首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The site of action of synthetic progestins or danazol in the treatment of endometriosis is considered to be mainly the hypothalamo-pituitary level, but the direct action to the uterine endometrium and the ovary is also suggested. We investigated the effect of these synthetic steroids to rat ovarian steroidogenic enzymes. The effect of norethisterone, levonorgestrel, danazol, gestrinone, desogestrel and 3-keto-desogestrel was studied in vitro. The sources of the enzymes were prepared from ovaries of immature rats treated either with pregnant mare serum gonadotropin (PMS) and human chorionic gonadotropin (hCG) for 3 beta-hydroxy steroid dehydrogenase (3 beta-HSD), or with PMS for 17 alpha-hydroxylase and 17,20 lyase. The substrates used were pregnenolone (P5) for 3 beta-HSD, progesterone (P4) for 17 alpha-hydroxylase, and 17 alpha-hydroxy-progesterone (17 alpha-OH-P4) for 17,20 lyase. The substrates were incubated with the enzyme sources and coenzymes, and the products formed were measured. All the steroids inhibited 3 beta-HSD, and the inhibition by gestrinone (Ki = 3.0 microM) and 3-keto-desogestrel (17.5 microM) was particularly marked. Only desogestrel (Ki = 30.3 microM) and danazol (168 microM) inhibited 17 alpha-hydroxylase. All the steroids inhibited 17,20 lyase, and the inhibition by desogestrel (Ki = 0.70 microM), danazol (0.80 microM), and gestrinone (30 microM) was particularly marked.  相似文献   

2.
The objective was to compare ovarian steroids and expression of mRNAs encoding cytochrome P450 side-chain cleavage, cytochrome P450 17 alpha-hydroxylase, cytochrome P450 aromatase, 3 beta-hydroxysteroid dehydrogenase Delta(4),Delta(5) isomerase, LH, and FSH receptors and estrogen receptor-beta in ovaries of cows with dominant and nondominant ovarian follicular cysts and in normal dominant follicles. Estradiol-17 beta, progesterone, and androstenedione concentrations were determined in follicular fluid using specific RIAs. Dominant cysts were larger than young cysts or dominant follicles, whereas nondominant cysts were intermediate. Estradiol-17 beta (ng/ml) and total steroids (ng/follicle) were higher in dominant cysts than in dominant follicles. Expression of LH receptor and 3 beta-hydroxysteroid dehydrogenase mRNAs was higher in granulosa cells of dominant cysts than in dominant follicles. Nondominant cysts had higher follicular concentrations of progesterone, lower estradiol-17 beta concentrations, and lower expression of steroidogenic enzyme, gonadotropin receptor, and estrogen receptor-beta mRNAs than other groups. In summary, increased expression of LH receptor and 3 beta-hydroxysteroid dehydrogenase mRNAs in granulosa and increased follicular estradiol-17 beta concentrations were associated with dominant cysts compared to dominant follicles. Study of cysts at known developmental stages is useful in identifying alterations in follicular steroidogenesis.  相似文献   

3.
The steroid secreting activities of dispersed granulosa and theca interna cells from preovulatory follicles of prepubertal gilts 72 h after pregnant mare's serum gonadotropin treatment (750 IU) were compared. The cells were cultured for 24 h with or without steroid substrate (10(-8) to 10(-5) M progesterone, 17 alpha-hydroxyprogesterone, or androstenedione), FSH (100 ng/mL), LH (100 ng/mL), and cyanoketone (0.25 microM, an inhibitor of 3 beta-hydroxysteroid dehydrogenase). Granulosa cells cultured alone secreted mainly progesterone. Theca interna cells secreted mainly 17 alpha-hydroxyprogesterone and androstenedione, with secretion being markedly enhanced by LH. In the presence of cyanoketone, which inhibited endogenous progesterone production, theca interna but not granulosa cells were able to convert exogenous progesterone to 17 alpha-hydroxyprogesterone and androstenedione, and exogenous 17 alpha-hydroxyprogesterone to androstenedione and estradiol-17 beta in high yield. The secretion of the latter steroids from exogenous substrates was unaffected by LH. Theca interna cells secreted more estradiol-17 beta than did granulosa cells in the absence of aromatizable substrate, but estradiol-17 beta secretion by the latter was markedly increased after the addition of androstenedione. These apparent differences in steroid secreting activity between the cell types suggest that the enzymes responsible for conversion of C21 to C19 steroids, i.e., 17 alpha-hydroxylase and C17,20-lyase, reside principally in the theca interna cells. However, aromatase activity appears to be much higher in granulosa cells.  相似文献   

