首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three metalloproteases belonging to the AAA superfamily (Yme1p, Afg3p and Rca1p) are involved in protein turnover and respiratory chain complex assembly in the yeast inner mitochondrial membrane. Analysis of the completed genome sequences of Caenorhabditis elegans and Drosophila melanogaster indicates that this gene family typically comprises 3-4 members in metazoans. Phylogenetic analysis reveals three main branches represented, respectively, by Saccharomyces cerevisiae YME1, human SPG7 (paraplegin) and S. cerevisiae AFG3 and RCA1. mt-AAA metalloproteases are weak candidates for several previously studied Drosophila mutants. A full elucidation of the cellular and physiological roles of mt-AAA metalloproteases in metazoans will require the creation of targeted mutations.  相似文献   

2.
The identification of SPG7 as the gene defective in a recessive form of spastic paraplegia has drawn attention to the yeast protein family of ATP-dependent zinc metalloproteases. The protein encoded by SPG7, paraplegin, shows high homology to members of this protein family. Recently, many mammalian ATP-dependent zinc metalloproteases have been identified and considered as possible candidates for defects in other forms of hereditary spastic paraplegia and possibly other neurodegenerative disorders. So far only a partial sequence has been available for one of those genes, ATPase family gene-3, yeast-like-1 (AFG3L1). We have carried out detailed molecular analysis of this gene and identified and characterized its mouse orthologue, Afg3l1. Our data indicate that AFG3L1 is transcribed into four mRNA isoforms that are not translated in humans. Afg3l1 encodes a protein with high homology to paraplegin and the other members of the ATP-dependent zinc metalloprotease family. Like the other ATP-dependent zinc metalloproteases, Afg3l1 localizes to the mitochondria.  相似文献   

3.
A gene responsible for an autosomal recessive form of hereditary spastic paraplegia (SPG7) was recently identified. This gene encodes paraplegin, a mitochondrial protein highly homologous to the yeast mitochondrial AAA proteases Afg3p, Rca1p, and Yme1p, which have both proteolytic and chaperone-like activities at the inner mitochondrial membrane. By screening the expressed sequence tag database, we identified and characterized a novel human gene, YME1L1 (YME1L1-like1, HGMW-approved symbol). This gene encodes a predicted protein of 716 amino acids highly similar to all mitochondrial AAA proteases and in particular to yeast Yme1p. Expression and immunofluorescence studies revealed that YME1L1 and paraplegin share a similar expression pattern and the same subcellular localization in the mitochondrial compartment. YME1L1 may represent a candidate gene for other forms of hereditary spastic paraplegia and possibly for other neurodegenerative disorders.  相似文献   

4.
In yeast, three AAA superfamily metalloproteases (Yme1p, Afg3p and Rca1p) are localized to the mitochondrial inner membrane where they perform roles in the assembly and turnover of the respiratory chain complexes. We have investigated the function of the proposed human orthologue of yeast Yme1p, encoded by the YME1L gene on chromosome 10p. Transfection of both HEK-293EBNA and yeast cells with a green fluorescent protein-tagged YME1L cDNA confirmed mitochondrial targeting. When expressed in a yme1 disruptant yeast strain, YME1L restored growth on glycerol at 37 degrees C. We propose that YME1L plays a phylogenetically conserved role in mitochondrial protein metabolism and could be involved in mitochondrial pathologies.  相似文献   

5.
The m-AAA protease, an ATP-dependent proteolytic complex in the mitochondrial inner membrane, controls protein quality and regulates ribosome assembly, thus exerting essential housekeeping functions within mitochondria. Mutations in the m-AAA protease subunit paraplegin cause axonal degeneration in hereditary spastic paraplegia (HSP), but the basis for the unexpected tissue specificity is not understood. Paraplegin assembles with homologous Afg3l2 subunits into hetero-oligomeric complexes which can substitute for yeast m-AAA proteases, demonstrating functional conservation. The function of a third paralogue, Afg3l1 expressed in mouse, is unknown. Here, we analyze the assembly of paraplegin into m-AAA complexes and monitor consequences of paraplegin deficiency in HSP fibroblasts and in a mouse model for HSP. Our findings reveal variability in the assembly of m-AAA proteases in mitochondria in different tissues. Homo-oligomeric Afg3l1 and Afg3l2 complexes and hetero-oligomeric assemblies of both proteins with paraplegin can be formed. Yeast complementation studies demonstrate the proteolytic activity of these assemblies. Paraplegin deficiency in HSP does not result in the loss of m-AAA protease activity in brain mitochondria. Rather, homo-oligomeric Afg3l2 complexes accumulate, and these complexes can substitute for housekeeping functions of paraplegin-containing m-AAA complexes. We therefore propose that the formation of m-AAA proteases with altered substrate specificities leads to axonal degeneration in HSP.  相似文献   

