首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine seminal RNase (BS-RNase) is a homodimeric enzyme with a cytotoxic activity selective for tumor cells. In this study, the relationships of its cytotoxic activity to its dimeric structure and its resistance to the cytosolic RNase inhibitor (cRI) are investigated systematically by site-directed mutagenesis. The results show that (1) the dimericity of BS-RNase is essential for its full cytotoxic action; (2) the role of the dimeric structure in the antitumor activity is that of making the enzyme insensitive to the cytosolic RNase inhibitor; (3) a RNase may not be completely insensitive to cRI to exploit a full cytotoxic potential.  相似文献   

2.
Human anti-ErbB2 immunoRNase with Erbicin fused to HP-RNase (ERB-hRNase) is a fully human immunoRNase made up of human pancreatic RNase fused to a human anti-ErbB2 scFv. It binds selectively with high affinity to ErbB2-positive cells, and specifically inhibits their proliferation, in vitro and in vivo. An investigation of its mechanism of action and its intracellular destination has revealed that ERB-hRNase depends on its RNase activity for cytotoxic action; it reaches the cytosol directly from the endosomal compartment; it is inhibited by the cytosolic RNase inhibitor (cRI), but the levels that ERB-hRNase reaches in the cytosol neutralize cRI, thus inducing cell death by apoptosis.  相似文献   

3.
Ribonuclease A (RNase A) dimers have been recently found to be endowed with some of the special, i.e., non-catalytic biological activities of RNases, such as antitumor and aspermatogenic activities. These activities have been so far attributed to RNases which can escape the neutralizing action of the cytosolic RNase inhibitor (cRI). However, when the interactions of the two cytotoxic RNase A dimers with cRI were investigated in a quantitative fashion and at the molecular level, the dimers were found to bind cRI with high affinity and to form tight complexes.  相似文献   

4.
The cytotoxic action of some ribonucleases homologous to bovine pancreatic RNase A, the superfamily prototype, has interested and intrigued investigators. Their ribonucleolytic activity is essential for their cytotoxic action, and their target RNA is in the cytosol. It has been proposed that the cytosolic RNase inhibitor (cRI) plays a major role in determining the ability of an RNase to be cytotoxic. However, to interact with cRI RNases must reach the cytosol, and cross intracellular membranes. To investigate the interactions of cytotoxic RNases with membranes, cytotoxic dimeric RNases resistant, or considered to be resistant to cRI, were assayed for their effects on negatively charged membranes. Furthermore, we analyzed the electrostatic interaction energy of the RNases complexed in silico with a model membrane. The results of this study suggest that close correlations can be recognized between the cytotoxic action of a dimeric RNase and its ability to complex and destabilize negatively charged membranes.  相似文献   

5.
NQO1酶及其被氧环境诱导表达的研究进展   总被引:4,自引:0,他引:4  
NAD(P)H:醌氧化还原酶1(NQO1)是真核细胞内普遍存在的一类黄素蛋白酶,它专性催化胞内双电子还原反应,能够解除醌类物质对细胞的毒害,从而起到保护细胞的作用。同时,它又能活化一些醌类抗肿瘤药物。本文综述了NQO1的基因结构、多态性、功能和活性调节,以有它在包内氧化还原环境和肿瘤治疗中的地位等方面的研究进展。  相似文献   

6.
Heat shock protein (Hsp) 70 has been reported to protect various cells and tissues from ischemic damage. However, the molecular mechanisms of the protection are incompletely understood. Ischemia induces significant alterations in cellular redox status that plays a critical role in cell survival/death pathways. We investigated the effects of Hsp70 overexpression on cellular redox status in Madin-Darby canine kidney (MDCK) cells under both hypoxic and ischemic conditions with 3 different approaches: reactive oxygen species (ROS) measurement by a fluorescence probe, redox environment evaluation by a hydroxylamine spin probe, and redox status assessment by the glutathione/glutathione disulfide (GSH/GSSG) ratio. Results from each of these approaches showed that the redox status in Hsp70 cells was more reducing than that in control cells under either hypoxic or oxygen and glucose deprivation (OGD) conditions. In order to determine the mechanisms that mediated the alterations in redox state in Hsp70 cells, we measured the activities of glutathione peroxidase (GPx) and glutathione reductase (GR), two GSH-related antioxidant enzymes. We found that OGD exposure increased GPx and GR activities 47% and 55% from their basal levels (no stress) in Hsp70 cells, compared to only 18% and 0% increase in control cells, respectively. These data, for the first time, indicate that Hsp70 modulates the activities of GPx and GR that regulate cellular redox status in response to ischemic stress, which may be important in Hsp70's cytoprotective effects.  相似文献   