4.
Limits to estrogen production by early and late preovulatory porcine follicles were assessed by comparing enzymatic capacities for androgen (17,20-lyase) and estrogen (aromatase) synthesis in theca interna and granulosa, support of enzyme activities by the redox partner proteins NADPH-cytochrome P450 oxidoreductase (reductase) and cytochrome b5, and tissue-specific expression and regulation of these proteins. Parameters included follicular fluid (FF) estradiol and progesterone levels, theca and granulosa aromatase and reductase activities, and theca 17,20-lyase activity. Expression of proteins responsible for these activities, aromatase (P450arom) and 17 alpha-hydroxylase/17,20-lyase (P450c17) cytochromes P450, reductase, and for the first time in ovarian tissues cytochrome b5, were examined by Western immunoblot and immunocytochemistry. Theca and granulosa aromatase activities were as much as 100-fold lower than theca 17,20-lyase activity, but aromatase was correlated with only the log of FF estradiol. Granulosa reductase activity was twice that of the theca, and cytochrome b5 expression was clearly identified in both the theca and granulosa layers, as was P450arom, but was not highly correlated with either 17,20-lyase or aromatase activities. Reductase expression did not change with stage of follicular development, but cytochrome b5, P450c17, and P450arom were markedly lower in post-LH tissues. These data indicate that aromatase and not 17,20-lyase must limit porcine follicular estradiol synthesis, but this limitation is not reflected acutely in FF steroid concentrations. Neither reductase nor cytochrome b5 appear to regulate P450 activities, but the expression of cytochrome b5 in granulosa and theca suggests possible alternative roles for this protein in follicular development or function.  相似文献   

5.
Pregnant rats received whole-body irradiation at 20 days of gestation with 2.6 Gy lambda rays from a 60Co source. Endocrinological effects before maturation were studied using testes and adrenal glands obtained from male offspring and ovaries from female offspring irradiated in utero. Seminiferous tubules of the irradiated male offspring were remarkably atrophied with free germinal epithelium and containing only Sertoli cells. Female offspring also had atrophied ovaries. Testicular tissue obtained from intact and 60Co-irradiated rats was incubated with 14C-labeled pregnenolone, progesterone, 17 alpha-hydroxyprogesterone, and androstenedione as a substrate. Intermediates for androgen production and catabolic metabolites were isolated after the incubation. The amounts of these metabolites produced by the irradiated testes were low in comparison with the control. The activities of delta 5-3 beta-hydroxysteroid dehydrogenase, 17 alpha-hydroxylase, C17,20-lyase, and delta 4-5 alpha-reductase in the irradiated testes were 30-40% of those in nonirradiated testes. Also, the activities of 17 beta- and 20 alpha-hydroxysteroid dehydrogenases were 72 and 52% of the control, respectively. In adrenal glands, the 21-hydroxylase activity of the irradiated animals was 38% of the control, but the delta 5-3 beta-hydroxysteroid dehydrogenase activity was comparable to that of the control. On the other hand, the activity of delta 5-3 beta-hydroxysteroid dehydrogenase of the irradiated ovary was only 19% of the control. These results suggest that 60Co irradiation of the fetus in utero markedly affects the production of steroid hormones in testes, ovaries, and adrenal glands after birth.  相似文献   

