共查询到20条相似文献,搜索用时 15 毫秒
1.
The length variability of four human interstitial telomeric sequences (ITs) is described. Three of the ITs contain short telomeric stretches ranging between 53 and 84 bp and are localized in 21q22, 2q31, and 7q36; the fourth IT derives from the subtelomeric domain of chromosome 6p and contains a tract of a few hundred basepairs of exact and degenerate repeats. Using primers flanking the repeats, we amplified the genomic DNA from unrelated individuals and from family members, and we found that all the loci are polymorphic. At the 21q22 IT locus, two equally frequent alleles were found, while the number of alleles at the 2q31, 7q36, and 6pter IT loci was 8, 6, and 4, respectively. Sequence analysis revealed that in the three loci containing short ITs the alleles differ from one another for multiples of the hexanucleotide; it is likely that the mechanism leading to the polymorphism is DNA polymerase slippage. These loci were also unstable in gastric tumor cells characterized by microsatellite instability. At the 6pter IT locus, the four alleles range in length from about 500 to about 700 bp; this variability is probably due to unequal exchange or gene conversion. Our data indicate that stretches of exact internal telomeric repeats can be highly unstable, like microsatellites with shorter units, and that they can be useful polymorphic markers for linkage analysis, for forensic applications, and for the detection of genetic instability in tumors. 相似文献
2.
Telomeres are specialized nucleoproteic complexes localized at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. The DNA component of telomeres is characterized by being a G-rich double stranded DNA composed by short fragments tandemly repeated with different sequences depending on the species considered. At the chromosome level, telomeres or, more properly, telomeric repeats--the DNA component of telomeres--can be detected either by using the fluorescence in situ hybridization (FISH) technique with a DNA or a peptide nucleic acid (PNA) (pan)telomeric probe, i.e., which identifies simultaneously all of the telomeres in a metaphase cell, or by the primed in situ labeling (PRINS) reaction using an oligonucleotide primer complementary to the telomeric DNA repeated sequence. Using these techniques, incomplete chromosome elements, acentric fragments, amplification and translocation of telomeric repeat sequences, telomeric associations and telomeric fusions can be identified. In addition, chromosome orientation (CO)-FISH allows to discriminate between the different types of telomeric fusions, namely telomere-telomere and telomere-DNA double strand break fusions and to detect recombination events at the telomere, i.e., telomeric sister-chromatid exchanges (T-SCE). In this review, we summarize our current knowledge of chromosomal aberrations involving telomeres and interstitial telomeric repeat sequences and their induction by physical and chemical mutagens. Since all of the studies on the induction of these types of aberrations were conducted in mammalian cells, the review will be focused on the chromosomal aberrations involving the TTAGGG sequence, i.e., the telomeric repeat sequence that "caps" the chromosomes of all vertebrate species. 相似文献
3.
The presence of interstitial telomeric sequences in constitutional chromosome abnormalities. 下载免费PDF全文
We describe a novel chromosome structure in which telomeric sequences are present interstitially, at the apparent breakpoint junctions of structurally abnormal chromosomes. In the linear chromosomes with interstitial telomeric sequences, there were three sites of hybridization of the telomere consensus sequence within each derived chromosome: one at each terminus and one at the breakpoint junction. Telomeric sequences also were observed within a ring chromosome. The rearrangements examined were constitutional chromosome abnormalities with a breakpoint assigned to a terminal band. In each case (with the exception of the ring chromosome), an acentric segment of one chromosome was joined to the terminus of an apparently intact recipient chromosome. One case exhibited apparent instability of the chromosome rearrangement, resulting in somatic mosaicism. The rearrangements described here differ from the telomeric associations observed in certain tumors, which appear to represent end-to-end fusion of two or more intact chromosomes. The observed interstitial telomeric sequences appear to represent nonfunctional chromosomal elements, analogous to the inactivated centromeres observed in dicentric chromosomes. 相似文献
4.