7.
Induction of heme oxygenase-1 (HO-1) may serve as an immediate protective response during treatment with the cytostatic drug cisplatin (CDDP). Oxidative pathways participate in the characteristic nephrotoxicity of CDDP. In the present study, cultured tubular cells (LLC-PK1) were used to investigate whether induction of HO provided protection against CDDP by maintaining the cellular redox balance. The antioxidants, &#102 -tocopherol (TOCO) and N -acetylcysteine (NAC), were used to demonstrate that elevation of ROS levels contribute to the development of CDDP-induced cytotoxicity. Chemical modulators of HO activity were used to investigate the role of HO herein. Hemin was used to specifically induce HO-1, while exposure of the cells to tin-protoporphyrin (SnPP) was shown to inhibit HO activity. Hemin treatment prior to CDDP-exposure significantly decreased the generation of ROS to control levels, while inhibition of HO increased the ROS levels beyond the levels measured in cells treated with CDDP alone. Furthermore, HO induction protected significantly against the cytotoxicity of CDDP, although this protection was limited. Similar results were obtained when the cells were preincubated with TOCO, suggesting that mechanisms other than impairment of the redox ratio are important in CDDP-induced loss of cell viability in vitro. In addition, SnPP treatment exacerbated the oxidative response and cytotoxicity of CDDP, especially at low CDDP concentrations. We therefore conclude that HO is able to directly limit the CDDP-induced oxidative stress response and thus serves as safeguard of the cellular redox balance.  相似文献   

8.
Induction of heme oxygenase-1 (HO-1) may serve as an immediate protective response during treatment with the cytostatic drug cisplatin (CDDP). Oxidative pathways participate in the characteristic nephrotoxicity of CDDP. In the present study, cultured tubular cells (LLC-PK1) were used to investigate whether induction of HO provided protection against CDDP by maintaining the cellular redox balance. The antioxidants, alpha-tocopherol (TOCO) and N-acetylcysteine (NAC), were used to demonstrate that elevation of ROS levels contribute to the development of CDDP-induced cytotoxicity. Chemical modulators of HO activity were used to investigate the role of HO herein. Hemin was used to specifically induce HO-1, while exposure of the cells to tin-protoporphyrin (SnPP) was shown to inhibit HO activity. Hemin treatment prior to CDDP-exposure significantly decreased the generation of ROS to control levels, while inhibition of HO increased the ROS levels beyond the levels measured in cells treated with CDDP alone. Furthermore, HO induction protected significantly against the cytotoxicity of CDDP, although this protection was limited. Similar results were obtained when the cells were preincubated with TOCO, suggesting that mechanisms other than impairment of the redox ratio are important in CDDP-induced loss of cell viability in vitro. In addition, SnPP treatment exacerbated the oxidative response and cytotoxicity of CDDP, especially at low CDDP concentrations. We therefore conclude that HO is able to directly limit the CDDP-induced oxidative stress response and thus serves as safeguard of the cellular redox balance.  相似文献   

9.
Glutathione is a ubiquitous molecule found in all parts of the cell where it fulfils a range of functions from detoxification to protection from oxidative damage. It provides the main redox buffer for cells and as such has been implicated in the formation of native disulphide bonds. However, the discovery of the enzyme Ero1 has called into question the exact role of glutathione in this process. In this review, we discuss the arguments for and against a role for glutathione in facilitating disulphide-bond formation and consider its role in protecting the cell from endoplasmic-reticulum-generated oxidative stress.  相似文献   

10.
Altered redox signaling and regulation in cancer cells represent a chemical vulnerability that can be targeted by selective chemotherapeutic intervention. Here, we demonstrate that 3,7-diaminophenothiazinium-based redox cyclers (PRC) induce selective cancer cell apoptosis by NAD(P)H:quinone oxidoreductase (NQO1)-dependent bioreductive generation of cellular oxidative stress. Using PRC lead compounds including toluidine blue against human metastatic G361 melanoma cells, apoptosis occurred with phosphatidylserine externalization, loss of mitochondrial transmembrane potential, cytochrome c release, caspase-3 activation, and massive ROS production. Consistent with reductive activation and subsequent redox cycling as the mechanism of PRC cytotoxicity, coincubation with catalase achieved cell protection, whereas reductive antioxidants enhanced PRC cytotoxicity. Unexpectedly, human A375 melanoma cells were resistant to PRC-induced apoptosis, and PRC-sensitive G361 cells were protected by preincubation with the NQO1 inhibitor dicoumarol. Indeed, NQO1 specific enzymatic activity was 9-fold higher in G361 than in A375 cells. The critical role of NQO1 in PRC bioactivation and cytotoxicity was confirmed, when NQO1-transfected breast cancer cells (MCF7-DT15) stably overexpressing active NQO1 displayed strongly enhanced PRC sensitivity as compared to vector control-transfected cells with baseline NQO1 activity. Based on the known overexpression of NQO1 in various tumors these findings suggest the feasibility of developing PRC lead compounds into tumor-selective bioreductive chemotherapeutics.  相似文献   