6.
Parturition in the pregnant sheep is preceded by an abrupt alteration in placental steroid metabolism causing a shift from progesterone to estrogen production. This change is believed to be a consequence of the prepartum rise in cortisol in the fetal circulation and involves increases in activities of the enzymes steroid 17 alpha-hydroxylase (cytochrome P-450(17)alpha), steroid C-17,20-lyase, and possibly aromatase. We have investigated the activity levels of aromatase and 17 alpha-hydroxylase in placental microsomes in late pregnancy and dexamethasone-induced labor. Over the gestational period of 118-140 days basal levels of placental aromatase were relatively constant [mean value (+/- SD) of 5.6 +/- 1.6 pmol min-1 mg microsomal protein-1 (n = 10)]. Steroid 17 alpha-hydroxylase activity was undetectable [less than 0.5 pmol min-1 mg microsomal protein-1 (n = 7)]. In six animals in labor induced with infusion of dexamethasone into the fetus, placental aromatase activity had a mean value of 14.0 +/- 2.5 pmol min-1 mg protein-1; placental steroid 17 alpha-hydroxylase, measured in four of the animals, had a mean (+/- SD) activity of 319 +/- 58 pmol min-1 mg microsomal protein-1. Immunoblotting of placental microsomal preparations with specific antibodies to cytochrome P-450(17)alpha and NADPH-cytochrome P-450-reductase indicated that the glucocorticoid-induced activity of 17 alpha-hydroxylase was associated with increased content of cytochrome P-450(17)alpha. Northern blotting with a cDNA probe for cytochrome P-450(17)alpha showed that glucocorticoid increased the levels of mRNA for the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Ueyama T  Shirasawa N  Ito T  Tsuruo Y 《Life sciences》2004,74(18):2327-2337
Recently we demonstrated the presence of aromatase (P450(arom)), estrogen synthetase, and the active production of estrogen in parietal cells of the rat stomach. We therefore investigated the steroidogenic pathways of estrogen and also other steroid metabolites in the gastric mucosa of male rats, by showing the mRNA expression of steroidogenic enzymes using RT-PCR and in situ hybridization histochemistry, and by measuring the blood concentration of steroids in the artery and the portal vein. RT-PCR analysis showed the strong mRNA expression of 17alpha-hydroxylase/17,20-lyase (P450(17alpha)), 17beta-hydroxysteroid dehydrogenase (HSD) type III and P450(arom), and the weak mRNA expression of 17beta-HSD type II, 5alpha-reductase type I and 3alpha-HSD. The other mRNAs of steroidogenic enzymes examined were not detected. In situ hybridization histochemistry demonstrated the localization of mRNAs for P450(17alpha), 17beta-HSD type III and P450(arom) in the parietal cells. Higher levels of progesterone and testosterone were found in the artery compared with the portal vein. Higher amounts of estrone and 17beta-estradiol, by contrast, were present in the portal vein compared with the artery. These results indicate that parietal cells of rat stomach convert circulating progesterone and/through androstenedione and testosterone to synthesize both estrone and 17beta-estradiol, which then enter the liver via the portal vein.  相似文献   

8.
delta 5-3 beta-Hydroxysteroid dehydrogenase is a key enzyme for testicular androgen biosynthesis and a marker for the Leydig cells. The hormonal regulation of this enzyme was studied in cultured rat testicular cells. Human chorionic gonadotropin (hCG) increased testosterone production in vitro while time course studies indicated a biphasic action of the gonadotropin on 3 beta-hydroxysteroid dehydrogenase activity. An initial stimulation (51%) of the enzyme was detected between 3 and 12 h of culture when medium testosterone was low. This is followed by an inhibition of 3 beta-hydroxysteroid dehydrogenase activity on days 2 and 3 of culture when medium testosterone was elevated. Concomitant treatment with a synthetic androgen (R1881) inhibited 3 beta-hydroxysteroid dehydrogenase activity and testosterone production in hCG-treated cultures while an anti-androgen (cyproterone acetate) increased 3 beta-hydroxysteroid dehydrogenase activity and testosterone biosynthesis. Addition of 10(-5) M spironolactone, an inhibitor of 17 alpha-hydroxylase, blocked the hCG stimulation of testosterone production but increased medium progesterone. In the absence of the secreted androgen, hCG stimulated 3 beta-hydroxysteroid dehydrogenase activity in a time- and dose-related manner. Furthermore, hCG stimulation of 3 beta-hydroxysteroid dehydrogenase activity and progesterone accumulation in spironolactone-supplemented cultures was decreased by concomitant treatment with R1881 but was not affected by cyproterone acetate. The inhibitory effect of R1881 was blocked by the anti-androgen. In the absence of hCG, treatment with testosterone, dihydrotestosterone, or R1881, but not promegestone, alone also inhibited 3 beta-hydroxysteroid dehydrogenase activity while the inhibitory effect of testosterone was blocked by cyproterone acetate. Thus, hCG stimulates 3 beta-hydroxysteroid dehydrogenase activity in cultured testicular cells. The androgenic steroidogenic end products, in turn, inhibit this enzyme. The hormonal regulation of 3 beta-hydroxysteroid dehydrogenase activity may be important in the ultrashort loop autoregulation of androgen biosynthesis.  相似文献   