Interstitial telomeric sequences (ITSs) consist of tandem repeats of the canonical telomeric repeat and are common in mammals. They are localized at intrachromosomal sites, including those repeats located close to the centromeres and those found at interstitial sites, i.e., between the centromeres and the telomeres. ITSs might originate from ancestral intrachromosomal rearrangements (inversions and fusions), from differential crossing-over or from the repair of double-strand break during evolution. Three classes of ITSs have been described in the human genome, namely, short ITSs, long subtelomeric ITSs and fusion ITSs. The fourth class of ITSs, pericentromeric ITSs, has been found in other species. The function of ITSs can be inferred from the association of heritable diseases with ITS polymorphic variants, both in copy number and sequence. This is one of the most attractive aspects of ITS studies because it leads to new and useful markers for genetic linkage studies, forensic applications, and detection of genetic instability in tumors. Some ITSs also might be hotspots of chromosome breakage, rearrangement and amplification sites, based on the type of clastogens and the nature of ITSs. This study will contribute new knowledge with respect to ITSs' biology and mechanism, prevalence of diseases, risk evaluation and prevention of related diseases, thus facilitates the design of early detection markers for diseases caused by genomic instability. 相似文献
5.
Mouse telomeres have been suggested to resemble common fragile sites (CFS), showing disrupted TTAGGG fluorescent in situ hybridization signals after aphidicolin treatment. This “fragile” telomere phenotype is induced by deletion of TRF1, a shelterin protein that binds telomeric DNA and promotes efficient replication of the telomeric ds[TTAGGG]n tracts. Here we show that the chromosome-internal TTAGGG repeats present at human chromosome 2q14 form an aphidicolin-induced CFS. TRF1 binds to and stabilizes CFS 2q14 but does not affect other CFS, establishing 2q14 as the first CFS controlled by a sequence-specific DNA binding protein. The data show that telomeric DNA is inherently fragile regardless of its genomic position and imply that CFS can be caused by a specific DNA sequence. 相似文献
6.
Desmaze C Alberti C Martins L Pottier G Sprung CN Murnane JP Sabatier L 《Cytogenetics and cell genetics》1999,86(3-4):288-295
Although most telomere repeat sequences are found at the ends of chromosomes, some telomeric repeat sequences are also found at intrachromosomal locations in mammalian cells. Several studies have found that these interstitial telomeric repeat sequences can promote chromosome instability in rodent cells, either spontaneously or following ionizing radiation. In the present study we describe the extensive cytogenetic analysis of three different human cell lines with plasmids containing telomeric repeat sequences integrated at interstitial sites. In two of these cell lines, Q18 and P8SX, instability has been detected in the chromosome containing the integrated plasmid, involving breakage/fusion/bridge cycles or amplification of the plasmid DNA, respectively. However, the data suggest that the instability observed is characteristic of the general instability in these cell lines and that the telomeric repeat sequences themselves are not responsible. Consistent with this interpretation, the chromosome containing an integrated plasmid with 500 bp of telomeric repeat sequences is highly stable in the third cell line, SNG28, which has a relatively stable genome. The stability of the chromosome containing the integrated plasmid sequences in SNG28 makes this an excellent cell line to study the effect of ionizing radiation on the stability of interstitial telomeric sequences in human cells. 相似文献
7.
