首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To obtain lectins without tedious purification steps, we developed a convenient method for a one-step purification of lectins using sugar-immobilized gold nano-particles (SGNPs). Proteins in crude extracts from plant materials were precipitated with 60% ammonium sulphate, and the precipitate was re-dissolved in a small volume of phosphate buffer. The resultant solution was then mixed with appropriate SGNPs under an optimized condition. After incubating overnight at 4 degrees C, lectins in the mixture formed aggregate with SGNPs, which was visually detected and easily sedimented by centrifugation. The aggregate was dissolved by adding inhibitory sugars, which were identical to the non-reducing sugar moieties on the SGNPs. According to SDS-PAGE and MS of thus obtained proteins, it was found that SGNPs isolated lectins with a high purity. For example, a protein isolated from banana using Glcalpha-GNP (alpha-glucose-immobilized gold nano-particle) was identified as banana lectin by trypsin-digested peptide-MS finger printing method.  相似文献   

2.
siRNA能高效且特异地阻断内源性同源基因的表达即RNA干涉(RNAi).RNAi在临床中的应用需要开发安全有效的输送系统,脂质纳米输送载体是一种具有发展潜力的siRNA输送系统.siRNA-脂质复合物的形成主要通过静电相互作用,静电作用必须足够强以至于载体在运输过程中不释放siRNA,而载体到达治疗部位时,解聚释放出siRNA.载体的粒径应小于100 nm,以利于细胞的摄取和透过特定部位的血管开窗.为了减少网状内皮系统(RES)的摄取和延长载体的循环时间,载体的表面由聚乙二醇修饰.本文主要综述了构建siRNA输送载体的基本要求.  相似文献   

3.
Polymer-coated liposomes can act as versatile drug-delivery systems due to long vascular circulation time and passive targeting by leaky blood vessels in diseased tissue. We present an experimental model system illustrating a new principle for improved and programmable drug-delivery, which takes advantage of an elevated activity of secretory phospholipase A(2) (PLA(2)) at the diseased target tissue. The secretory PLA(2) hydrolyses a lipid-based proenhancer in the carrier liposome, producing lyso-phospholipids and free fatty acids, which are shown in a synergistic way to lead to enhanced liposome destabilization and drug release at the same time as the permeability of the target membrane is enhanced. Moreover, the proposed system can be made thermosensitive and offers a rational way for developing smart liposome-based drug delivery systems. This can be achieved by incorporating specific lipid-based proenhancers or prodestabilisers into the liposome carrier, which automatically becomes activated by PLA(2) only at the diseased target sites, such as inflamed or cancerous tissue.  相似文献   

4.
A recombinant, multifunctional protein has been designed for optimized, cell-targeted DNA delivery and gene expression in mammalian cells. This hybrid construct comprises a viral peptide ligand for integrin alpha(V)beta(3) binding, a DNA-condensing poly-L-lysine domain, and a complete, functional beta-galactosidase protein that serves simultaneously as purification tag and DNA-shielding agent. This recombinant protein is stable; it has been produced successfully in Escherichia coli and can be purified in a single step by affinity chromatography. At optimal molar ratios, mixtures of this vector and a luciferase-reporter plasmid form stable complexes that transfect cultured cells. After exposure to these cell-targeted complexes, steady levels of gene expression are observed for more than 3 days after transfection, representing between 20 and 40% of those achieved with untargeted, lipid-based DNA-condensing agents. The principle to include viral motifs for cell infection in single polypeptide recombinant proteins represents a promising approach towards the design of non-viral modular DNA transfer vectors that conserve the cell-target- ing specificity of native viruses and that do not need further processing after bioproduction in a recombinant host.  相似文献   

5.
Finn RD  Kapelioukh I  Paine MJ 《BioTechniques》2005,38(3):387-8, 390-2
Visualization systems for tracking proteins are standard experimental tools in most areas of biological research apart from protein purification. Here, we have sought to plug this gap by producing red and yellow visual tags using the heme-binding domain of mosquito cytochrome b5 and the flavin mononucleotide (FMN)-binding domain of human P450 reductase. Tests with colorless glutathione-S-transferase (GST) show them to be simple and effective tools for visually identifying correctly folded protein and tracking protein molecules through protein expression and purification. Furthermore, the characteristic absorbance signatures of the colored tags can be used to quantify protein concentrations directly, which allows purification to be linked to colorimetric detection. This technology, which we call Rainbow Tagging, facilitates expression and downstream processing of recombinant proteins, paving the way for the development of automated high-throughput protein expression systems.  相似文献   

