首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine 3′,5′-monophosphate (cAMP) is a chemoattractant in Dictyostelium discoideum; it also induces phosphodiesterase activity. Recently it was shown (M. H. Juliani, J. Brusca, and C. Klein, (1981)Develop. Biol.83, 114–121) that N6-(aminohexyl)adenosine 3′,5′-monophosphate (hexyl-cAMP) effectively induced phosphodiesterase activity, while this compound was chemotactically inactive and did not effectively bind to the cell surface receptor for cAMP. It was suggested that hexyl-cAMP and cAMP induce phosphodiesterase activity via a chemoreceptor-independent mechanism. In another recent report (P. J. M. Van Haastert, R. C. Van der Meer, and T. M. Konijn (1981)J. Bacteriol.147, 170–175) investigation of induction of phosphodiesterase by several cAMP derivatives revealed that phosphodiesterase induction and chemotaxis had similar cyclic nucleotide specificity. Based on this result it was suggested that cAMP induces phosphodiesterase activity via activation of the chemotactic receptor. In this report we show that hexyl-cAMP transiently inhibits extracellular and cell surface phosphodiesterase. This transient inhibition of the inactivating enzyme and the permanent release of small amounts of cAMP by the cells leads to a transient increase of extracellular cAMP levels. Hexyl-cAMP does not inhibit beef heart phosphodiesterase, and is not degraded by this enzyme. Addition of hexyl-cAMP to a cell suspension containing beef heart phosphodiesterase does not result in an accumulation of extracellular cAMP, and phosphodiesterase induction is absent. We conclude that hexyl-cAMP inhibits phosphodiesterase activity which leads to the accumulation of cAMP; consequently cAMP binds to the chemotactic cAMP receptor resulting in the induction of phosphodiesterase activity.  相似文献   

2.
The effects of tunicamycin on protein glycosylation and cell differentiation were examined during early development of Dictyostelium discoideum. Tunicamycin inhibited cell growth reversibly in liquid medium. At a concentration of 3 μg/ml, tunicamycin completely inhibited morphogenesis and cell differentiation in developing cells. These cells remained as a smooth lawn and failed to undergo chemotactic migration. The expression of EDTA-resistant contact sites was also inhibited. The inhibition by tunicamycin was reversible if cells were washed free of the drug within the first 10 hr of incubation. After 12 hr of development, cells were protected from the drug by the sheath. When cells were treated with tunicamycin during the first 10 hr of development, incorporation of [3H]mannose and [3H] fucose was inhibited by approximately 75% within 45 min while no significant inhibition of [3H]leucine incorporation was observed during the initial 3 hr of drug treatment. The inhibition of protein glycosylation was further evidenced by the reduction in number of glycoproteins “stained” with 125I-labelled con A. A number of developmentally regulated high-molecular-weight glycoproteins, including the contact site A glycoprotein (gp80), were undetectable when cells were labelled with [3H]fucose in the presence of tunicamycin. It is therefore evident that glycoproteins with N-glycosidically linked carbohydrate moieties may play a crucial role in intercellular cohesiveness and early development of D. discoideum.  相似文献   

3.
We have previously reported the detection of cAMP waves within monolayers of aggregating Dictyostelium discoideum cells (K. J. Tomchik and P.N. Devreotes, 1981, Science 212, 443-446). The computer-assisted analysis presented here of the fluorographic images of the cAMP waves reveals (1) all the waves have a consistent width and height; (2) cAMP concentrations within centers of concentric aggregation territories oscillate periodically while at spiral centers the concentration builds up to a plateau value within 2 mm; (3) cells within the region of intersection of two oppositely directed cAMP waves are stimulated to produce more cAMP than those responding to a single wave; (4) cells start to move when the cAMP level begins to increase and cease movement when the peak cAMP concentration reaches the cell.  相似文献   

