首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial biofilms cause the deterioration of polymeric coatings such as polyurethanes (PUs). In many cases, microbes have been shown to use the PU as a nutrient source. The interaction between biofilms and nutritive substrata is complex, since both the medium and the substratum can provide nutrients that affect biofilm formation and biodeterioration. Historically, studies of PU biodeterioration have monitored the planktonic cells in the medium surrounding the material, not the biofilm. This study monitored planktonic and biofilm cell counts, and biofilm morphology, in long-term growth experiments conducted with Pseudomonas fluorescens under different nutrient conditions. Nutrients affected planktonic and biofilm cell numbers differently, and neither was representative of the system as a whole. Microscopic examination of the biofilm revealed the presence of intracellular storage granules in biofilms grown in M9 but not yeast extract salts medium. These granules are indicative of nutrient limitation and/or entry into stationary phase, which may impact the biodegradative capability of the biofilm.  相似文献   

2.
Biofilms are sessile microbial aggregates on the interfaces, and they were usually considered as microbial contamination sources in medical care and various industries. We studied the control and application of biofilms formed by food-related microorganisms, and mechanism of the biofilm formation was also investigated. We studied the biofilm formation in mixed cultures using various combinations of two strains of food-related microorganisms. There were various microorganisms that showed decreased or increased biofilm formation in the mixed culture in comparison with that in a single culture. Biofilm formed by lactic acid bacteria and yeast isolated from traditional fermented food, Fukuyama pot vinegar, exhibited unique feature in that structure and formation mechanism, and expected to be used as an immobilized microorganism in fermentation production. Here our studies on the control and application of biofilms and the mechanisms of its formation were described.  相似文献   

3.
Biofilms are a preferred mode of survival for many microorganisms including Vibrio cholerae, the causative agent of the severe secretory diarrhoeal disease cholera. The ability of the facultative human pathogen V. cholerae to form biofilms is a key factor for persistence in aquatic ecosystems and biofilms act as a source for new outbreaks. Thus, a better understanding of biofilm formation and transmission of V. cholerae is an important target to control the disease. So far the Vibrio exopolysaccharide was the only known constituent of the biofilm matrix. In this study we identify and characterize extracellular DNA as a component of the Vibrio biofilm matrix. Furthermore, we show that extracellular DNA is modulated and controlled by the two extracellular nucleases Dns and Xds. Our results indicate that extracellular DNA and the extracellular nucleases are involved in diverse processes including the development of a typical biofilm architecture, nutrient acquisition, detachment from biofilms and the colonization fitness of biofilm clumps after ingestion by the host. This study provides new insights into biofilm development and transmission of biofilm-derived V. cholerae.  相似文献   

4.
Catharanthus roseus cells producing indole alkaloids were grown in the form of a biofilm. Production medium was circulated through the reactor parallel to the upper surface of the horizontal biofilm. Sugar consumption and indole alkaloid formation were followed to compare the performance of cultures with different biofilm thicknesses. Dissolved oxygen concentrations gradients within the biofilms were determined at the end of each run. RNA and protein content of the cells in the upper and lower layers of the the biofilms were compared. Results obtained in the biofilm experiments were compared to those obtained with suspension cultures. At optimized biofilm thicknesses, the biofilm reactor was more effective than suspension cultures in maximizing indole alkaloid titers. This is thought to be due to better cell-cell contact within the biofilm and nutrient concentration gradients, which resulted in low growth rates.  相似文献   

5.
Prieto B  Silva B  Aira N  Laiz L 《Biofouling》2005,21(5-6):237-246
In the present study the induction of biofilms on the open rock faces of quartz quarries is reported as a feasible method of correcting the visual impact generated by the industry. Experiments were carried out to colonize quartz samples with microorganisms isolated directly from aged quarry faces. The results demonstrated the viability of inducing colonisation on quartz, which is not the most favourable material for such treatment. Furthermore, biofilm development caused a significant change in the colour of the surface of the quartz samples to greenish- or reddish yellow, which may be quantified by a colorimeter for solids. The notable change in the colour is sufficient to attenuate the bright white aspect of the quartz faces and therefore to correct the visual impact generated.  相似文献   

6.