Satellite DNA clones with a 37 bp repeat unit were obtained from BglII-digested genomic DNA of Masu salmon (Oncorhynchus masou) and Chum salmon (O. keta). Fluorescence in situ hybridization (FISH) analysis with the isolated clones as a probe showed that these repetitive sequences
were localized in the telomeric regions of chromosomes in both species. Southern and dot blot analyses suggested conservation
of homologous sequences with similar repeat unit in other salmonids including the species of the genus Oncorhynchus and Salvelinus, but lack or scarcity of such sequences in the genus Hucho and Salmo. Similarly, polymerase chain reaction (PCR)-based cloning of satellite DNA referring to a reported Rainbow trout (O. mykiss) centromeric sequence was successful for the Oncorhynchus, Salvelinus and Hucho species. The obtained satellite DNA clones were localized with FISH in the centromeric regions of chromosomes of the species
from these three genera. Although PCR cloning of the centromeric satellite DNA had failed in the Salmo species due to some base changes in the priming sites, dot blot hybridization analysis suggested conservation of homologous
satellite DNA in the genus Salmo as in the other three genera. In the neighbor-joining tree of cloned centromeric satellite DNA sequences, the genus Oncorhynchus and Salvelinus formed adjacent clades, and the clade of the genus Hucho included the reported centromeric sequence of the genus Salmo. Conservation pattern and molecular phylogeny of the telomeric and centromeric satellite DNA sequences isolated herein support
a close phylogenetic relationship between the genus Oncorhynchus and Salvelinus and between the Salmo and Hucho. 相似文献
8.
We analyzed the behavior of interstitial telomeric sequences (ITSs) in the progeny of Chinese Hamster Ovary (CHO) cells exposed to the radiomimetic compound bleomycin (BLM) in order to determine if ITSs play some role in the long-term clastogenic effect of this antibiotic. To this end, CHO cells were treated with a single concentration of BLM (2.5μg/ml), and the frequency of unstable chromosomal aberrations was determined at several times after treatment (18h, and 6, 15 and 34/36 days) by using PNA-FISH with a pan-telomeric probe [(TTAGGG)n repeats]. Cytogenetic analysis revealed a higher frequency of aberrations at 18h and 6 days after treatment in BLM-exposed cultures vs. untreated cultures, although the yield of BLM-induced aberrations decreased on average five times 6 days after treatment compared with the one induced 18h after treatment. Moreover, no significant differences in the frequency of aberrations were observed between untreated and BLM-exposed cells at 15 or 34/36 days after treatment. These data indicate that, in terms of unstable aberrations, the in vitro clastogenic effect of BLM on CHO cells persists for at least 6 days but less than 15 days after exposure. In addition, we found that BLM induces ITSs instability, cytogenetically detectable as acentric fragments (18h after treatment) or additional (new) FISH signals (6 days after treatment). We propose that the delayed effect of BLM on ITSs mainly results from breakage of heterochromatic ITSs blocks and further insertion of these sequences at the sites of monochromatid breaks occurring at G2 phase of the cell cycle, since most of the additional FISH signals were present as single dots and located at interstitial sites of the involved chromosomes. 相似文献
9.
Telomeres often shorten with time, although this varies between tissues, individuals and species, and their length and/or rate of change may reflect fitness and rate of senescence. Measurement of telomeres is increasingly important to ecologists, yet the relative merits of different methods for estimating telomere length are not clear. In particular the extent to which interstitial telomere sequences (ITSs), telomere repeats located away from chromosomes ends, confound estimates of telomere length is unknown. Here we present a method to estimate the extent of ITS within a species and variation among individuals. We estimated the extent of ITS by comparing the amount of label hybridized to in‐gel telomere restriction fragments (TRF) before and after the TRFs were denatured. This protocol produced robust and repeatable estimates of the extent of ITS in birds. In five species, the amount of ITS was substantial, ranging from 15% to 40% of total telomeric sequence DNA. In addition, the amount of ITS can vary significantly among individuals within a species. Including ITSs in telomere length calculations always underestimated telomere length because most ITSs are shorter than most telomeres. The magnitude of that error varies with telomere length and is larger for longer telomeres. Estimating telomere length using methods that incorporate ITSs, such as Southern blot TRF and quantitative PCR analyses reduces an investigator's power to detect difference in telomere dynamics between individuals or over time within an individual. 相似文献
10.
