首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tomato powdery mildew caused by Oidium neolycopersici has become a globally important disease of tomato (Lycopersicon esculentum). To study the defense responses of tomato triggered by tomato powdery mildew, we first mapped a set of resistance genes to O. neolycopersici from related Lycopersicon species. An integrated genetic map was generated showing that all the dominant resistance genes (Ol-1, Ol-3, Ol-4, Ol-5, and Ol-6) are located on tomato chromosome 6 and are organized in three genetic loci. Then, near-isogenic lines (NIL) were produced that contain the different dominant Ol genes in a L. esculentum genetic background. These NIL were used in disease tests with local isolates of O. neolycopersici in different geographic locations, demonstrating that the resistance conferred by different Ol genes was isolate-dependent and, hence, may be race-specific. In addition, the resistance mechanism was analyzed histologically. The mechanism of resistance conferred by the dominant Ol genes was associated with hypersensitive response, which varies in details depending on the Ol-gene in the NIL, while the mechanism of resistance governed by the recessive gene ol-2 on tomato chromosome 4 was associated with papillae formation.  相似文献   

2.
The resistant cherry tomato (Solanum lycopersicum var. cerasiforme) line LC-95, derived from an accession collected in Ecuador, harbors a natural allele (ol-2) that confers broad-spectrum and recessively inherited resistance to powdery mildew (Oidium neolycopersici). As both the genetic and phytopathological characteristics of ol-2-mediated resistance are reminiscent of powdery mildew immunity conferred by loss-of-function mlo alleles in barley and Arabidopsis, we initiated a candidate-gene approach to clone Ol-2. A tomato Mlo gene (SlMlo1) with high sequence-relatedness to barley Mlo and Arabidopsis AtMLO2 mapped to the chromosomal region harboring the Ol-2 locus. Complementation experiments using transgenic tomato lines as well as virus-induced gene silencing assays suggested that loss of SlMlo1 function is responsible for powdery mildew resistance conferred by ol-2. In progeny of a cross between a resistant line bearing ol-2 and the susceptible tomato cultivar Moneymaker, a 19-bp deletion disrupting the SlMlo1 coding region cosegregated with resistance. This polymorphism results in a frameshift and, thus, a truncated nonfunctional SlMlo1 protein. Our findings reveal the second example of a natural mlo mutant that possibly arose post-domestication, suggesting that natural mlo alleles might be evolutionarily short-lived due to fitness costs related to loss of mlo function.  相似文献   

3.
4.
The Mi-1.2 gene in tomato (Solanum lycopersicum) is a member of the nucleotide-binding leucine-rich repeat (NBLRR) class of plant resistance genes, and confers resistance against root-knot nematodes (Meloidogyne spp.), the potato aphid (Macrosiphum euphorbiae), and the sweet potato whitefly (Bemisia tabaci). Mi-1.2 mediates a rapid local defensive response at the site of infection, although the signaling and defensive pathways required for resistance are largely unknown. In this study, eggplant (S. melongena) was transformed with Mi-1.2 to determine whether this gene can function in a genetic background other than tomato. Eggplants that carried Mi-1.2 displayed resistance to the root-knot nematode Meloidogyne javanica but were fully susceptible to the potato aphid, whereas a susceptible tomato line transformed with the same transgene was resistant to nematodes and aphids. This study shows that Mi-1.2 can confer nematode resistance in another Solanaceous species. It also indicates that the requirements for Mi-mediated aphid and nematode resistance differ. Potentially, aphid resistance requires additional genes that are not conserved between tomato and eggplant.  相似文献   

5.
Lycopersicon hirsutum G1.1560 is a wild accession of tomato that shows resistance to Oidium lycopersicum, a frequently occurring tomato powdery mildew. This resistance is largely controlled by an incompletely dominant gene Ol-1 near the Aps-1 locus in the vicinity of the resistance genes Mi and Cf-2/Cf-5. Using a new F2 population (n=150) segregating for resistance, we mapped the Ol-1 gene more accurately to a location between the RFLP markers TG153 and TG164. Furthermore, in saturating the Ol-1 region with more molecular markers using bulked segregant analysis, we were able to identify five RAPDs associated with the resistance. These RAPDs were then sequenced and converted into SCAR markers: SCAB01 and SCAF10 were L. hirsutum-specific; SCAE16, SCAG11 and SCAK16 were L. esculentum-specific. By linkage analysis a dense integrated map comprising RFLP and SCAR markers near Ol-1 was obtained. This will facilitate a map-based cloning approach for Ol-1 and marker-assisted selection for powdery mildew resistance in tomato breeding. Received: 21 June 1999 / Accepted: 1 December 1999  相似文献   