6.
The morphology of mitochondria in mammalian cells is regulated by proteolytic cleavage of OPA1, a dynamin-like GTPase of the mitochondrial inner membrane. The mitochondrial rhomboid protease PARL, and paraplegin, a subunit of the ATP-dependent m-AAA protease, were proposed to be involved in this process. Here, we characterized individual OPA1 isoforms by mass spectrometry, and we reconstituted their processing in yeast to identify proteases involved in OPA1 cleavage. The yeast homologue of OPA1, Mgm1, was processed both by PARL and its yeast homologue Pcp1. Neither of these rhomboid proteases cleaved OPA1. The formation of small OPA1 isoforms was impaired in yeast cells lacking the m-AAA protease subunits Yta10 and Yta12 and was restored upon expression of murine or human m-AAA proteases. OPA1 processing depended on the subunit composition of mammalian m-AAA proteases. Homo-oligomeric m-AAA protease complexes composed of murine Afg3l1, Afg3l2, or human AFG3L2 subunits cleaved OPA1 with higher efficiency than paraplegin-containing m-AAA proteases. OPA1 processing proceeded normally in murine cell lines lacking paraplegin or PARL. Our results provide evidence for different substrate specificities of m-AAA proteases composed of different subunits and reveal a striking evolutionary switch of proteases involved in the proteolytic processing of dynamin-like GTPases in mitochondria.  相似文献   

7.
m-AAA proteases are ATP-dependent proteolytic machines in the inner membrane of mitochondria which are crucial for the maintenance of mitochondrial activities. Conserved nuclear-encoded subunits, termed paraplegin, Afg3l1, and Afg3l2, form various isoenzymes differing in their subunit composition in mammalian mitochondria. Mutations in different m-AAA protease subunits are associated with distinct neuronal disorders in human. However, the biogenesis of m-AAA protease complexes or of individual subunits is only poorly understood. Here, we have examined the processing of nuclear-encoded m-AAA protease subunits upon import into mitochondria and demonstrate autocatalytic processing of Afg3l1 and Afg3l2. The mitochondrial processing peptidase MPP generates an intermediate form of Afg3l2 that is matured autocatalytically. Afg3l1 or Afg3l2 are also required for maturation of newly imported paraplegin subunits after their cleavage by MPP. Our results establish that mammalian m-AAA proteases can act as processing enzymes in vivo and reveal overlapping activities of Afg3l1 and Afg3l2. These findings might be of relevance for the pathogenesis of neurodegenerative disorders associated with mutations in different m-AAA protease subunits.  相似文献   

8.
Spastic paraplegia 7 is an autosomal recessive disorder caused by mutations in the gene encoding paraplegin, a protein located at the inner mitochondrial membrane and involved in the processing of other mitochondrial proteins. The mechanism whereby paraplegin mutations cause disease is unknown. We studied two female and two male adult patients from two Norwegian families with a combination of progressive external ophthalmoplegia and spastic paraplegia. Sequencing of SPG7 revealed a novel missense mutation, c.2102A>C, p.H 701P, which was homozygous in one family and compound heterozygous in trans with a known pathogenic mutation c.1454_1462del in the other. Muscle was examined from an additional, unrelated adult female patient with a similar phenotype caused by a homozygous c.1047insC mutation in SPG7. Immunohistochemical studies in skeletal muscle showed mosaic deficiency predominantly affecting respiratory complex I, but also complexes III and IV. Molecular studies in single, microdissected fibres showed multiple mitochondrial DNA deletions segregating at high levels (38–97%) in respiratory deficient fibres. Our findings demonstrate for the first time that paraplegin mutations cause accumulation of mitochondrial DNA damage and multiple respiratory chain deficiencies. While paraplegin is not known to be directly associated with the mitochondrial nucleoid, it is known to process other mitochondrial proteins and it is possible therefore that paraplegin mutations lead to mitochondrial DNA deletions by impairing proteins involved in the homeostasis of the mitochondrial genome. These studies increase our understanding of the molecular pathogenesis of SPG7 mutations and suggest that SPG7 testing should be included in the diagnostic workup of autosomal recessive, progressive external ophthalmoplegia, especially if spasticity is present.  相似文献   