Different DNA-PKcs functions in the repair of radiation-induced and spontaneous DSBs within interstitial telomeric sequences 总被引:1,自引:0,他引:1
Interstitial telomeric sequences (ITSs) in hamster cells are hot spots for spontaneous and induced chromosome aberrations
(CAs). Most data on ITS instability to date have been obtained in DNA repair-proficient cells. The classical non-homologous
end joining repair pathway (C-NHEJ), which is the principal double strand break (DSB) repair mechanism in mammalian cells,
is thought to restore the morphologically correct chromosome structure. The production of CAs thus involves DNA-PKcs-independent
repair pathways. In our current study, we investigated the participation of DNA-PKcs from the C-NHEJ pathway in the repair
of spontaneous or radiation-induced DSBs in ITSs using wild-type and DNA-PKcs mutant Chinese hamster ovary cells. Our data
demonstrate that DNA-PKcs stabilizes spontaneous DSBs within ITSs from the chromosome 9 long arm, leading to the formation
of terminal deletions. In addition, we show that DNA-PKcs-dependent C-NHEJ is employed following radiation-induced DSBs in
other ITSs and restores morphologically correct chromosomes, whereas DNA-PKcs independent mechanisms co-exist in DNA-PKcs
proficient cells leading to an excess of CAs within ITSs. 相似文献
11.
The purpose of this investigation was twofold. The first objective was to demonstrate that, in most of ten mammalian species commonly used in biomedical research, not all constitutive heterochromatin (C-bands) represents telomeric DNA. For example, the C-bands in human chromosomes, the long arm of the X and the entire Y chromosome of Chinese hamster, and most of the short arms of Peromyscus and Syrian hamster chromosomes are not telomeric DNA. In addition to the usual terminal telomeric DNA in the chromosomes of these mammalian species, the pericentromeric regions of seven or eight Syrian hamster chromosomes and all Chinese hamster chromosomes except pair one have pericentromeric regions that hybridize with telomeric DNA, some in C-bands and some not. The second objective was to describe a simple fluorescence in situ hybridization (FISH) reverse-printing procedure to produce black-and-white microphotographs of metaphase and interphase cells showing locations of telomeric DNA with no loss of resolution. Thus, at least three different types of heterochromatin (telomeric heterochromatin, nontelomeric heterochromatin and a combination of both) are present in these mammalian species, and this simple black-and-white reverse printing of telomeric FISH preparations can depict them economically without sacrificing clarity. 相似文献
12.
We analyzed the induction of chromosomal aberrations in Chinese hamster ovary (CHO) cells exposed to the radiomimetic compound streptonigrin (SN), in order to determine whether interstitial telomeric sequences (ITSs) are involved in the long-term clastogenic effect of this antibiotic. CHO cells were treated with a single concentration of SN (100ng/ml), and the frequency of unstable chromosomal aberrations was determined at three times after treatment (18h, and 6 and 15 days) by using PNA-FISH with a pan-telomeric probe. Cytogenetic analysis revealed a higher frequency of aberrations at 18h and 6 days after treatment in SN-exposed cultures vs. untreated cultures. The percentage of damaged cells and the yield of SN-induced aberrations at 6 days after treatment increased on average twofold compared with the ones at 18h after treatment. Moreover, a significant decrease in the frequency of aberrations was observed in SN-exposed cells at 15 days after treatment, resulting in a frequency of aberrations significantly lower than the frequency of aberrations observed in the corresponding control cultures. These data indicate that SN induces delayed chromosomal instability in CHO cells, and that the in vitro clastogenic effect of this compound persists for at least 6 days but less than 15 days after treatment. In addition, we found that SN induces delayed ITSs instability, cytogenetically detectable as additional FISH signals and centromeric breaks involving dissociation of the telomeric signal 6 days after treatment. We propose that the delayed effect of SN on ITSs results from breakage of heterochromatic centromeric ITSs blocks and further insertion of these sequences at the sites of mono- or isochromatid breaks occurring at G2 or G1-S phases of the cell cycle, respectively, since most of the additional FISH signals were present as single or double dots, and located at interstitial sites of the involved chromosomes. 相似文献
13.