6.
The tomato (Solanum lycopersicum) Mi-1 gene encodes a protein with putative coiled-coil nucleotide-binding site and leucine-rich repeat motifs. Mi-1 confers resistance to root-knot nematodes (Meloidogyne spp.), potato aphids (Macrosiphum euphorbiae), and sweet potato whitefly (Bemisia tabaci). To identify genes required in the Mi-1-mediated resistance to nematodes and aphids, we used tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) to repress candidate genes and assay for nematode and aphid resistance. We targeted Sgt1 (suppressor of G-two allele of Skp1), Rar1 (required for Mla12 resistance), and Hsp90 (heat shock protein 90), which are known to participate early in resistance gene signaling pathways. Two Arabidopsis (Arabidopsis thaliana) Sgt1 genes exist and one has been implicated in disease resistance. Thus far the sequence of only one Sgt1 ortholog is known in tomato. To design gene-specific VIGS constructs, we cloned a second tomato Sgt1 gene, Sgt1-2. The gene-specific VIGS construct TRV-SlSgt1-1 resulted in lethality, while silencing Sgt1-2 using TRV-SlSgt1-2 did not result in lethal phenotype. Aphid and root-knot nematode assays of Sgt1-2-silenced plants indicated no role for Sgt1-2 in Mi-1-mediated resistance. A Nicotiana benthamiana Sgt1 VIGS construct silencing both Sgt1-1 and Sgt1-2 yielded live plants and identified a role for Sgt1 in Mi-1-mediated aphid resistance. Silencing of Rar1 did not affect Mi-1-mediated nematode and aphid resistance and demonstrated that Rar1 is not required for Mi-1 resistance. Silencing Hsp90-1 resulted in attenuation of Mi-1-mediated aphid and nematode resistance and indicated a role for Hsp90-1. The requirement for Sgt1 and Hsp90-1 in Mi-1-mediated resistance provides further evidence for common components in early resistance gene defense signaling against diverse pathogens and pests.  相似文献   

7.
8.
9.
The tomato gene Mi-1.2 confers resistance against root-knot nematodes and some isolates of potato aphid. Resistance to the whitefly Bemisia tabaci previously has been observed in Mi-bearing commercial tomato cultivars, suggesting that Mi, or a closely linked gene, is responsible for the resistance. The response of two biotypes of B. tabaci to tomato carrying the cloned Mi was compared with that of the isogenic untransformed tomato line Moneymaker. Our results indicate that Mi-1.2 is responsible for the resistance in tomato plants to both B- and Q- biotypes. Mi-1.2 is unique among characterized resistance genes in its activity against three very different organisms (root-knot nematodes, aphids, and whiteflies). These pests are among the most important on tomato crops worldwide, making Mi a valuable resource in integrated pest management programs.  相似文献   

10.
The Mi locus of tomato confers resistance to root knot nematodes. Tomato DNA spanning the locus was isolated as bacterial artificial chromosome clones, and 52 kb of contiguous DNA was sequenced. Three open reading frames were identified with similarity to cloned plant disease resistance genes. Two of them, Mi-1.1 and Mi-1.2, appear to be intact genes; the third is a pseudogene. A 4-kb mRNA hybridizing with these genes is present in tomato roots. Complementation studies using cloned copies of Mi-1.1 and Mi-1.2 indicated that Mi-1.2, but not Mi-1.1, is sufficient to confer resistance to a susceptible tomato line with the progeny of transformants segregating for resistance. The cloned gene most similar to Mi-1.2 is Prf, a tomato gene required for resistance to Pseudomonas syringae. Prf and Mi-1.2 share several structural motifs, including a nucleotide binding site and a leucine-rich repeat region, that are characteristic of a family of plant proteins, including several that are required for resistance against viruses, bacteria, fungi, and now, nematodes.  相似文献   

11.
12.
一些小麦白粉病抗源抗性基因鉴定分析   总被引:8,自引:2,他引:6  
研究鉴定了我国37份小麦白粉病抗源的抗性基因,19份材料不具有任何抗性基因;6份材料具有来自1BL/1RS易位系的抗性基因Pm8;5份材料具有抗性基因Pm5a;3份分别具有对目前欧洲所有生理小种均抗的抗性基因Pm21、Pm16和Pm12;4份材料具有新的抗性基因。  相似文献   