Exopolymers have been associated with the initial adhesion of bacteria, which is the primary step for biofilm formation. Moreover, the polymeric matrix of biofilms has a considerable influence on some of the most important physical and physiological properties of biofilms. The role of extracellular polymers in biofilm formation was studied using three mutants of Sphingomonas paucimobilis with increasing capabilities for exopolymer production. The physical, biochemical and physiological properties of three different layers of each biofilm were determined. The layers were detached by submitting the biofilm to increasing shear stress. The results revealed that the presence of exopolymers in the growth medium was essential for biofilm formation. The mutant producing the highest amount of exopolymer formed very thick biofilms, while the biofilms formed by the medium exopolymer producer were on average 8 times thinner. The lowest exopolymer producer did not form biofilm. In both types of biofilms, exopolymer density increased with depth, although this tendency was more significant in thinner biofilms. Cell distribution was also more heterogeneous in thinner biofilms, exhibiting a greater accumulation of cells in the inner layers. The thicker biofilms had very low activity in the inner layer. This was related to a high accumulation of proteins and DNA in this layer due to cell lysis and hydrolytic activity. Activity in the thin biofilm was constant throughout its depth, suggesting that there was no nutrient limitation. The production of exopolymers by each cell was constant throughout the depth of the biofilms, although it was greater in the case of the higher producer.  相似文献   

7.
Abstract

The persistence of microorganisms as biofilms on dry surfaces resistant to the usual terminal cleaning methods may pose an additional risk of transmission of infections. In this study, the Centre for Disease Control (CDC) dry biofilm model (DBM) was adapted into a microtiter plate format (Model 1) and replicated to create a novel in vitro model that replicates conditions commonly encountered in the healthcare environment (Model 2). Biofilms of Staphylococcus aureus grown in the two models were comparable to the biofilms of the CDC DBM in terms of recovered log10 CFU well?1. Assessment of the antimicrobial tolerance of biofilms grown in the two models showed Model 2 a better model for biofilm formation. Confirmation of the biofilms’ phenotype with an extracellular matrix deficient S. aureus suggested stress tolerance through a non-matrix defined mechanism in microorganisms. This study highlights the importance of conditions maintained in bacterial growth as they affect biofilm phenotype and behaviour.  相似文献   

8.
The discovery that biofilms are ubiquitous among the epiphytic microflora of leaves has prompted research about the impact of biofilms on the ecology of epiphytic microorganisms and on the efficiency of strategies to manage these populations for disease control and to ensure food safety. Biofilms are likely to influence the microenvironment and phenotype of the microorganisms they harbor. However, it is also important to determine whether there are differences in the types of bacteria within biofilms compared to those outside of biofilms so as to better target microorganisms via disease control strategies. Broad-leaved endive (Cichorium endivia var. latifolia) harbors biofilms containing fluorescent pseudomonads. These bacteria can cause considerable post-harvest losses when this plant is used for manufacturing minimally processed salads. To determine whether the population structure of the fluorescent pseudomonads in biofilms is different from that outside of biofilms on the same leaves, bacteria were isolated quantitatively from the biofilm and solitary components of the epiphytic population on leaves of field-grown broad-leaved endive. Population structure was determined in terms of taxonomic identities of the bacteria isolated, in terms of genotypic profiles, and in terms of phenotypic traits related to surface colonization and biofilm formation. The results illustrate that there are no systematic differences in the composition and structure of biofilm and solitary populations of fluorescent pseudomonads, in terms of either genotypic profiles or phenotypic profiles of the strains. However, Gram-positive bacteria tended to occur more frequently within biofilms than outside of biofilms. We suggest that leaf colonization by fluorescent pseudomonads involves a flux of cells between biofilm and solitary states. This would allow bacteria to exploit the advantages of these two types of existence; biofilms would favor resistance to stressful conditions, whereas solitary cells could foster spread of bacteria to newly colonizable sites on leaves as environmental conditions fluctuate.  相似文献   