4.
Using a perfusion technique (P.N. Devreotes, P.L. Derstine, and T.L. Steck, 1979, J. Cell Biol. 80, 291-299), it has been shown that cAMP secretion by aggregation-competent cells in response to an exogenous cAMP signal is significantly reduced by exposure to NH4Cl or any of a set of carboxylic acids that includes propionate, succinate, pyruvate, and acetate. The effects of NH4Cl and any of the carboxylic acids are additive and the combinations restrict cAMP secretion to barely detectable or insignificant levels. The inhibitions are rapidly expressed, and are reversible. The activity of NH4Cl is marked at pH 7.2 and undetectable at pH 6.2. Hence, NH3 is presumably the active molecular species. Propionate activity is significantly greater at pH 6.2 than 7.2, indicating that the un-ionized acid is the active species. The data presented herein indicate that these effects are exerted via two separate and independent routes. During exposure of cAMP-stimulated cells to NH4Cl, the decrease in intracellular cAMP accumulation was even greater than the decrease in extracellular accumulation. Hence, NH3 appears to act as a cAMP accumulation inhibitor (CAI). In contrast, exposure to carboxylic acid concentrations that drastically reduce extracellular cAMP accumulation can actually enhance or, at worst, only slightly reduce intracellular accumulation. Hence, the carboxylic acids appear to act as cAMP release inhibitors (CRI). Stationary phase cells incubated on solid substratum in the presence of NH4Cl plus succinate (or propionate) for 18 hr failed to exhibit even the earliest signs of aggregation. If then harvested and redeposited in the absence of the metabolites, they proceeded through the morphogenetic sequence with approximately normal kinetics, suggesting that no significant morphogenetic competence had been achieved during their previous tenure. The morphogenetic implications of cAMP relay modulation are discussed.  相似文献   

5.
We have investigated the expression of 14 cloned genes of the 20-member actin multigene family of Dictyostelium discoideum using gene-specific mRNA complementary probes and an RNase protection assay. Actin gene expression was studied in vegetative cells and in cells at a number of developmental stages chosen to represent the known major shifts in actin mRNA and protein synthesis. At least 13 of these genes are expressed. A few genes are expressed very abundantly at 10% or more of total actin mRNA; however, the majority are maximally expressed at 1 to 5% of actin message. Although all of the genes are transcribed in vegetative cells, most genes appear to be independently regulated. Actin 8 appears to be transcribed at constant, high levels throughout growth and development. Actin 12 mRNA is maximally expressed in vegetative cells but the level is reduced appreciably by the earliest stage of development examined, while Actin 7 mRNA is specifically induced approximately sevenfold at this time. The rest of the genes appear to be induced 1.5 to 2-fold early in development, coincident with the increase in total actin mRNA. Since 12 of the genes code for extremely homologous proteins, it is possible that the large number of actin genes in Dictyostelium is utilized for precise regulation of the amount of actin produced at any stage of development, even though individual gene expression appears in some cases to be very stage-specific. In addition to these 13 actin genes, at least two and possibly four more genes are known to be expressed, because they are represented by complementary DNA clones, and an additional one or two expressed genes are indicated by primer extension experiments. Only one known gene, Actin 2-sub 2, is almost certainly a pseudogene. Thus the vast majority of Dictyostelium actin genes are expressed.  相似文献   

6.
The discoidin I genes of Dictyostelium form a small, co-ordinately regulated multigene family. We have sequenced and compared the upstream regions of the DiscI-alpha, -beta and -gamma genes. For the most part the upstream regions of the three genes are non-homologous. The upstream sequences of the beta and gamma genes are exceedingly A + T-rich, while those of the alpha gene are less so. All three genes have a relatively G + C-rich region 20 to 40 base-pairs in length, found approximately 200 base-pairs 5' to the messenger RNA start site. This G + C-rich region 5' to the beta and gamma genes is flanked by short inverted repeats. Within this region, there is an 11 base-pair exact homology between the alpha and gamma genes, and a less perfect homology between these genes and the beta gene. The homology is flanked at a short distance by interspersed G and T residues. The gamma gene is greater than 90% A + T for greater than 800 base-pairs upstream. Further upstream there is a G + C-rich region that is also found inverted approximately 3.5 X 10(3) base-pairs away. The gamma and beta genes are tandemly linked, and the entire approximately 500 base-pair intergene region between the 3' end of the gamma gene and the 5' end of the beta gene is A + T-rich (approximately 90%) with the exception of the homology region 5' to the gamma gene. We demonstrate also the presence of a discoidin I pseudogene fragment having only 139 base-pairs of discoidin homology with greater than 8% mismatch. It is flanked upstream by five 39 base-pair G + C-rich repeats, and downstream by sequences that are extremely A + T-rich. We discuss the possible significance of the conserved G + C-rich structures on discoidin I gene expression.  相似文献   