6.
In protein engineering, the tasks of generating and testing a large number of variants of a molecule and of optimizing expression conditions for one distinct molecule create the need for purification methods that can handle a large number of samples simultaneously. We describe the development and some application results of a simple affinity chromatography system that can be used for the parallel purification of 24 protein samples, yielding sufficient quantities for biochemical and functional analysis. Advantages of this system over existing systems are as follows. Compared with commercially available complete chromatography systems, the costs of this system are minimal. In comparison with vacuum systems with various outlets, and with batch purification systems where centrifugation is necessary, this system allows gentler processing of the samples. This could be important for proteins that are easily damaged.  相似文献   

7.
Chang IF 《Proteomics》2006,6(23):6158-6166
In recent years, MS has been widely used to study protein complex in eukaryotes. The identification of interacting proteins of a particular target protein may help defining protein-protein interaction and proteins of unknown functions. To isolate protein complexes, high-speed ultracentrifugation, sucrose density-gradient centrifugation, and coimmunoprecipitation have been widely used. However, the probability of getting nonspecific binding is comparatively high. Alternatively, by use of one- or two-step (tandem affinity purification) epitope-tag affinity purification, protein complexes can be isolated by affinity or immunoaffinity columns. These epitope-tags include protein A, hexahistidine (His), c-Myc, hemaglutinin (HA), calmodulin-binding protein, FLAG, maltose-binding protein, Strep, etc. The isolated protein complex can then be subjected to protease (i.e., trypsin) digestion followed by an MS analysis for protein identification. An example, the epitope-tag purification of the Arabidopsis cytosolic ribosomes, is addressed in this article to show the success of the application. Several representative protein complexes in eukaryotes been isolated and characterized by use of this approach are listed. In this review, the comparison among different tag systems, validation of interacting relationship, and choices of MS analysis method are addressed. The successful rate, advantages, limitations, and challenges of the epitope-tag purification are also discussed.  相似文献   

8.
Peptide tag systems are a robust biophysical and biochemical method that is widely used for protein detection and purification. Here, we developed a novel tag system termed “HiP4” (histidine plus four amino acids) whose epitope sequence comprises only seven amino acids (HHHDYDI) that partially overlap with the conventional 6x histidine tag (6xHis-tag). We produced a monoclonal antibody against the HiP4 tag that can be used in multiple immunoassays with high specificity and affinity. Using this system, we developed a tandem affinity purification (TAP) and mass spectrometry (TAP-MS) system for comprehensive protein interactome analysis. The integrated use of nickel bead purification followed by HiP4 tag immunoprecipitation made it possible to reduce nonspecific binding and improve selectivity, leading to the recovery of previously unrecognized proteins that interact with hepatitis B virus X (HBx) protein or TAR DNA-binding protein 43 (TARDBP or TDP-43). Our results indicate that this system may be viable as a simple and powerful tool for TAP-MS that can achieve low background and high selectivity in comprehensive protein–protein interaction analyses.  相似文献   

9.
10.
Li Y 《Biotechnology letters》2011,33(8):1487-1499
Tandem affinity purification (TAP) is a methodology for the isolation of protein complexes from endogenous sources. It involves incorporation of a dual-affinity tag into the protein of interest and introduction of the construct into desired cell lines or organisms. Using the two affinity handles, the protein complex assembled under physiological conditions, which contains the tagged target protein and its interacting partners, can be isolated by a sequential purification scheme. Compared with single-step purification, TAP greatly reduces non-specific background and isolates protein complexes with higher purity. TAP-based protein retrieval plus mass spectrometry-based analysis has become a standard approach for identification and characterization of multi-protein complexes. The present article gives an overview of the TAP method, with a focus on its key feature—the dual-affinity tag. In addition, the application of this technology in various systems is briefly discussed.  相似文献   

11.
12.
The E1B 175-amino-acid (175R) protein of adenovirus 2 is required for cellular transformation of primary cells and establishing cell morphology in lytically infected cells. To investigate the biochemical function of this protein, we constructed a bacterial expression vector (pKHB1-T) to produce the 175R protein in sufficient amounts for purification and biochemical analysis. On the basis of DNA sequencing, gel electrophoresis, and immunoblot analysis, the pKHB1-T-encoded 175R protein appears to be identical to that expressed transiently in mammalian or adenovirus-transformed cells. The bacterially produced viral protein was also found to be quite stable and without any modifications. Partial purification of the pKHB1-T-encoded protein revealed that the majority of its associates with the inner membrane of the bacterial cell. This, together with the possibility of the 175R protein containing an N-terminal amphipathic alpha-helix as a potential translocation signal, suggests that there may be a common mechanism of protein transport operating in both eucaryotic and procaryotic systems.  相似文献   