9.
We describe here a role for quorum sensing in the detachment, or sloughing, of Serratia marcescens filamentous biofilms, and we show that nutrient conditions affect the biofilm morphotype. Under reduced carbon or nitrogen conditions, S. marcescens formed a classical biofilm consisting of microcolonies. The filamentous biofilm could be converted to a microcolony-type biofilm by switching the medium after establishment of the biofilm. Similarly, when initially grown as a microcolony biofilm, S. marcescens could be converted back to a filamentous biofilm by increasing the nutrient composition. Under high-nutrient conditions, an N-acyl homoserine lactone quorum-sensing mutant formed biofilms that were indistinguishable from the wild-type biofilms. Similarly, other quorum-sensing-dependent behaviors, such as swarming motility, could be rendered quorum sensing independent by manipulating the growth medium. Quorum sensing was also found to be involved in the sloughing of the filamentous biofilm. The biofilm formed by the bacterium consistently sloughed from the substratum after approximately 75 to 80 h of development. The quorum-sensing mutant, when supplemented with exogenous signal, formed a wild-type filamentous biofilm and sloughed at the same time as the wild type, and this was independent of surfactant production. When we removed the signal from the quorum-sensing mutant prior to the time of sloughing, the biofilm did not undergo significant detachment. Together, the data suggest that biofilm formation by S. marcescens is a dynamic process that is controlled by both nutrient cues and the quorum-sensing system.  相似文献   

10.
Biofilm could be defined as a complex communities of microorganisms seen affixed to surfaces, they form clusters without sticking to any surface and buried firmly in an extracellular matrix (ECM). This matrix is formed by microorganisms in the formation of either extracellular polymeric substances (EPSS) or extracellular polymer. Many reviews have addressed the negative consequences of biofilm production in the food industry, among which we talk about biofilms being responsible for spoilage microorganisms and foodborne pathogens such as Listeria monocytogenes, Bacillus cereus etc. These contamination could be linked to biofilms presence in the processing plant. Although researches have tried conferring solutions to these challenges in the food industry, however, in this review we have tried to focus on the positive impact of biofilms formed in the food industry. It is critically expedient while trying to find the solution to the challenges of biofilm in the food industry to develop and give a major focus on the advantages and positive impact biofilm has in the food industry, which has been greatly neglected. Hence in this article, we have highlighted some positive impacts of biofilms formed in the food industry, like enhancing plant health and productivity of food products, as an agent of water and wastewater treatment in the food industry, as a tool in reducing the amount of excess sludge in the wastewater treatment plant. The development of edible biofilms, fermented food products and the production of biodegradable food packaging are also part of biofilms beneficial roles in the food industries.  相似文献   

11.
AIMS: To assess the abilities of 105 avian pathogenic Escherichia coli (APEC) and 103 avian faecal commensal E. coli (AFEC) to form biofilms on a plastic surface and to investigate the possible association of biofilm formation with the phylotype of these isolates. METHODS AND RESULTS: Biofilm production was assessed in 96-well microtitre plates using three different media, namely, M63 minimal medium supplemented with glucose and casamino acids, brain-heart infusion broth, and diluted tryptic soy broth. Avian E. coli are highly variable in their ability to form biofilms. In fact, no strain produced a strong biofilm in all three types of media; however, most (75.7% AFEC and 55.2% APEC) were able to form a moderate or strong biofilm in at least one medium. Biofilm formation in APEC seems to be mostly limited to nutrient deplete media; whereas, AFEC are able to form biofilms in both nutrient deplete and replete media. Also, biofilm formation in E. coli from phylogenetic groups B2, D and B1 was induced by nutrient deplete conditions; whereas, biofilm formation by members of phylogenetic group A was strongest in a rich medium. CONCLUSIONS: Biofilm formation by APEC and phylotypes B2, D and B1 is induced by nutrient deplete conditions, while AFEC are able to form biofilms in both nutrient rich and deplete media. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to investigate biofilm formation by a large sample of avian E. coli isolates, and it provides insight into the conditions that induce biofilm formation in relation to the source (APEC or AFEC) and phylogenetic group (A, B1, B2 and D) of an isolate.  相似文献   

12.
B. Prieto  B. Silva  N. Aira  L. Laiz 《Biofouling》2013,29(5-6):237-246
Abstract

In the present study the induction of biofilms on the open rock faces of quartz quarries is reported as a feasible method of correcting the visual impact generated by the industry. Experiments were carried out to colonize quartz samples with microorganisms isolated directly from aged quarry faces. The results demonstrated the viability of inducing colonisation on quartz, which is not the most favourable material for such treatment. Furthermore, biofilm development caused a significant change in the colour of the surface of the quartz samples to greenish- or reddish yellow, which may be quantified by a colorimeter for solids. The notable change in the colour is sufficient to attenuate the bright white aspect of the quartz faces and therefore to correct the visual impact generated.  相似文献   