9.
D C Johnson  T Griswold 《Steroids》1983,42(5):565-574
Immature hypophysectomized rats were injected with PMS; some groups received hCG 48h later. The C17,20-lyase activity in the granulosa cells removed from the large preovulatory follicles was estimated by the amount of labelled acetic acid produced from 21 (14C) progesterone or 17-hydroxyprogesterone. 17 alpha-hydroxylase and aromatase activity were measured by the tritium exchange method. Although the granulosa cells contained lyase, it was considerably less than their hydroxylase activity. The remaining tissue, consisting of small follicles and hypertrophied thecal and interstitial tissue, had a great deal more lyase and hydroxylase activity than did the granulosa cells. The results are consistent with the view that granulosa cells can produce estrogen from progesterone and do not require androgen precursors from the theca and/or interstitium.  相似文献   

10.
Recently, we have shown that the biosynthesis of androstenol, a potential endogenous ligand for the orphan receptors constitutive androstane receptor and pregnane-X-receptor, requires the presence of enzymes of the steroidogenic pathway, such as 3 beta-hydroxysteroid dehydrogenase, 5 alpha-reductase and 3 alpha-hydroxysteroid dehydrogenase. In this report, we examine at the molecular level whether the enzyme 17 alpha-hydroxylase/17,20-lyase (P450c17), which possesses dual 17 alpha-hydroxylase and 17,20-lyase activities and catalyzes the production of precursors for glucocorticoids and sex steroids, is also able to catalyze the formation of a third class of active steroids, 16-ene steroids (including androstenol). The role of components of the P450 complex is also assessed. We transfected human embryonic kidney (HEK-293) cells with various amounts of vectors expressing P450c17, NADPH-cytochrome P450 reductase, and cytochrome b5. Our results showed that P450c17 possesses a 16-ene-synthase activity able to transform pregnenolone into 5,16-androstadien-3 beta-ol, without the formation of the precursor 17-hydroxypregnenolone. Cytochrome b5 has a much stronger effect on the 16-ene-synthase activity than on the 17 alpha-hydroxylase/17,20-lyase activities. On the other hand, P450reductase has a drastic effect on the latter, but a negligible one on 5,16-androstadien-3 beta-ol synthesis. Our results therefore demonstrate that human P450c17, as other enzymes of the classical steroidogenic pathway, is involved in the biosynthetic pathway leading to the formation of androstenol.  相似文献   

11.
The in vitro effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on steroid metabolism in human luteinized granulosa cells (hLGC) have been summarized as a decreased estradiol (E(2)) production without altering either E(2) metabolism or cytochrome P450 aromatase activity. In the present study, hLGC were used to analyze the fate of different substrates for cytochrome P450 17alpha-hydroxylase/17,20-lyase (P450(c17)) in the presence or absence of TCDD. Human LGCs were plated directly on plastic culture dishes in medium supplemented with 2 IU/ml of hCG. TCDD (10 nM) or its solvent was added directly to the cells at the time of medium change, every 48 h for 8 days. The objective of the experiment was to test the hypothesis that exogenous steroid, substrate for P450(c17), would reduce the TCDD effects on E(2) synthesis. With dehydroepiandrosterone (DHEA) (a P450(c17) product), a dose-related increase in E(2) production was observed and the effect of TCDD on lowering E(2) production disappeared. In contrast, with increasing doses, up to 10 micro M, of pregnenolone (P(5)), no change in E(2) production was observed. However, 17alpha-hydroxypregnenolone (17P(5)) at 10 micro M produced a modest but significant increase in the E(2) production. Treatments with P(5) and 17P(5) did not alter the effect of TCDD on E(2) production. Radiolabeled substrate utilization by hLGC suggests that the principal metabolic pathway for Delta5 substrates is the conversion to a Delta4 product probably by a very active 3beta-hydroxysteroid dehydrogenase. We conclude that estrogen production by hLGC is limited at the level of lyase activity. Thus, these data suggest that the most likely target for the TCDD-induced inhibition of estrogen synthesis by hLGC is the 17,20-lyase activity of the P450(c17) enzyme complex.  相似文献   

