease. The possibility of secretion of abnormal GH could be excluded by the fact that on serum dilution, GH value gave a linear plot passing through zero. In addition, serum PRL, LH and FSH levels after CRF administration in case 1 and PRL after GRF in case 2 were also slightly increased but these responses were marginal. The mother of the patients, patients with congenital primary hypothyroidism, and normal healthy controls showed normal responses of pituitary hormones throughout the experiment. Data from the present study and a previous report show that abnormal GH response to the hypothalamic hormones (CRF, TRH and LHRH) may be observed in patients with congenital isolated TSH deficiency.  相似文献   

3.
Thyrotropin-releasing hormone (TRH) blunts growth hormone (GH) response to various stimuli in normal subjects. We were interested if similar inhibitory effect of TRH could be demonstrated in diabetes mellitus where GH is abnormally regulated. In this study we compared the effect of TRH on GH response to L-dopa in normal and diabetic subjects. TRH 0.2 mg iv blunted GH response to L-dopa 0.5 g p.o. in normal subjects with peak GH values 13.1 and 7.3 micrograms/l, p < 0.05. In the diabetics no inhibitory effect of TRH was demonstrated and GH was even paradoxically increased after TRH: 14.9 and 21.9 micrograms/l, p = NS. Lack of inhibitory effect of TRH was more pronounced in patients with proliferative retinopathy. It is concluded that TRH has no inhibitory effect on L-dopa-induced GH response in diabetic subjects. This finding provides further evidence for disturbed GH regulation in diabetes mellitus.  相似文献   

4.
The effect of two different doses of thyrotrophic releasing hormone (TRH) upon the plasma levels of growth (GH) and thyroid hormones in both sex-linked dwarf (dw) and normal (Dw) broiler hens was determined. In normal hens, 1.5 and 24 microg TRH/kg increased the GH plasma concentrations after 15 min. Plasma concentrations of T3 increased significantly 1 h after TRH injection, whereas T4 concentration decreased after 2 following injection of 24 microg/kg TRH. In dwarf hens both doses of TRH increased the plasma concentrations of GH and the GH response lasted longer. However, TRH was ineffective in raising T3 and T4 levels. Saline-injected dwarf birds showed no differences in plasma T4 and T3 levels in comparison with normal hens. A smaller number of hepatic cGH receptors was found in dwarf hens, whereas the affinity of the hepatic GH receptor was not influenced by the genotype. It is concluded that the sex-linked dwarf broiler hen is unable to respond to a TRH-induced GH stimulus probably because of a deficiency in hepatic GH receptors resulting in a failure to stimulate the T4 to T3 converting activity.  相似文献   

5.
The aim of this study was to evaluate plasma thyrotropin (TSH), prolactin (PRL) and growth hormone (GH) responses to the TSH-releasing hormone (TRH) test and to a combined arginine-TRH test (ATT-TRH) in 10 normal subjects and in 15 acromegalic patients. In controls, TSH responsiveness to TRH was enhanced by ATT (p less than 0.001). When considering the 15 acromegalic patients as a whole, no significant difference in TSH responses was detected during the two tests. However, patients without suppression of plasma GH levels after oral glucose load showed an increased TSH responsiveness to the ATT-TRH test if compared to TRH alone (p less than 0.025), while patients with partial suppression of plasma GH levels after glucose ingestion showed a decreased TSH responsiveness to ATT-TRH (p less than 0.05). No difference was recorded in PRL and GH responses, evaluated as area under the curve, during TRH or ATT-TRH tests in controls and in acromegalics. In conclusion, (1) normal subjects have an enhanced TSH response to the ATT-TRH test and (2) acromegalic patients without suppression of GH levels after oral glucose load show a TSH responsiveness to the ATT-TRH test similar to that of controls, while acromegalics with partial GH suppression after oral glucose load have a decreased TSH responsiveness to the ATT-TRH test. These data suggest that acromegaly is a heterogeneous disease as far as the somatostatinergic tone is concerned.  相似文献   

6.
We administered growth-hormone releasing hormone (GHRH), clonidine or thyrotropin-releasing hormone (TRH) as intravenous boli each in three different randomized mornings to nine well-controlled Type 1 diabetic men and to six age-matched healthy men who served as controls. GHRH and clonidine evoked a prompt and brisk GH release both in diabetic and in control subjects with no significant difference being evident between the two groups. Only one diabetic subject showed a paradoxical GH release after TRH when he was under long-term poor metabolic control. These results indicate that in insulin-dependent patients with good control of the metabolic disease the response of somatotropes to pituitary- or central nervous system-directed stimuli is normal. These data are supportive of the idea that altered GH secretion in Type 1 diabetes rather than reflecting a primary hypothalamic and/or pituitary alteration may be a state-dependent phenomenon related to the metabolic state of the disease.  相似文献   