To determine the telomere sequence in Tapinoma nigerrimum, we carried out in situ hybridization using TTAGGG and TTAGG repeat polymerase chain reaction (PCR)-generated probes. No hybridization signals were found when TTAGGG was used as a probe. However, strong signals were observed at the end of the chromosomes with the TTAGG probe. Southern blot analysis carried out on genomic DNA using TTAGG as a probe showed a strong hybridization signal even under highly stringent conditions. Similar results were obtained in Southern blot analysis carried out on genomic DNA of 19 species of ants belonging to three different subfamilies. In accordance with all the results shown in this article, the TTAGG repeat seems to be the major component of the telomere sequence in the majority of ant species. 相似文献
14.
Simonet T Zaragosi LE Philippe C Lebrigand K Schouteden C Augereau A Bauwens S Ye J Santagostino M Giulotto E Magdinier F Horard B Barbry P Waldmann R Gilson E 《Cell research》2011,21(7):1028-1038
The study of the proteins that bind to telomeric DNA in mammals has provided a deep understanding of the mechanisms involved in chromosome-end protection. However, very little is known on the binding of these proteins to nontelomeric DNA sequences. The TTAGGG DNA repeat proteins 1 and 2 (TRF1 and TRF2) bind to mammalian telomeres as part of the shelterin complex and are essential for maintaining chromosome end stability. In this study, we combined chromatin immunoprecipitation with high-throughput sequencing to map at high sensitivity and resolution the human chromosomal sites to which TRF1 and TRF2 bind. While most of the identified sequences correspond to telomeric regions, we showed that these two proteins also bind to extratelomeric sites. The vast majority of these extratelomeric sites contains interstitial telomeric sequences (or ITSs). However, we also identified non-ITS sites, which correspond to centromeric and pericentromeric satellite DNA. Interestingly, the TRF-binding sites are often located in the proximity of genes or within introns. We propose that TRF1 and TRF2 couple the functional state of telomeres to the long-range organization of chromosomes and gene regulation networks by binding to extratelomeric sequences. 相似文献
15.
16.
Majerová et al. (Plant Mol Biol, 2011) have recently reported that a considerable fraction of cytosines at tobacco telomeres is methylated. Although the data presented
in this report indicate that tobacco telomeric sequences undergo certain levels of DNA methylation, it is not clear whether
the methylated sequences are at telomeres, at internal chromosomal loci or at both. 相似文献
17.
Highly polymorphic Arctic charr ( Salvelinus alpinus Linnaeus, 1758) chromosomes were studied using conventional and molecular methods. The diploid chromosome number in the studied individuals was 2n = 81 or 2n = 82, with a fundamental arm number (NF) = 100. These differences are due to Robertsonian fusions. Interindividual variation in the number and size of DAPI and CMA(3) positively stained chromatin sites was observed in studied specimens. In the case of two individuals, the subtelomeric region of the long arm (q) of the largest acrocentric chromosome (chromosome number 10) was positively stained by CMA(3) fluorochrome. Both primed in situ labelling (PRINS) and fluorescence in situ hybridization (FISH) revealed that this CMA(3)-positive region was flanked by telomeric sequences. Previously, the subterminal position of interstitial telomeric sequences located in the vicinity of the CMA(3)-positive guanine-rich chromatin have been described in two other Salvelinus species, brook trout ( Salvelinus fontinalis ) and lake trout ( Salvelinus namaycush ). Moreover, multichromosomal location and variation in size of CMA(3) bands have been observed in various Salvelinus taxa, including fishes with internally located telomeric sequences. These results suggest that relocation of CMA(3)-positive chromatin segments in these species may be facilitated by flanking interstitial telomeric sequences (ITSs). 相似文献
18.