13.
Tandem affinity purification (TAP) is a generic approach for the purification of protein complexes. The key advantage of TAP is the engineering of dual affinity tags that, when attached to the protein of interest, allow purification of the target protein along with its binding partners through two consecutive purification steps. The tandem tag used in the original method consists of two IgG‐binding units of protein A from Staphylococcus aureus (ProtA) and the calmodulin‐binding peptide (CBP), and it allows for recovery of 20–30% of the bait protein in yeast. When applied to higher eukaryotes, however, this classical TAP tag suffers from low yields. To improve protein recovery in systems other than yeast, we describe herein the development of a three‐tag system comprised of CBP, streptavidin‐binding peptide (SBP) and hexa‐histidine. We illustrate the application of this approach for the purification of human Bruton's tyrosine kinase (Btk), which results in highly efficient binding and elution of bait protein in both purification steps (>50% recovery). Combined with mass spectrometry for protein identification, this TAP strategy facilitated the first nonbiased analysis of Btk interacting proteins. The high efficiency of the SBP‐His6 purification allows for efficient recovery of protein complexes formed with a target protein of interest from a small amount of starting material, enhancing the ability to detect low abundance and transient interactions in eukaryotic cell systems.  相似文献   

14.
Structural biology places a high demand on proteins both in terms of quality and quantity. Although many protein expression and purification systems have been developed, an efficient and simple system which can be easily adapted is desirable. Here, we report a new system which combines improved expression, solubility screening and purification efficiency. The system is based on two newly constructed vectors, pEHISTEV and pEHISGFPTEV derived from a pET vector. Both vectors generate a construct with an amino-terminal hexahistidine tag (His-tag). In addition, pEHISGFPTEV expresses a protein with an N-terminal His-tagged green fluorescent protein (GFP) fusion to allow rapid quantitation of soluble protein. Both vectors have a tobacco etch virus (TEV) protease cleavage site that allows for production of protein with only two additional N-terminal residues and have the same multiple cloning site which enables parallel cloning. Protein purification is a simple two-stage nickel affinity chromatography based on the His tag removal. A total of seven genes were tested using this system. Expression was optimised using pEHISGFPTEV constructs by monitoring the GFP fluorescence and the soluble target proteins were quantified using spectrophotometric analysis. All the tested proteins were purified with sufficient quantity and quality to attempt structure determination. This system has been proven to be simple and effective for structural biology. The system is easily adapted to include other vectors, tags or fusions and therefore has the potential to be broadly applicable.  相似文献   

15.
For the past two decades, therapeutic and industrially important proteins have been expressed in plants with varying levels of success. The two major challenges hindering the economical production of plant-made recombinant proteins include inadequate accumulation levels and the lack of efficient purification methods. To address these limitations, several fusion protein strategies have been recently developed to significantly enhance the production yield of plant-made recombinant proteins, while simultaneously assisting in their subsequent purification. Elastin-like polypeptides are thermally responsive biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the purification of recombinant proteins. Hydrophobins are small fungal proteins capable of altering the hydrophobicity of their respective fusion partner, thus enabling efficient purification by surfactant-based aqueous two-phase systems. Zera, a domain of the maize seed storage protein γ-zein, can induce the formation of protein storage bodies, thus facilitating the recovery of fused proteins using density-based separation methods. These three novel protein fusion systems have also been shown to enhance the accumulation of a range of different recombinant proteins, while concurrently inducing the formation of protein bodies. The packing of these fusion proteins into protein bodies may exclude the recombinant protein from normal physiological turnover. Furthermore, these systems allow for quick, simple and inexpensive nonchromatographic purification of the recombinant protein, which can be scaled up to industrial levels of protein production. This review will focus on the similarities and differences of these artificial storage organelles, their biogenesis and their implication for the production of recombinant proteins in plants and their subsequent purification.  相似文献   