13.
14.
A number of halotolerant and halophilic bacterial strains were isolated from the Romashkinskoe oil field (Tatarstan) stratal waters having a salinity of up to 100 g/l. The isolation of pure cultures involved biofilm reconstitution on M9 medium with paraffins. The associations obtained were dispersed and reinoculated onto solid media that contained either peptone and yeast extract (PY medium) or paraffins. It was shown that such associations included both oil-oxidizing bacteria and accompanying chemoheterotrophic bacteria incapable of oil oxidation. The pure cultures that were isolated were used for creating binary biofilms. In these biofilms, interactions between halophilic and nonhalophilic bacteria under hypo-and hyperosmotic shocks were investigated. We conducted a detailed study of a biofilm obtained from an oil-oxidizing halotolerant species (with an upper growth limit of 10–12% NaCl) identified as Dietzia sp. and an extremely halophilic gram-negative bacterium (growing within the 5–20% NaCl concentration range) of the genus Chromohalobacter that did not oxidize paraffins. If these microorganisms were grown in a mixed suspension (planktonic) culture that was not supplemented with an additional amount of NaCl, no viable cells of the halophilic microorganism were detected after reinoculation. In contrast, only halophilic cells were detected at a NaCl concentration of 15%. Thus, no mutual protective influence of the microorganisms manifested itself in suspension culture, either under hypoor under hyperosmotic shock. Neither could halophile cells be detected after reinoculating a biofilm obtained on a peptone medium without the addition of NaCl. However, biofilms produced at a NaCl concentration of 15% contained approximately equal numbers of cells of the halophilic and halotolerant organisms. Thus, the halophile in biofilms sustaining a hyperosmotic shock exerts a protective influence on the halotolerant microorganism. Preliminary data suggest that this effect is due to release by the halophile of osmoprotective substances (ectoine and glutamate), which are taken up by the halotolerant species. Such substances are diluted by a large medium volume in suspension cultures, whereas, in biofilms, their diffusion into the medium is apparently hampered by their interaction with the intercellular polymer matrix.  相似文献   

15.
The formation of biofilms in a waste paper medium was studied in a pilot plant by analysing the redox potential in the biofilm. Miniaturised redox electrodes were applied at the reactor wall/biofilm phase boundary. With this measurement set-up, it was possible to demonstrate the effectiveness of biocides and thus to avoid under- and over-doses with these agents. The redox signals measured were correlated with reference methods, such as colony-forming units and dehydrogenase activity.  相似文献   

16.
Bacteria in nature often live within biofilms, exopolymeric matrices that provide a favorable environment that can differ markedly from their surroundings. Biofilms have been found growing on mineral surfaces and are expected to play a role in weathering those surfaces, but a clear understanding of how environmental factors, such as trace‐nutrient limitation, influence this role is lacking. Here, we examine biofilm development by Pseudomonas putida in media either deficient or sufficient in Fe during growth on biotite, an Fe rich mineral, or on glass. We hypothesized that the bacteria would respond to Fe deficiency by enhancing biotite dissolution and by the formation of binding sites to inhibit Fe leaching from the system. Glass coupons acted as a no‐Fe control to investigate whether biofilm response depended on the presence of Fe in the supporting solid. Biofilms grown on biotite, as compared to glass, had significantly greater biofilm biomass, specific numbers of viable cells (SNVC), and biofilm cation concentrations of K, Mg, and Fe, and these differences were greater when Fe was deficient in the medium. Scanning electron microscopy (SEM) confirmed that biofilm growth altered the biotite surface, smoothing the rough, jagged edges of channels scratched by hand on the biotite, and dissolving away small, easy‐to‐access particles scattered across the planar surface. High‐resolution magic angle spinning proton nuclear magnetic resonance (HRMAS 1H NMR) spectroscopy showed that, in the Fe‐deficient medium, the relative amount of polysaccharide nearly doubled relative to that in biofilms grown in the medium amended with Fe. The results imply that the bacteria responded to the Fe deficiency by obtaining Fe from biotite and used the biofilm matrix to enhance weathering and as a sink for released cation nutrients. These results demonstrate one mechanism by which biofilms may help soil microbes overcome nutrient deficiencies in oligotrophic systems.  相似文献   