The Chinese hamster genome contains a total of 18 cytologically detectable arrays of interstitial telometic sequences. A combination of G-banding and twocolour fluorescence in situ hybridization revealed that 25 out of 27 (93%) breakpoints of spontaneously occurring terminal deletions in four immortalized Chinese hamster cell lines were located in chromosomal regions containing interstitial telomeric sequences. Each of the four immortalized Chinese hamster cell lines expressed telomerase. Radiation experiments revealed the sensitivity of interstitial telomeric sequences to radiation-induced chromosomal breakage in all telomerase-positive cell lines. However, radiation-induced chromosomal breakage at interstitial telomeric sites in non-transformed, primary Chinese hamster cells was almost non-existent. Telomerase activity in primary Chinese hamster cells was not detected. These results indirectly suggest that interstitial telomeric sites represent a favourable substrate for chromosomal healing. 相似文献
19.
Chromosomal distribution of interstitial telomeric sequences in nine neotropical primates (Platyrrhini): possible implications in evolution and phylogeny 下载免费PDF全文
Francesca Dumas Helenia Cuttaia Luca Sineo 《Journal of Zoological Systematics and Evolutionary Research》2016,54(3):226-236
To localize interstitial telomeric sequences (ITSs) and to test whether their pattern of distribution could be linked to chromosomal evolution, we hybridized telomeric sequence probes (peptide nucleic acid, PNA) on metaphases of New World monkeys: Callithrix argentata, Callithrix jacchus, Cebuella pygmaea, Saguinus oedipus, Saimiri sciureus, Aotus lemurinus griseimembra, Aotus nancymaae (Cebidae), Lagothrix lagotricha (Atelidae) and Callicebus moloch (Pithecidae), characterized by a rapid radiation and a high rate of chromosomal rearrangements. Our analysis of the probe signal localization allowed us to show in all the species analysed, as normally, the telomeric location at the terminal ends of chromosomes and unexpected signal distributions in some species. Indeed, in three species among the nine studied, Aotus lemurinus griseimembra, Aotus nancymaae (Cebidae) and Lagothrix lagotricha (Atelidae), we showed a high variability in terms of localization and degree of amplification of interstitial telomeric sequences, especially for the ones found at centromeric or pericentromeric positions (het‐ITS). A comparative analysis, between species, of homologous chromosomes to human syntenies, on which we have found positive interspersed PNA signals, allowed us to explain the observed pattern of ITS distribution as results of chromosomal rearrangements in the neotropical primates analysed. This evidence permitted us to discuss the possible implication of ITSs as phylogenetic markers for closely related species. Moreover, reviewing previous literature data of ITSs distribution in Primates and in the light of our results, we suggest an underestimation of ITSs and highlight the importance of the molecular cytogenetics approach in characterizing ITSs, which role is still not clarified. 相似文献
20.
Mapping using unique sequences 总被引:5,自引:0,他引:5
D C Torney 《Journal of molecular biology》1991,217(2):259-264
Theoretical predictions are given for the progress expected, when mapping DNA by identifying clones containing specific unique sequences. Progress is measured in three ways; however, all results depend on (dimensionless counterparts of) the number of clones and the number of unique sequences used. Furthermore, the effects of clone length dispersion are included in the theoretical predictions. Both the clones in the library and the unique sequences are assumed to be generated randomly, with uniform probability of originating at any base in the region to be mapped. The first measure of progress is the expected length fraction of the region to be mapped covered by at least one clone, when clones containing at least one unique sequence are included in the map. The second measure of progress is the expected length fraction of the region to be mapped in "covered intervals", an interval being the region between adjacent unique sequences. Alternative definitions for clones covering an interval are analyzed. The third measure of progress is the expected number of clone islands generated; an island covers successive intervals. Finally, using these measures of progress, we compare the efficiency of this new mapping strategy with conventional clone mapping strategies. 相似文献