7.
Observations on the properties of the guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) of the social amoeba Dictyostelium discoideum are reported. On the basis of similarities in kinetic and fractionation properties, it is shown that the activity from vegetative cells and the sixfold higher activity from starved cells appear to be due to the same enzyme. Most of the activity is found to be soluble, and by gel exclusion chromatography a molecular weight of 250,000 has been estimated for this form. As the enzyme shows considerably more activity with Mn+2 than Mg+2, the Km for Mn+2 activation was determined (700 microM), and compared to the levels of total cell Mn+2 (10 microM) and Mg+2 (3mM). These data suggest that Mg+2 is probably the physiological cofactor. A previous report [J. M. Mato, (1979) Biochem. Biophys. Res. Commun. 88, 569-574] that the enzyme is activated about twofold by ATP was confirmed; but contrary to that report, activation by the ATP analog 5'-adenylyl-imidodiphosphate was also obtained. Since this analog does not donate its phosphate in kinase reactions, it is likely that ATP activates the guanylate cyclase by direct binding rather than by phosphorylation. The known in vivo agonist of the guanylate cyclase, cAMP, did not activate the enzyme in vitro, either alone or in various combinations with calcium, calmodulin, ATP, and phospholipids.  相似文献   

8.
When aggregating amoebas of the cellular slime mold Dictyostelium discoideum are disaggregated and morphogenesis is reinitiated, the amoebas will reaggregate in less than 110th the original time. When aggregating amoebas are disaggregated and resuspended either in full nutrient medium or in buffered salts solution containing dextrose, they retain this developmentally acquired capacity to rapidly reaggregate for approximately 1 hr and then lose it completely in a synchronous and discrete step which we have referred to as the “erasure event.” In this report, it is demonstrated that micromolar concentrations of cAMP completely block this transition from the developmental to vegetative state, and that other cyclic nucleotides also inhibit it, but they do so at 20-fold higher concentrations. Neither the hydrolysis products of cAMP nor the vegetative chemoattractant folic acid inhibit dedifferentiation at concentrations as high as 10?3M, demonstrating a specificity for cyclic nucleotides and cAMP in particular. The addition of cAMP at any time during the lag period preceding the erasure event inhibits it and addition immediately after the erasure event reverses it. Since cAMP may inhibit the transition from the developmental to vegetative state intracellularly or extracellularly, we have also examined the intracellular concentration of cAMP and the levels of cAMP binding sites on the cell surface during the erasure process. Evidence is presented that the majority of cAMP binding sites on the cell surface are not necessary for the inhibition of erasure by cAMP. The results of these latter studies are discussed in terms of alternative models for the involvement of cAMP in the transition from the developing to vegetative state.  相似文献   

9.
The X, Y and ovalbumin genes, which are found within a 40 kb region of the chicken genome, are all expressed in oviduct under steroid hormone control, and share some sequence homologies. We have now cloned the complete X gene and have analyzed its structure. It codes for two RNA species, X and X′; both are coded by eight exons and appear to differ only by the size of their 3′ untranslated region, X′ RNA being 1400 nucleotides longer than X RNA. The striking similarity in the number and length of the exons which constitute the X, Y or ovalbumin genes establishes that they have evolved from a common ancestor gene by duplication events. Comparison of selected regions of the X and ovalbumin genes indicates that the exon sequences coding for protein and the location of the splice junctions have been well-conserved. The introns and the 3′ untranslated exonic sequences have diverged much more rapidly. Four regions of apparently unrelated repetitive sequences are found both outside the X gene and within it (in two introns and in the sequence coding for the 3′ untranslated part of X′RNA). The intragenic repetitive sequences have no counterpart in the ovalbumin and Y genes.  相似文献   