12.
M Zachmann 《Hormone research》1992,38(5-6):211-216
Recent discoveries in molecular biology have much clarified the regulation and function of steroid-converting enzymes. Most progress has been made in the area of cytochromes, which regulate the side chain cleavage of cholesterol (P-450 SCC) and the 17 alpha-hydroxylase and 17,20-desmolase (or 17,20-lyase) activities (P-450 17 alpha), as well as in 3 beta-hydroxysteroid dehydrogenase. Nevertheless, there are some discrepancies between fundamental knowledge and clinical experience, which are difficult to understand: why is it for example possible that cases with 'pure' 17 alpha-hydroxylase or 17,20-desmolase deficiency exist, when there is only one cytochrome regulating both steps? After a brief review of clinical and biochemical findings in the various defects of testosterone biosynthesis, a case is discussed, which is of interest in this respect. This XY patient with female external genitalia, who has been shown to have compound heterozygous mutations, had 'pure' 17,20-desmolase deficiency up to adolescence, but additional 17 alpha-hydroxylase deficiency with hypertension developed thereafter. From this observation, it has to be concluded that as yet unknown, possibly age-dependent modulating factors exist, which influence the activity of the cytochrome. Also the estrogen replacement given to the patient might have played a role in this change.  相似文献   

13.
In the pregnant mare, luteal estrogen production increases at the onset of equine chorionic gonadotropin (eCG) secretion by endometrial cups. In previous studies, we have demonstrated that eCG stimulates luteal androgen and estrogen production in pregnant mares. To further elucidate the regulation of steroidogenesis within the equine corpus luteum (CL) of pregnancy, we examined the expression of 3beta-hydroxysteroid dehydrogenase (3beta-HSD), cytochrome P450 17alpha-hydroxylase/17,20 lyase (P450(17alpha)) and cytochrome P450 aromatase (P450(arom)) in luteal tissue samples collected during diestrus (Days 7 to 10) and pregnancy before (Days 29 to 35) and after (Days 42 to 45) the onset of eCG secretion. Immunoblot analyses revealed a single protein per enzyme with molecular weights of 48 kDa (3beta-HSD), 58 kDa (P450(17alpha)) and 56 kDa (P450(arom)). Steady-state levels of 3beta-HSD were lower in luteal tissue of diestrus than pregnancy, but expression did not change during pregnancy. Steady-state expression of P450(17alpha) in CL of diestrus was not significantly different from that of pregnancy. During pregnancy, P450(17alpha) expression was significantly higher after the onset of eCG secretion. Steady-state expression of P450(arom) in CL of diestrus was not significantly different from that of pregnancy. During pregnancy, luteal expression of P450(arom) was significantly lower after the onset of eCG secretion. These data support the hypotheses that eCG has a differential effect on the expression of luteal steroidogenic enzymes, that the eCG-induced increase in luteal estrogen production is the result of an increase in available aromatizable androgen due to an increase in P450(17alpha) expression and activity, and that increased luteal estrogen production is not due to an increase in aromatase expression.  相似文献   

14.
The production of 3H2O from 17 alpha-3H-progesterone and 14CH3COOH from [21-14C]progesterone were used to measure the 17 alpha-hydroxylase and C17,20-lyase activities respectively in the microsomal + mitochondrial fraction of homogenates of ovaries from immature hypophysectomized rats chronically treated with human chorionic gonadotropin (hCG). The highly stimulated thecal and interstitial tissues were considered the only source of enzyme. hCG produced an increase in 17-hydroxyprogesterone, and androstenedione, but a drastic decrease in enzyme activity within 6 h; this could be largely prevented by pretreatment of the rats with cycloheximide or aminoglutethimide but actinomycin D was ineffective. After a nadir at 24 h, enzyme activities increased to more than double those of the starting level; this could be prevented by cycloheximide. Maximal activity levels were greatly decreased by cycloheximide and modestly increased by aminoglutethimide. Cessation of treatment at 60 h followed by a single injection of hCG 24 h later did not cause a loss, but delays of 36 or more hours produced a dramatic decrease in enzyme activity, which could be prevented by aminoglutethimide. The results indicate that the level of activity of these enzymes attained in the ovary following exposure to hCG is determined by a balance between the amount of substrate provided and production of enzyme and/or stimulating factors. Therefore, maintenance of increased enzyme activity induced by gonadotropin appears to be under genomic control.  相似文献   