17.
Attachment of Shiga toxigenic Escherichia coli (STEC) to surfaces and the formation of biofilms may enhance persistence in a food processing environment and present a risk of contaminating products. Seven strains of STEC and three non-STEC strains were selected to compare two biofilm quantification methods; epifluorescence microscopy on stainless steel (SS) and a microtitre plate assay. The influence of prior growth in planktonic (nutrient broth) and sessile (nutrient agar) culture on biofilm production, as well as expression of surface structures and the possession of antigen 43 (encoded by agn43) on biofilm formation were also investigated. Biofilms were produced in diluted nutrient broth at 25 degrees C for 24 and 48 h. Curli expression was determined using congo red indicator agar, while the presence of agn43 was determined using polymerase chain reaction. No correlation was found between counts for epifluorescence microscopy on SS and the absorbance values obtained with the microtitre plate method for planktonic and sessile grown cultures. Different abilities of individual STEC strains to attach to SS and microtitre plates were found with some strains attaching better to each surface following growth in either planktonic or sessile culture. All O157 STEC strains had low biofilm counts on SS for planktonic and sessile grown cultures; however, one STEC O157:H- strain (EC516) had significantly greater (p<0.05) biofilm production on microtitre plates compared to the other O157 STEC strains. EC516 and other STEC (O174:H21 and O91:H21) strains expressing curli fimbriae were found to produce significantly greater (p<0.05) biofilms on microtitre plates compared to the non-curli expressing strains. No relationship was found between the production of type-I fimbriae, motility, agn43 and bacterial physicochemical properties (previously determined) and biofilm formation on SS or microtitre plates. Variations between the two biofilm determination methods may suggest that the biofilm production on microtitre plates may not be appropriate to represent other surfaces such as SS and that caution should be taken when selecting a method to quantify biofilm production on a surface.  相似文献   

18.
Biofilms were cultivated on polycarbonate strips in rotating annular reactors using South Saskatchewan River water during the fall of 1999 and the fall of 2001. The reactors were supplemented with carbon (glucose), nitrogen (NH(4)Cl), phosphorus (KH(2)PO(4)), or combined nutrients (CNP), with or without hexadecane. The impact of these treatments on nitrification and on the exopolysaccharide composition of river biofilms was determined. The results showed that the biofilms had higher NH4(+) oxidation, NO3(-) production, and N2O production activities in fall 1999 than fall 2001 when grown with CNP but had higher activities in fall 2001 than fall 1999 when grown with individual nutrients. The exopolysaccharide amounts and proportions were generally higher in fall 1999 than fall 2001, as a consequence of the higher nutrient levels in the river water in the first year of this study. The addition of P and especially CNP stimulated NH4(+) oxidation by the biofilms, showing a P limitation in this river ecosystem. The presence of hexadecane negatively affected these activities and lowered the amounts of exopolysaccharides in CNP and P biofilms in fall 1999 but increased the biofilm activities and exopolysaccharide amounts in CNP biofilm in fall 2001. Antagonistic, synergistic, and independent effects between nutrients and hexadecane were also observed. This study demonstrated that the biofilm autotrophic nitrification activity in the South Saskatchewan River was limited by P, that this activity and the exopolysaccharide amounts and proportions were dependent on the nutrient concentrations in the river water, and suggested that exopolysaccharides may play a protective role for biofilm microorganisms against toxic pollutants.  相似文献   

19.
20.
Single-species microbial biofilm screening for industrial applications   总被引:2,自引:0,他引:2  
While natural microbial biofilms often consist of multiple species, single-species biofilms are of great interest to biotechnology. The current study evaluates biofilm formation for common industrial and laboratory microorganisms. A total of 68 species of biosafety level one bacteria and yeasts from over 40 different genera and five phyla were screened by growing them in microtiter plates and estimating attached biomass by crystal violet staining. Most organisms showed biofilm formation on surfaces of polystyrene within 24 h. By changing a few simple conditions such as substratum characteristics, inoculum and nutrient availability, 66 strains (97%) demonstrated biofilm formation under at least one of the experimental conditions and over half of these strains were classified as strong biofilm formers, potentially suitable as catalysts in biofilm applications. Many non-motile bacteria were also strong biofilm formers. Biofilm morphologies were visualized for selected strains. A model organism, Zymomonas mobilis, easily established itself as a biofilm on various reactor packing materials, including stainless steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号