10.
11.
12.
13.
Four isozymes of α-glucosidase in Dictyostelium discoideum have been identified and some of their enzymatic and physical properties characterized (R. H. Borts and R. L. Dimond, 1981, Develop. Biol.87, 176–184). In this report the cellular localization and developmental regulation of three of these isozymes are determined. α-Glucosidase-1 is the major isozyme of vegetative amoebae. It is lysosomally localized and secreted from the cell under certain conditions. It has an acidic pH optimum and carries the common antigenic determinant found on all lysosomal enzymes in this organism. The specific activity of this isozyme begins to decrease within a few hours after the initiation of development and is no longer detectable in the mature fruiting body. α-Glucosidase-2 has a neutral pH optimum and is neither lysosomal nor secreted. Rather it is membrane bound and is possibly located on the cisternal side of microsomal vesicles. This isozyme does not possess the common antigenic determinant. α-Glucosidase-2 comprises 20–40% of the total α-glucosidase activity of the vegetative cell. Its specific activity increases threefold during development. This isozyme appears to be developmentally controlled since it fails to accumulate in aggregation deficient mutants. Its accumulation is also dependent upon continued protein synthesis. α-Glucosidase-4, like α-glucosidase-1, has an acidic pH optimum. It does not appear to be lysosomally localized nor membrane bound. Approximately 30% of the activity is precipitable by antibody against the common antigenic determinant indicating that it is less highly modified or fewer molecules are modified. The isozyme is undetectable during vegetative growth and does not begin to accumulate until late aggregation. Activity peaks in mature fruiting bodies where it is the predominant acidic α-glucosidase activity. Accumulation of α-glucosidase-4 is blocked in morphologically deficient mutants and by inhibitors of protein synthesis.  相似文献   

14.
Two distinct glutamate dehydrogenases are present in amoebae of the cellular slime mold Dictyostelium discoideum. One enzyme has been extracted from a crude mitochondrial fraction, and the other from an extramitochondrial cytoplasmic fraction. Both enzymes have been partially purified and characterized. The mitochondrial enzyme can utilize both NAD+ and NADP+ as coenzyme, while the extramitochondrial is NAD+ specific. When the mitondrial enzyme is assayed in the presence of either a rate-limiting or saturating concentration of glutamate, its activity is stimulated by both AMP and ADP and is inhibited by ATP. When the extramitochondrial enzyme is assayed in the presence of a rate-limiting concentration of glutamate, its activity is sensitive to modulation by a number of intermediates in carbohydrate metabolism and is inhibited by ADP, ATP, GTP, and CTP.  相似文献   

15.
S-Adenosyl-L-homocysteine hydrolase from Dictyostelium discoideum has been purified to homogeneity. It is composed of four subunits, each with a molecular mass of 47,000. In the hydrolysis direction, the enzyme has a pH optimum of 7.5, a Km for S-adenosyl-L-homocysteine (SAH) of 6 microM, and a Vmax of 0.22 mumol min-1 mg-1. In the synthesis direction, the pH optimum is 8.0, the Km for adenosine is 0.4 microM, and the Vmax is 0.30 mumol min-1 mg-1. Although the enzyme binds beta-nicotinamide adenine dinucleotide, as well as adenosine 3',5'-cyclic monophosphate and 2'-deoxyadenosine, these ligands have no effect on enzymatic activity when added to the assay mixture. However, preincubation of SAH hydrolase with NAD+ results in a 25% activation of the enzyme. In addition, this ligand has a striking effect on subunit-subunit interactions, as shown by stabilization of quaternary structure during polyacrylamide gel electrophoresis. Preincubation with cAMP or 2'-deoxyadenosine inactivates the enzyme. Although in both cases the activity is restored upon further incubation with NAD+, we show that inactivation by these two ligands proceeds by different mechanisms. NAD+-reversible inactivation by cAMP and 2'-deoxyadenosine was also observed with the SAH hydrolase from rabbit erythrocytes. Thus, these previously unreported properties of SAH hydrolase also occur with mammalian enzymes and are not restricted to D. discoideum.  相似文献   