15.
The steroid C17,20-lyase activity of immature rat ovarian microsomal (105,000 g pellet), mitochondrial (10,000 g pellet) and combined fractions was measured using progesterone and 17-hydroxyprogesterone as substrates. Steroid 17 alpha-hydroxylase was measured, using progesterone as substrate, in some of the preparations for comparison. With progesterone about 3.5 times more product (acetic acid) was formed than with 17-hydroxyprogesterone as substrate. The half-time for lyase activity following hypophysectomy was 51.8 h, while that for 17 alpha-hydroxylase was 51.3 h. Following an intravenous injection of 20 iu of pregnant mare's serum gonadotropin (PMS) into immature hypophysectomized rats lyase activity decreased for 12 h followed by recovery during the next 12 h with a rapid increase between 24 and 72 h. In contrast, a subcutaneous injection of the same dose produced an initial rise in activity with a decline between 12 and 24 h, followed by a second large increase. In intact animals injection (s.c.) of PMS produced an initial fall in lyase activity followed by an increase beginning 12 h later. A dramatic decrease in activity occurred between 48 and 72 h concomitant with ovulation; hypophysectomy at 48 h not only prevented the decrease, but produced an increase in activity. The changes in ovarian C17,20-lyase activity following administration of PMS mimic those of 17 alpha-hydroxylase.  相似文献   

16.
Immature hypophysectomized rats were injected with 2mg of diethylstilbestrol to increase granulosa cell numbers and with 20 IU of PMS to stimulate ovarian growth. Steroid 17 alpha-hydroxylase activity of cultured granulosa cell, harvested from mature follicles 48 h after injection of PMS, was demonstrated using a tritium exchange assay with 17 alpha 3H-pregneneolone as substrate. For comparison, aromatase activity of the same cells was examined by a similar assay using 1 beta 3H-testosterone as the substrate. The activities of the two enzymes were similar when expressed in terms of the amount of substrate converted per unit time. While an NADPH generating system in the incubation medium was essential for demonstrating any hydroxylase activity, 10-15% of the total aromatase activity could be found without added cofactor. Attempts to alter hydroxylase activity of granulosa cells by inclusion of LH, FSH or prolactin in the incubation medium were unsuccessful. However, activity could be change by prostaglandins (PG) or agents which can alter PG synthesis. Activity was increased by low concentrations of phospholipase A2 (PLA2), histamine, and arachidonic acid (AA). Large doses of PLA2, or AA, were inhibitory. PGE2, but not PGF2 alpha, increased, while indomethacin decreased, hydroxylase activity. The results clearly indicate that granulosa cells in the rat have a potent 17-hydroxylase system and therefore do not support the widely held contention that lack of this enzyme is one of the bases for the need for two kinds of cells for ovarian estrogen production.  相似文献   

17.
Chalcones were tested for estimating anti-aromatase, anti-3beta-hydroxysteroid dehydrogenase delta5/delta4 isomerase (3beta-HSD) and anti-17beta-hydroxysteroid dehydrogenase (17beta-HSD) activities in human placental microsomes. In the present study, we have demonstrated for the first time that chalcones are potent inhibitors of aromatase and 17beta-hydroxysteroid dehydrogenase activities: these enzymes being considered as important targets in the metabolic pathways of human mammary hormone-dependent cells. Our results showed that naringenin chalcone and 4-hydroxychalcone were the most effective aromatase and 17beta-hydroxysteroid dehydrogenase inhibitors with IC50 values of 2.6 and 16 microM respectively. In addition, inhibitory effects of some flavones and flavanones were compared to those of the corresponding chalcones. A structure-activity relationship was established and regions or/and substituents essential for these inhibitory activities were determined.  相似文献   

18.
F L Bellino 《Steroids》1992,57(10):507-510
Because serum estrogen levels are associated with the presence of osteoarthritis, and cartilage tissue is known to contain estrogen receptors, it is of interest to determine the extent to which estrogen is biosynthesized and/or metabolized in cartilage tissue or isolated chondrocytes. In this preliminary study, using a sensitive assay method, estrogen synthetase (aromatase) was undetectable in articular cartilage or isolated chondrocytes in culture from immature female rabbits. However, estrogen metabolism, specifically estrogen 17 beta-hydroxysteroid dehydrogenase activity, was detected in homogenized cartilage tissue, and at substantially higher specific activities in freshly isolated chondrocytes. These fresh chondrocytes, assayed in culture without any exogenous cofactor, demonstrated a significantly higher activity for converting the weak estrogen, estrone, to the more potent estrogen, estradiol. Chondrocytes grown to confluence in culture had very low estrogen 17 beta-hydroxysteroid dehydrogenase specific activity. Homogenized cartilage tissue, tested only with added NADPH as cofactor, also showed a preference for estradiol as the principal product, but this may have been primarily due to the use of reduced cofactor. If subsequent experiments confirm the presence of estrogen 17 beta-hydroxysteroid dehydrogenase activity, and its preference for converting estrone into estradiol, in human cartilage tissue and chondrocytes, this could have substantial implications in the estrogen dependency of osteoarthritis.  相似文献   