16.
Recently it has been established that low molecular weight displacers can be successfully employed for the purification of proteins in hydrophobic interaction chromatography (HIC) systems. This work investigates the utility of this technique for the purification of an industrial protein mixture. The study involved the separation of a mixture of three protein forms, that differed in the C-terminus, from their aggregate impurities while maintaining the same relative ratio of the three protein forms as in the feed. A batch high-throughput screening (HTS) technique was employed in concert with fluorescence spectroscopy for displacer screening in these HIC systems. This methodology was demonstrated to be an effective tool for identifying lead displacer candidates for a particular protein/stationary-phase system. In addition, these results indicate that surfactants can be employed at concentrations above their CMCs as effective displacers. Displacement of the recombinant proteins with PEG-3400 and the surfactant Big Chap was shown to increase the productivity as compared to the existing step-gradient elution process.  相似文献   

17.
18.
The binding of ciprofloxacin to lysozyme in the presence of three Ag nano-particles of varying sizes was for the first time investigated by multispectroscopic and isothermal titration calorimetry techniques at pH 7.4. The results indicated that ciprofloxacin quenched the fluorescence intensity of lysozyme through a static mechanism but in the presence of size-II Ag nano-particles, there were two kinds of interaction behaviors. The interaction between ciprofloxacin and lysozyme occurred via a second type of binding site, whereas in the presence of the Ag nano-particles, some changes occurred. The secondary structure of lysozyme–ciprofloxacin in the presence of Ag nano-particles was determined by circular dichroism. The thermodynamic parameters of the interaction between ciprofloxacin and lysozyme in the presence of Ag nano-particles were measured according to the van’t Hoff equation. The enthalpy (ΔH) and entropy (ΔS) changes were calculated to be ?49.7 (kJ?mol?1) and ?20.1 (J?mol?1?K?1), respectively, which indicated that the interaction of ciprofloxacin with lysozyme was driven mainly by van der Waals forces and hydrogen bonding. In the presence of the three different-sized Ag nano-particles, the enthalpic and the entropic changes were both negative which indicated that hydrogen bonding with van der Waals forces played major roles in the binding between ciprofloxacin and lysozyme. Recent developments in nano-materials offer new pathways for controlling the protein behavior through surface interactions. These data indicate that the recent research on nano-particle/protein interactions will emphasize the importance of such interactions in biological systems with applications including the diagnosis and treatment of human diseases.  相似文献   

19.
A mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) with the short-chain detergent n-dodecylphosphocholine (DPC) is introduced here as a new membrane-mimetic bicelle system for solid-state NMR structure analysis of membrane proteins in oriented samples. Magnetically aligned DMPC/DPC bicelles are stable over a range of concentrations, with an optimum lipid ratio of q=3:1, and they can be flipped with lanthanide ions. The advantage of DMPC/DPC over established bicelle systems lies in the possibility to use one and the same detergent for purification and NMR analysis of the membrane protein, without any need for detergent exchange. Furthermore, the same batch of protein can be studied in both micelles and bicelles, using liquid-state and solid-state NMR, respectively. The applicability of the DMPC/DPC bicelles is demonstrated here with the (15)N-labeled transmembrane protein TatA.  相似文献   

20.
A general system for functional analysis of cDNA-encoded proteins is described. The basic concept involves the expression inEscherichia coliof selected portions of cDNAs in an approach toward the understanding of the function of the corresponding proteins. A selected cDNA is expressed as part of a fusion protein used for immunization to elicit antibodies, and a corresponding fusion protein, having the cDNA-encoded portion in common, for purification of target protein-specific antibodies. This antiserum could be used for functional analysis of the cDNA-encoded protein, e.g., by immunohistology. Two general expression vector systems forE. colihave been constructed, both (i) designed with multiple cloning sites in three different reading frames, (ii) having their protein production controlled by the tightly regulated T7 promoter, and (iii) enabling affinity purification of the expressed target proteins by fusions to IgG-binding domains derived from staphylococcal protein A or a serum albumin-binding protein derived from streptococcal protein G, respectively. This novel system has been evaluated by expressing five cDNAs, isolated from pre- pubertal mouse testis by a differential cDNA library screening strategy. All five clones could be expressed intracellularly inE. colias fusion proteins with high production levels, ranging from 4 to 500 mg/liter, and affinity purification yielded essentially full-length products. Characterization of affinity-purified antibodies revealed that there exists no cross-reactivity between the two fusion systems and that such antibodies indeed could be used for immunohistology. The implications for the described system for large-scale functional analysis of cDNA libraries are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号