11.
Apoptosis is a highly organized form of cell death that is important for tissue homeostasis, organ development and senescence. To date, the extrinsic (death receptor mediated) and intrinsic (mitochondria derived) apoptotic pathways have been characterized in mammalian cells. Reduced glutathione, is the most prevalent cellular thiol that plays an essential role in preserving a reduced intracellular environment. glutathione protection of cellular macromolecules like deoxyribose nucleic acid proteins and lipids against oxidizing, environmental and cytotoxic agents, underscores its central anti-apoptotic function. Reactive oxygen and nitrogen species can oxidize cellular glutathione or induce its extracellular export leading to the loss of intracellular redox homeostasis and activation of the apoptotic signaling cascade. Recent evidence uncovered a novel role for glutathione involvement in apoptotic signaling pathways wherein post-translational S-glutathiolation of protein redox active cysteines is implicated in the potentiation of apoptosis. In the present review we focus on the key aspects of glutathione redox mechanisms associated with apoptotic signaling that includes: (a) changes in cellular glutathione redox homeostasis through glutathione oxidation or GSH transport in relation to the initiation or propagation of the apoptotic cascade, and (b) evidence for S-glutathiolation in protein modulation and apoptotic initiation.  相似文献   

12.
Chronic alcohol administration has been known to increase peroxynitrite hepatotoxicity by enhancing concomitant production of nitric oxide and superoxide. We previously reported that control of the mitochondrial redox balance and the cellular defense against oxidative damage are primary functions of mitochondrial NADP+-dependent isocitrate dehydrogenase (IDPm) through to supply NADPH for antioxidant systems. In the present study, we demonstrate that modulation of IDPm expression in HepG2 cells regulates ethanol-induced toxicity. We observed the significantly enhanced protection to cell killing, lipid peroxidation, protein oxidation, oxidative DNA damage, and decrease in generation of intracellular reactive oxygen species and reactive nitrogen species in IDPm-overexpressed cells compared to control cells upon exposure to ethanol. In contrast, transfection of HepG2 cells with IDPm short interfering RNA markedly decreased the expression of IDPm, modulating cellular redox status and subsequently enhancing the susceptibility of ethanol-induced toxicity. These studies support the hypothesis that IDPm plays an important role in regulating the toxicity induced by ethanol presumably through maintaining the cellular redox status.  相似文献   

13.
The AMPK/Snf1 kinase has a central role in carbon metabolism homeostasis in Saccharomyces cerevisiae. In this study, we show that Snf1 activity, which requires phosphorylation of the Thr210 residue, is needed for protection against selenite toxicity. Such protection involves the Elm1 kinase, which acts upstream of Snf1 to activate it. Basal Snf1 activity is sufficient for the defense against selenite, although Snf1 Thr210 phosphorylation levels become increased at advanced treatment times, probably by inhibition of the Snf1 dephosphorylation function of the Reg1 phosphatase. Contrary to glucose deprivation, Snf1 remains cytosolic during selenite treatment, and the protective function of the kinase does not require its known nuclear effectors. Upon selenite treatment, a null snf1 mutant displays higher levels of oxidized versus reduced glutathione compared to wild type cells, and its hypersensitivity to the agent is rescued by overexpression of the glutathione reductase gene GLR1. In the presence of agents such as diethyl maleate or diamide, which cause alterations in glutathione redox homeostasis by increasing the levels of oxidized glutathione, yeast cells also require Snf1 in an Elm1-dependent manner for growth. These observations demonstrate a role of Snf1 to protect yeast cells in situations where glutathione-dependent redox homeostasis is altered to a more oxidant intracellular environment and associates AMPK to responses against oxidative stress.  相似文献   

14.
15.
The haemoglobinopathies have a celebrated role in the study of human genetics as the first examples of balanced polymorphisms described in human populations. Over the last 50 years, considerable evidence has been provided to show that these traits do confer protection from malaria. More recently, the underlying mechanisms of protection have been examined. This short review summarizes these studies and where possible shows how the putative mechanisms of protection may be linked to redox processes.  相似文献   