19.
Ketoconazole, an orally active antifungal drug, is known to inhibit testicular androgen production both in vitro and in vivo. The aim of the present study was to examine the effect of ketoconazole and 13 other imidazole drugs on rat testicular microsomal 17 alpha-hydroxylase, 17,20-lyase, 3 beta-hydroxysteroid dehydrogenase-isomerase (3 beta-HSD-I) and 17 beta-hydroxysteroid oxidoreductase (17 beta-HSOR). The order of decreasing inhibitory effect (determined from Ki values) on 17 alpha-hydroxylase (substrate [3H]progesterone; Km = 89 +/- 0.65 nmol/l; SEM, n = 8) was bifonazole (Ki = 86 +/- 3.3 nmol/l; SEM, n = 4) greater than ketoconazole (160 +/- 4.92) greater than clotrimazole (170 +/- 5.81) greater than miconazole (599 +/- 7.22) greater than econazole (688 +/- 6.98) greater than tioconazole (901 +/- 1.71) greater than isoconazole (1090 +/- 6.96) and on 17,20-lyase (substrate, [3H]17 alpha-hydroxyprogesterone; Km = 250 +/- 0.75 nmol/l; SEM, n = 8) was bifonazole (56.5 +/- 3.4) greater than clotrimazole (81.5 +/- 3.1) greater than ketoconazole (84 +/- 3.5) greater than miconazole (243 +/- 6.3) greater than econazole (325 +/- 5.1) greater than tioconazole (505 +/- 5.2) greater than isoconazole (610 +/- 6.34). However, these imidazole drugs did not inhibit the 3 beta-HSD-I or 17 beta-HSOR activities. A common structural feature of the imidazole drugs having an inhibitory effect was the presence of one or more aromatic rings on the imidazole side chain. In contrast, the imidazole drugs having the imidazole ring fused to a benezene ring, i.e. benzimidazoles (astemizole, mebendazole, thiabendazole) and those having an aliphatic side chain on the N-1 of the imidazole ring (carbimazole, metronidazole, nimorazole, tinidazole) did not inhibit 17 alpha-hydroxylase, 3 beta-HSD-I or 17 beta-HSOR enzyme activities. However some did inhibit 17,20-lyase activity but only at high concentrations. The results of the present study suggest that some imidazole drugs may be useful in clinical situations requiring the suppression of androgen production, for example in the treatment of hormone-dependent prostatic cancer.  相似文献   

20.
Androgen biosynthesis requires 3beta-hydroxysteroid dehydrogenase type II (3betaHSDII) and the 17alpha-hydroxylase and 17,20-lyase activities of cytochrome P450c17. Thiazolidinedione and biguanide drugs, which are used to increase insulin sensitivity in type 2 diabetes, lower serum androgen concentrations in women with polycystic ovary syndrome. However, it is unclear whether this is secondary to increased insulin sensitivity or to direct effects on steroidogenesis. To investigate potential actions of these drugs on P450c17 and 3betaHSDII, we used "humanized yeast" that express these steroidogenic enzymes in microsomal environments. The biguanide metformin had no effect on either enzyme, whereas the thiazolidinedione troglitazone inhibited 3betaHSDII (K(I) = 25.4 +/- 5.1 microm) and both activities of P450c17 (K(I) for 17alpha-hydroxylase, 8.4 +/- 0.6 microm; K(I) for 17,20-lyase, 5.3 +/- 0.7 microm). The action of troglitazone on P450c17 was competitive, but it was mainly a noncompetitive inhibitor of 3betaHSDII. The thiazolidinediones rosiglitazone and pioglitazone exerted direct but weaker inhibitory effects on both P450c17 and 3betaHSDII. These differential effects of the thiazolidinediones do not correlate with their effects on insulin sensitivity, suggesting that distinct regions of the thiazolidinedione molecule mediate these two actions. Thus, thiazolidinediones inhibit two key enzymes in human androgen synthesis contributing to their androgen-lowering effects, whereas metformin affects androgen synthesis indirectly, probably by lowering circulating insulin concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号