7.
The effects of intravenous injection of synthetic human pancreatic growth hormone-releasing factor-44-NH2 (hpGRF-44) and synthetic thyrotropin releasing hormone (TRH), or hpGRF-44 in combination with TRH on growth hormone (GH), thyrotropin (TSH), and prolactin (PRL) release in dairy female calves (6- and 12-month-old) were studied. When 0.25 microgram of hpGRF-44 per kg of body weight (bw) was injected in combination with TRH (1.0 microgram per kg of bw), the mean plasma GH concentration of the 12-month-old calves rose to a maximum level of 191.5 ng/ml (P less than 0.001) at 15 min from the value of 6.8 ng/ml before injection at 0 min. The maximum level was 3.1 and 6.1 times as high as the peak values obtained after injection of hpGRF-44 (0.25 microgram per kg of bw) and TRH (1.0 microgram per kg of bw), respectively (P less than 0.001). The area under the GH response curve for the 12-month-old calves for 3 hr after injection of hpGRF-44 in combination with TRH was 2.5 times as large as the sum of the areas obtained by hpGRF-44 and TRH injections. In contrast, the mean plasma GH level was unchanged in saline injected calves. The magnitudes of the first and the second plasma GH responses in the 6-month-old calves to two consecutive injections of hpGRF-44 in combination with TRH at a 3-hr interval were very similar. The peak values of plasma GH in the calves after hpGRF-44 injection were 2-4 times as high as those after TRH injection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Changes in TSH secretion in six acromegalic patients were studied before and after transsphenoidal adenomectomy (Hardy's method) and compared to normal subjects and six patients with prolactinoma. Basal serum GH levels ranging from 5 to over 250 ng/ml before adenomectomy decreased to below 5 ng/ml after the operation, and the abnormal responses of GH to TRH observed initially in three of the six patients almost disappeared in the post-adenomectomy period. The response of serum TSH to TRH in acromegalic patients improved in each of the six patients after the operation. The TRH-stimulated TSH secretion in patients with prolactinoma of a size and grade similar to those in acromegalic patients was not so extremely low as that in the acromegalic subjects. As indicators of thyroid function, serum triiodothyronine (T3), thyroxine (T4), T3-uptake levels and free T4 indices did not change significantly after adenomectomy as compared with those before the operation in five of the six patients tested. Serum T3, T4 and T3-uptake levels and free T4 indices before adenomectomy were normal or subnormal in each patient except for a high serum T4 level and free T4 index before the operation in only one patient. Thus, it is difficult to conclude that the function of thyrotrophs was decreased by pressure upon the intact pituitary gland by the tumor, or that the thyroid gland also became hypertrophic secondary to the elevated GH, resulting in a large quantity of thyroid hormone being secreted, which caused a suppression of TSH secretion by negative feedback.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Patients with chronic liver diseases were evaluated for: 1) the ability of somatostatin to affect the thyrotropin-releasing hormone (TRH) induced growth hormone (GH) rise; 2) the competence of luteinizing-hormone releasing hormone (LH-RH) to release GH; 3) the non-specific releasing effect of TRH and LH-RH on other anterior pituitary (AP) hormones. In 6 patients, infusion of somatostatin (100 micrograms iv bolus + 375 micrograms i.v. infusion) completely abolished the TRH (400 micrograms i.v.)-induced GH rise; in none of 12 patients, of whom 7 were GH-responders to TRH, did LH-RH (100 micrograms i.v.) cause release of GH; 4) finally, LH-RH (12 patients) did not increase plasma prolactin (PRL) and TRH (7 patients) did not evoke a non-specific release of gonadotropins. It is concluded that: 1) abnormal GH-responsiveness to TRH is the unique alteration in AP responsiveness to hypothalamic hormones present in liver cirrhosis; 2) the mechanism(s) subserving the altered GH response to TRH is different from that underlying the TRH-induced GH rise present in another pathologic state i.e. acromegaly, a condition in which the effect of TRH escapes somatostatin suppression and LH-RH evokes GH and PRL release.  相似文献   