16.
Endogenous proteins which could serve as substrates for cyclic AMP-dependent protein kinase in vitro were measured in cytosolic fractions at four stages of development. A peak of cyclic AMP-dependent phosphorylation occurred at the slug stage, coincident with the appearance of cyclic AMP-dependent protein kinase. After partial purification of the slug-stage extracts by DE-52 cellulose and Sephacryl S-300 chromatography, cyclic AMP dependency of six proteins was observed. The apparent subunit molecular weights of the proteins were greater than 200,000, 110,000, 107,000, 91,000, 75,000 and 69,000. Upon further purification of the cyclic AMP-dependent protein kinase by chromatofocusing, the endogenous substrates were separated from the enzyme. In addition, the enzyme separated into catalytic and regulatory subunits. If the purified catalytic subunit was added to heated S300 fractions, proteins with apparent molecular weights of 91,000 and 107,000 were specificity phosphorylated. The results show the stage-dependent appearance of a cyclic AMP-dependent protein kinase and point out several in vitro substrates for the enzyme.  相似文献   

17.
The ability of Dictyostelium discoideum amoebae to synthesize and secrete cAMP in response to exogenous cAMP is called cAMP signaling. Concanavalin A is a potent, rapid, noncompetitive inhibitor of this response, with the rate of inhibition consistent with its rate of binding. The concanavalin A does not deplete cellular ATP, alter cAMP binding to its surface receptors, or affect basal adenylate cyclase activity, but blocks the cAMP-stimulated activation of adenylate cyclase. Therefore, concanavalin A appears to inhibit a step between the receptor and the adenylate cyclase which is necessary for the transduction of the cAMP signal. Wheat germ agglutinin, a polyclonal antibody against an 80-kDa glycoprotein, four monoclonal antibodies against the amoebal surface, and a chemical cross-linking agent which reacts with cell surface primary amines also inhibit signaling. To determine the importance of cross-linking in the inhibition, succinylated concanavalin A and the unlinked, reactive portion of the chemical cross-linker were tested and found to be relatively ineffective inhibitors. Thus it appears that ligands capable of cross-linking molecules on the external surface of D. discoideum amoebae inhibit cAMP signaling. It is proposed that these cross-linking agents prevent membrane or cytoskeletal rearrangement and that this rearrangement must occur before the adenylate cyclase is activated.  相似文献   

18.
19.
An examination of the size and relative abundance of actin-coding RNA in embryos of four sea urchins (Strongylocentrotus purpuratus, Strongylocentrotus droebachiensis, Arbacia punctulata, Lytechinus variegatus) and one sand dollar (Echinarachnius parma) reveals a generally conserved program of expression. In each species the relative abundance of these sequences is low in early embryos and begins to rise during late cleavage or blastula stages. In the four sea urchins, actin-coding RNAs increase between approximately 9- and 35-fold by pluteus or an earlier stage, and in the sand dollar about 5.5-fold by blastula. A major actin-coding RNA class of 2.0-2.2 kilobases (kb) is found in each species. A smaller actin-coding RNA class, which accumulates during embryogenesis, is also present in S. purpuratus (1.8 kb), S. droebachiensis (1.9 kb), and A. punctulata (1.6 kb), but apparently absent in L. variegatus and E. parma. In S. droebachiensis, actin-coding RNA is relatively abundant in unfertilized eggs and drops sharply by the 16-cell stage. This is in contrast to the other sea urchins where the actin message content is relatively low in eggs and does not change substantially in the embryos throughout early cleavage. The observations in this study suggest that the pattern of embryonic expression of at least some members of this gene family is ancient and conserved.  相似文献   

20.
When developing cultures of the cellular slime mold Dictyostelium discoideum are disaggregated and morphogenesis immediately reinitiated, they recapitulate the morphogenetic scheme, but at an increased rate. Employing this feature of the system, we have identified time periods when “information” accumulates for specific morphogenetic events. In this case, we have defined “morphogenetic information” as the reduction in time for the appearance of a particular morphology during morphogenetic recapitulation. Accumulated information can be erased by disaggregating developing cultures and reinoculating them into liquid growth medium. Erasure occurs as a discrete event and can be blocked by inhibiting protein synthesis.By comparing morphogenesis in log-phase and stationary-phase cultures, at least two parallel timers have been distinguished, one specific for aggregation and one or more specific for morphogenetic events following aggregation. Approaches to the molecular identity of morphogenetic information and morphogenetic timers are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号