16.
Pyrroloquinoline-quinine (PQQ) was initially characterized as a redox cofactor for membrane-bound dehydrogenases in the bacterial system. Subsequently, PQQ was shown to be an antioxidant protecting the living cells from oxidative damage in vivo and the biomolecules from artificially produced reaction oxygen species in vitro. The presence of PQQ has been documented from different biological samples. It functions as a nutrient and vitamin for supporting the growth and protection of living cells under stress. Recently, the role of PQQ has also been shown as a bio-control agent for plant fungal pathogens, an inducer for proteins kinases involved in cellular differentiation of mammalian cells and as a redox sensor leading to development of biosensor. Recent reviews published on PQQ and enzymes requiring this cofactor have brought forth the case specific roles of PQQ. This review covers the comprehensive information on various aspects of PQQ known till date. These include the roles of PQQ in the regulation of cellular growth and differentiation in mammalian system, as a nutrient and vitamin in stress tolerance, in crop productivity through increasing the availability of insoluble phosphate and as a bio-control agent, and as a redox agent leading to the biosensor development. Most recent findings correlating the exceptionally high redox recycling ability of PQQ to its potential as anti-neurodegenerative, anticancer and pharmacological agents, and as a signalling molecule have been distinctly brought out. This review discusses different findings suggesting the versatility in PQQ functions and provides the most plausible intellectual basis to the ubiquitous roles of this compound in a large number of biological processes, as a nutrient and a perspective vitamin.  相似文献   

17.
Cancer cells are highly metabolically active and produce high levels of reactive oxygen species (ROS). Drug resistance in cancer cells is closely related to their redox status. The role of ROS and its impact on cancer cell survival seems far from elucidation. The mechanisms through which glioblastoma cells overcome aberrant ROS and oxidative stress in a milieu of hypermetabolic state is still elusive. We hypothesize that the formidable growth potential of glioma cells is through manipulation of tumor microenvironment for its survival and growth, which can be attributed to an astute redox regulation through a nexus between activation of N‐methyl‐d ‐aspartate receptor (NMDAR) and glutathione (GSH)‐based antioxidant prowess. Hence, we examined the NMDAR activation on intracellular ROS level, and cell viability on exposure to hydrogen peroxide (H2O2), and antioxidants in glutamate‐rich microenvironment of glioblastoma. The activation of NMDAR attenuated the intracellular ROS production in LN18 and U251MG glioma cells. MK‐801 significantly reversed this effect. On evaluation of GSH redox cycle in these cells, the level of reduced GSH and glutathione reductase (GR) activity were significantly increased. NMDAR significantly enhanced the cell viability in LN18 and U251MG glioblastoma cells, by attenuating exogenous H2O2‐induced oxidative stress, and significantly increased catalase activity, the key antioxidant that detoxifies H2O2. We hereby report an unexplored role of NMDAR activation induced protection of the rapidly multiplying glioblastoma cells against both endogenous ROS as well as exogenous oxidative challenges. We propose potentiation of reduced GSH, GR, and catalase in glioblastoma cells through NMDAR as a novel rationale of chemoresistance in glioblastoma.  相似文献   

18.
《Free radical research》2013,47(1):52-70
Abstract

The multiple roles that have been associated with heat shock proteins (HSPs), inside and outside cells are remarkable. HSPs have been found to play a fundamental role in multiple stress conditions and to offer protection from subsequent insults. Exercise, because of the physiological stresses associated with it, is one of the main stimuli associated with a robust increase of different HSPs in several tissues. Given the combination of physiological stresses induced by exercise, and the ‘cross-talk’ that occurs between signaling pathways in different tissues, it is likely that exercise induces the HSP expression through a combination of ‘stressors’, among which reactive oxygen species (ROS) could play a major role. Indeed, although an imbalance between ROS production and antioxidant levels results in oxidative stress, causing damage to lipids, proteins, and nucleic acids with a possible activation of the programed cell death pathway, at moderate concentrations ROS play an important role as regulatory mediators in signaling processes. Many of the ROS-mediated responses actually protect the cells against oxidative stress and re-establish redox homeostasis. The aim of this review is to provide a critical update on the role of exercise-induced ROS in the modulation of the HSP's response, focusing on experimental results from animal and human studies where the link between redox homeostasis and HSPs’ expression in different tissues has been addressed.  相似文献   

19.
Oxidative stress has been shown to alter cellular redox status in various cell types. Changes in expressions of several antioxidative and antistress-responsive genes along with activation or inactivation of various proteins were also reported during oxidative insult as well as during nitrosative stress. In the present study, we show the effect of nitrosative stress on cellular redox status of fission yeast Schizosaccharomyces pombe. This is the first report of S-nitrosoglutathione (GSNO) reductase activity in S. pombe and its inactivation by GSNO. We also show the inactivation of glutathione reductase (GR) and glutathione peroxidase in the presence of various reactive nitrogen species in vivo. In addition, we first observe the inactivation of GR by peroxynitrite in vivo using S. pombe cells and also similar observations under in vitro conditions. An immunoreactive band against monoclonal anti-3-nitrotyrosine antibody confirms the modification of GR under in vitro conditions. We also show the effect of nitrosative stress on Deltapap1 cells of S. pombe, which are more sensitive to nitrosative stress, indicating the involvement of Pap1 in the protection against nitrosative stress. Finally, exposure of S. pombe cells to reactive nitrogen species reveals an important role of cellular thiol pool in protection against nitrosative stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号