10.
1. The intravenous (i.v.) infusion of somatostatin (SRIF, 1.0 microgram/kg per min) promptly (within 5 min) reduced the growth hormone (GH) concentration in the plasma of conscious adult chickens. 2. The GH concentration progressively declined throughout a 60-min period of SRIF infusion, but was dramatically increased above pre-infusion levels within 5 min of SRIF withdrawal and maintained at an elevated level for at least 30 min afterwards. 3. Sodium pentobarbitone-anaesthesia lowered the basal GH concentration to levels comparable with those in conscious birds infused with SRIF. When administered to anaesthetized birds, exogenous SRIF was unable to further reduce the GH concentration and unable to induce 'rebound' GH release. 4. While thyrotropin releasing hormone (TRH, 10 micrograms/kg) increased the GH concentration in both conscious and anaesthetized birds, only the GH response in the anaesthetized birds was diminished by SRIF infusion. 5. Rebound GH secretion following the termination of SRIF infusion was observed in both conscious and anaesthetized birds injected with TRH. 6. These results demonstrate that SRIF can inhibit basal and TRH-stimulated GH secretion in adult domestic fowl and indicate that anaesthesia disrupts the normal control of GH releases.  相似文献   

11.
The aim of the study was to analyze 14 consecutive patients with active acromegaly who had not undergone any therapy, the dose response of growth hormone (GH) to thyrotropin-releasing hormone (TRH), the existence of reproducibility of such response as well as to rule out the possibility of spontaneous fluctuations of GH which would mimic this response. On several nonconsecutive days, we investigated the GH response to saline serum, 100, 200 (twice) and 400 micrograms of TRH administration. We also studied both basal serum prolactin, serum prolactin after TRH administration and thyrotropin values. Our results show an absence of GH response after saline serum infusion, whereas after TRH doses, 36.3 42.8 and 45.4% positive responses were obtained, respectively. All GH responders were concordant to the different doses administered. The mean of GH concentrations of the different doses at different times did not reach significant differences. The response to the administration of the same dose brought about a significative increase, although it was not identical. It demonstrated a progressive increase of the area under the response curve, as did the means of increments after each TRH administration, albeit without reaching statistical significance. Between the GH-responding and GH-nonresponding groups there were no differences in either basal serum prolactin or serum prolactin and thyroid-stimulating hormone levels after TRH stimulation. The present study clearly shows that TRH elicits serum GH release from GH-secreting pituitary tumors. The response was reproducible in qualitative terms rather than quantitative, and no dose-response relationship was found between the TRH concentrations and the amounts of GH secreted.  相似文献   

12.
The effect of thyrotrophin releasing hormone (TRH) or human pancreatic growth hormone releasing factor (hpGRF) on growth hormone (GH) release was studied in both dwarf and normal Rhode Island Red chickens with a similar genotype except for a sex-linked dw gene. Both TRH (10 micrograms/kg) and hpGRF (20 micrograms/kg) injections stimulated plasma GH release within 15 min in young and adult chickens. The increase in GH release was higher in young cockerels than that in adult chickens. The age-related decline in the response to TRH stimulation was observed in both strains, while hpGRF was a still potent GH-releaser in adult chickens. The maximal and long acting response was observed in young dwarf chickens, suggesting differences in GH pools releasable by TRH and GRF in the anterior pituitary gland. The pituitary gland was stimulated directly by perifusion with hpGRF (1 microgram/ml and 10 micrograms/ml) or TRH (1 microgram/ml). Repeated perifusion of GRF at 40 min intervals blunted further increase in GH release, but successive perifusion with TRH stimulated GH release. The results suggest the possibility that desensitization to the effects of hpGRF occurs in vitro and that the extent of response depends on the number of receptors for hpGRF or TRH and/or the amount of GH stored in the pituitary gland.  相似文献   

13.
Two of 7 patients with acromegaly and one of 7 normal subjects exhibited a paradoxical rise in growth hormone (GH) to human corticotropin-releasing hormone (CRH) when pretreated with metoclopramide, although CRH alone did not induce an increase in GH. In one of these two patients with acromegaly, the GH increase to metoclopramide alone also reached the criteria of a paradoxical response. These two acromegalic patients showed a GH increase to metoclopramide pretreatment before and up to two months after surgery. In another acromegalic patient, whose GH level remained high 5 months after surgery, metoclopramide induced an increase in GH level, while in a patient who had an above-normal GH level 18 months after surgery, the resumption of physiological GH secretion after surgery was evidenced by a postoperative absence of a GH response to metoclopramide. It is suggested from these results that the GH response to metoclopramide and the metoclopramide-provoked GH response to CRH in patients with acromegaly result from the secretion of GH from nonadenomatous cells of the pituitary.  相似文献   