13.
Tomato (Lycopersicon esculentum) is susceptible to the powdery mildew Oidium lycopersici, but several wild relatives such as Lycopersicon parviflorum G1.1601 are completely resistant. An F2 population from a cross of Lycopersicon esculentum cv. Moneymaker x Lycopersicon parviflorum G1.1601 was used to map the O. lycopersici resistance by using amplified fragment length polymorphism markers. The resistance was controlled by three quantitative trait loci (QTLs). Ol-qtl1 is on chromosome 6 in the same region as the Ol-1 locus, which is involved in a hypersensitive resistance response to O. lycopersici. Ol-qtl2 and Ol-qtl3 are located on chromosome 12, separated by 25 cM, in the vicinity of the Lv locus conferring resistance to another powdery mildew species, Leveillula taurica. The three QTLs, jointly explaining 68% of the phenotypic variation, were confirmed by testing F3 progenies. A set of polymerase chain reaction-based cleaved amplified polymorphic sequence and sequence characterized amplified region markers was generated for efficient monitoring of the target QTL genomic regions in marker assisted selection. The possible relationship between genes underlying major and partial resistance for tomato powdery mildew is discussed.  相似文献   

14.
The tomato Mi-1 gene confers resistance to root-knot nematodes (Meloidogyne spp.), potato aphids (Macrosiphum eluphorbiae), and whiteflies (Bemisia tabaci and B. tabaci biotype B). Resistance to potato aphid is developmentally regulated and is not associated with induction of a hypersensitive response. The NahG transgene that eliminates endogenous salicylic acid (SA) was used to test the role of the SA signaling pathway in the resistance mediated by Mi-1 to potato aphids. Aphids survived longer on NahG tomato plants than on wild type. However, aphid reproduction was not affected on NahG tomato. Aphid resistance in Mi-1 NahG plants was completely abolished and the phenotype was successfully rescued by application of BTH (benzo(1,2,3)-thiaiazole-7-carbothioic acid S-methyl ester), indicating that the SA signaling pathway is an important component of Mi-1-mediated aphid resistance. Using virus-induced gene silencing, one or more mitogen-activated protein kinase (MAPK) cascades required for Mi-1-mediated aphid resistance were identified. Silencing plants for MAPK kinase (LeMKK2) and MAPKs (LeMPK2 and LeMPK1, or LeMPK3) resulted in attenuation of Mi-1-mediated aphid resistance. These results further demonstrate that resistance gene-mediated signaling events against piercing-sucking insects are similar to those against other plant pathogens.  相似文献   

15.
16.
The tomato Mi gene confers resistance against root-knot nematodes and potato aphids. Chimeric constructs of the functional gene, Mi-1. 2, with a homolog, Mi-1.1, were produced, and their phenotypes were examined in Agrobacterium rhizogenes-transformed roots. Exchange of the leucine-rich repeat (LRR) region of Mi-1.1 into Mi-1.2 resulted in the loss of ability to confer nematode resistance, as did substitution of a 6-amino acid sequence from the Mi-1.1 LRR into Mi-1.2. Introduction of the Mi-1.2 LRR-encoding region into Mi-1.1 resulted in a lethal phenotype, as did substitution of the fragment encoding the N-terminal 161 amino acids of Mi-1.1 into Mi-1.2. Transient expression of the latter two chimeric constructs in Nicotiana benthamiana leaves produced localized cell death. The cell death caused by the N-terminal exchange was suppressed by coinfiltration with a construct expressing the N-terminal 161 amino acids of Mi-1.2. The phenotypes of these and other constructs indicate that the LRR region of Mi-1.2 has a role in signaling localized cell death and that the N-terminal 161 amino acids have a role in regulating this death.  相似文献   

17.
18.
Hypersensitive response (HR) of plant cells to the attack of pathogens induces resistance to subsequent attacks by a broad spectrum of pathogens, leading to acquired resistance. In this study, we characterized the localized acquired resistance (LAR) in the epidermal cells of tomato. First, we report the discovery of a new isolate of tomato powdery mildew occurring in Japan, KTP-02, which has a different virulence spectrum compared with the previously-characterized isolate, KTP-01. Using these two isolates, we investigated LAR phenomenon in the epidermal cells of tomato plants carrying the Ol-4 resistance gene. Ol-4 encodes a nucleotide-binding site leucine-rich repeat protein that triggers HR in the epidermal cells in response to KTP-01 but not KTP-02. We mounted a single conidium of KTP-01 on a single tomato epidermal cell and then monitored the progress of HR in that cell by live microscopy. Once HR occurred in that cell, we mounted a single conidium of KTP-02 on cells adjacent to or at one-cell distance from the first challenged cells, in different time points. With a digital microscope, we consecutively tracked the progress of HR (i.e., induction of LAR) in those cells. Results showed that, in tomato plants carrying the Ol-4 gene, HR to KTP-01 results in induction of HR in the adjacent epidermal cells challenged with KTP-02. Our results show that LAR can be triggered only in adjacent cell layer and lasts 24 to 48 h after HR occurred in the first cell. We did not observe the reverse phenomenon, induced susceptibility to KTP-01 by KTP-02. Altogether, we report an advanced technique for investigating LAR phenomena, and provide data on spatiotemporal characteristics of LAR in tomato epidermal cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号