14.
In order to investigate the degree of pituitary reserve of TSH secretion and the fluctuation of thyroid function in children with chronic lymphocytic thyroiditis, TSH response to TRH was examined in 42 patients, and the thyroid function was carefully followed up in two patients retrospectively and in four prospectively. Increased basal TSH levels were revealed in seven patients (16.8%), and an exaggerated response of TSH to TRH loading in 15 (35.8%). We retrospectively observed spontaneous recovery of thyroid function in two cases. In one of them, two episodes of a transient decrease in thyroid function over a period of several years were noted. Prospectively, low normal T4, elevated TSH and normal T3 were detected in two cases at the first visit. Thereafter, TSH levels decreased to the normal range and the exaggerated response of TSH to TRH became normal. In two other cases, typical transient hypothyroidism occurred during the observation period. These fluctuations lasted for only a few months, and concomitant changes in the size of the thyroid gland were observed. No signs or symptoms suggesting viral infection were noted during the study period. Nor were changes in titers of thyroid auto-antibodies detected. These results show that the secretion of TSH is exaggerated and the thyroid function is decreased in adolescents with chronic lymphocytic thyroiditis, but the thyroid function may fluctuate from euthyroid to hypothyroid within a short period. The causes of these changes, especially of the transient hypothyroidism remain to be classified.  相似文献   

15.
It is known that some acromegalic patients exhibited a paradoxical release of growth hormone (GH) after glucose administration. We have attempted to investigate a relationship between the paradoxical GH secretion with the abnormal glucose tolerance test present in some cases of acromegaly. We also studied the inappropriate increase in GH levels following thyrotropin releasing hormone (TRH) injection which is present in some acromegalics. We found that only those patients who had an abnormal glucose tolerance test exhibited simultaneously, the paradoxical release of GH, moreover, the same patients showed GH release following TRH administration. This observation suggests that some acromegalics have an abnormality in their hypothalamic glucose receptor and such abnormality is associated with abnormal GH secretion when TRH is administered. On basis of these findings it is suggested that the hypothalamus may play an important role in the pathogenesis of acromegaly in these cases.  相似文献   

16.
We report the effectiveness of bromocriptine therapy in resolving the abnormal responses of plasma FSH and LH to TRH in a 70-year-old male with FSH-secreting pituitary macroadenoma who had unsuccessful transsphenoidal pituitary surgery. In the pre-treatment and post-operative periods, respectively, basal plasma levels of FSH were increased to 88.7 and 65.6 mIU/ml (normal range; 8.5-32.4) but those of plasma LH were normal being 7.0 and 4.1 mIU/ml; (normal range; 4.1 to 14.0). The responses of plasma FSH and LH to LHRH were exaggerated and their paradoxical responses to TRH were highly suggested. During the bromocriptine therapy, the basal level of plasma FSH was normalized and that of plasma LH remained normal. The magnitude of FSH and LH responses to LHRH decreased and their paradoxical responses to TRH were completely resolved.  相似文献   

17.
A study was carried out in 10 patients with multiple pituitary hormone deficiencies to determine the response of thyroid-stimulating hormone (TSH) and prolactin (PRL) to thyrotropin-releasing hormone (TRH) and their suppressibility by treatment with triiodothyronine (T3) given at a dose of 60 microgram/day for 1 week. In 3 patients the basal tsh values were normal and in 7 patients, 2 of whom had not received regular thyroid replacement therapy, they were elevated. The response of TSH to TRH was normal in 6 patients and exaggerated in 4 (of these, 1 patient had not received previous substitution therapy and 2 had received only irregular treatment). The basal and stimulated levels of TSH were markedly suppressed by the treatment with T3. The basal PRL levels were normal in 7 and slightly elevated in 3 patients. The response of PRL to TRH stimulation was exaggerated in 2, normal in 6 and absent in 2 patients. The basal PRL levels were not suppressible by T3 treatment but in 4 patients this treatment reduced the PRL response to TRH stimulation. From these findings the following conclusions are drawn: (1) T3 suppresses TSH at the pituitary level, and (2) the hyperreactivity of TSH to TRH and the low set point of suppressibility are probably due to a lack of TRH in the type of patients studied.  相似文献   

18.
The effects of synthetic somatostatin (SRIF) on serum growth hormone (GH) concentrations stimulated by exogenous administration of synthetic thyrotropin-releasing hormone (TRH) and/or human pancreatic GH-releasing factor (hpGRF) were investigated in 4-week-old cockerels. In addition, the additive effects of TRH and hpGRF on serum GH were examined. TRH and hpGRF, when given in combination intravenously, produced an additive effect on serum GH concentration that peaked 10 min after the injection. The somatostatin did not significantly affect basal GH concentrations when given alone, but did significantly decrease the magnitude of the GH response to hpGRF. In contrast, SRIF did not significantly decrease the stimulatory effects of TRH on GH release. These results suggest that TRH and hpGRF are potent GH releasers in vivo and that their stimulating effects on GH release are additive, suggesting different mechanisms for their stimulation. The results obtained from the combination studies suggest that the main site of the stimulatory action of hpGRF is at the pituitary, and that SRIF significantly inhibited the rise in serum GH induced by a synthetic hpGRF, but not that induced by TRH.  相似文献   

19.
Thyrotropin releasing hormone (TRH) causes phosphatidylinositol bisphosphate hydrolysis to form inositol trisphosphate and diacylglycerol. Since diacylglycerol activates protein kinase C (Ca2+/phospholipid-dependent enzyme), this enzyme may be involved in mediating the physiological response to TRH. Activation of protein kinase C leads to phosphorylation of receptors for epidermal growth factor (EGF) and decreased EGF affinity. The present study examined the effect of TRH on EGF binding to intact GH4C1 rat pituitary tumor cells to test whether TRH activates protein kinase C. Cells were incubated with TRH at 37 degrees C and specific 125I-EGF binding was then measured at 4 degrees C. 125I-EGF binding was decreased by a 10-min treatment with 0.1-100 nM TRH to 30-40% of control in a dose-dependent manner. 125I-EGF binding was not altered if cells were incubated at 4 degrees C, although TRH receptors were saturated or in a variant pituitary cell line without TRH receptors. TRH (10 min at 37 degrees C) decreased EGF receptor affinity but caused little change in receptor density, 125I-EGF internalization, or degradation. When cells were incubated continuously with TRH, there was a recovery of 125I-EGF binding after 24 h. Incubation with the protein kinase C activating phorbol ester TPA caused an immediate (less than 10 min) profound (greater than 85%) decrease in 125I-EGF binding followed by partial recovery at 24 h. Maximally effective doses of TRH and TPA decreased EGF receptor affinity with half-times of 3 min. EGF treatment (5 min) caused an increase in the tyrosine phosphate content of several proteins; prior incubation with TRH resulted in a small decline in the EGF response. GH4C1 cells were incubated with 500 nM TPA for 24 h in order to down-regulate protein kinase C. Protein kinase C depletion was confirmed by immunoblots and the effects of TRH and TPA on 125I-EGF binding were tested. TRH and TPA were both much less effective in cells pretreated with phorbol esters. TRH increased cytoplasmic pH measured with an intracellularly trapped pH sensitive dye after mild acidification with nigericin. This TRH response is presumed to be the result of protein kinase C-mediated activation of the amiloride-sensitive Na+/H+ exchanger and was blunted in protein kinase C-depleted cells. All of these results are consistent with the view that TRH acts rapidly in the intact cell to activate protein kinase C and that a consequence of this activation is EGF receptor phosphorylation and Na+/H+ exchanger activation.  相似文献   

20.
Different attempts were made to identify the variables that may be involved in the clinical course of cerebrovascular ischemia. In the case of stroke with mild severity (SMS), the clinical significance of neuroendocrine changes as well as of post-stroke depression (PSD) remains unknown. We therefore evaluated the presence of neuroendocrine changes in the acute and post-acute phase of SMS, and their potential role during convalescence. Serum cortisol, T4, T3, FT4, FT3, TSH and PRL levels were measured in 17 euthyroid patients with stroke on admission (day 1), following morning (day 2), 7 days and 3 months later. TSH and PRL secretion after TRH test were measured. Stroke severity on admission was determined by Scandinavian Stroke Scale (SSS). Montgomery-Asberg Depression Rating Scale (Madrs) was used for assessment of post-stroke depression. On admission, TSH and T3, were within normal limits and were greater compared to values on day 2. Lower basal TSH and decreased TSH response to TRH on day 2, were associated with stroke of greater severity. Delta-PRL after TRH on day 2 was higher in patients who develop PSD. Changes in serum thyroid hormones in SMS, reflects those of non-thyroidal illness. A mild stimulation of hypothalamic-pituitary-adrenal axis was detected. We provide evidence that PRL response to TRH, in the acute phase of stroke may be used as an index for early detection of PSD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号