9.
Yme1p, an ATP-dependent protease localized in the mitochondrial inner membrane, is required for the growth of yeast lacking an intact mitochondrial genome. Specific dominant mutations in the genes encoding the alpha- and gamma-subunits of the mitochondrial F(1)F(0)-ATPase suppress the slow-growth phenotype of yeast that simultaneously lack Yme1p and mitochondrial DNA. F(1)F(0)-ATPase activity is reduced in yeast lacking Yme1p and is restored in yme1 strains bearing suppressing mutations in F(1)-ATPase structural genes. Mitochondria isolated from yme1 yeast generated a membrane potential upon the addition of succinate, but unlike mitochondria isolated either from wild-type yeast or from yeast bearing yme1 and a suppressing mutation, were unable to generate a membrane potential upon the addition of ATP. Nuclear-encoded F(0) subunits accumulate in yme1 yeast lacking mitochondrial DNA; however, deletion of genes encoding those subunits did not suppress the requirement of yme1 yeast for intact mitochondrial DNA. In contrast, deletion of INH1, which encodes an inhibitor of the F(1)F(0)-ATPase, partially suppressed the growth defect of yme1 yeast lacking mitochondrial DNA. We conclude that Yme1p is in part responsible for assuring sufficient F(1)F(0)-ATPase activity to generate a membrane potential in mitochondria lacking mitochondrial DNA and propose that Yme1p accomplishes this by catalyzing the turnover of protein inhibitors of the F(1)F(0)-ATPase.  相似文献   

10.
The FtsH proteases, also called AAA proteases, are membrane-bound ATP-dependent metalloproteases. The Arabidopsis genome contains a total of 12 FtsH-like genes. Two of them, AtFtsH4 and AtFtsH11, encode proteins with a high similarity to Yme1p, a subunit of the i-AAA complex in yeast mitochondria. Phylogenetic analysis groups the AtFtsH4, AtFtsH11 and Yme1 proteins together, with AtFtsH4 being the most similar to Yme1. Using immunological method we demonstrate here that AtFtsH4 is an exclusively mitochondrial protein while AtFtsH11 is found in both chloroplasts and mitochondria. AtFtsH4 and AtFtsH11 proteases are integral parts of the inner mitochondrial membrane and expose their catalytic sites towards the intermembrane space, same as yeast i-AAA. Database searches revealed that orthologs of AtFtsH4 and AtFtsH11 are present in both monocotyledonous and dicotyledonous plants. The two plant i-AAA proteases differ significantly in their termini: the FtsH4 proteins have a characteristic alanine stretch at the C-terminal end while FtsH11s have long N-terminal extensions. Blue-native gel electrophoresis revealed that AtFtsH4 and AtFtsH11 form at least two complexes with apparent molecular masses of about 1500 kDa. This finding implies that plants, in contrast to fungi and metazoa, have more than one complex with a topology similar to that of yeast i-AAA.  相似文献   

11.
Nolden M  Ehses S  Koppen M  Bernacchia A  Rugarli EI  Langer T 《Cell》2005,123(2):277-289
AAA proteases comprise a conserved family of membrane bound ATP-dependent proteases that ensures the quality control of mitochondrial inner-membrane proteins. Inactivation of AAA proteases causes pleiotropic phenotypes in various organisms, including respiratory deficiencies, mitochondrial morphology defects, and axonal degeneration in hereditary spastic paraplegia (HSP). The molecular basis of these defects, however, remained unclear. Here, we describe a regulatory role of an AAA protease for mitochondrial protein synthesis in yeast. The mitochondrial ribosomal protein MrpL32 is processed by the m-AAA protease, allowing its association with preassembled ribosomal particles and completion of ribosome assembly in close proximity to the inner membrane. Maturation of MrpL32 and mitochondrial protein synthesis are also impaired in a HSP mouse model lacking the m-AAA protease subunit paraplegin, demonstrating functional conservation. Our findings therefore rationalize mitochondrial defects associated with m-AAA protease mutants in yeast and shed new light on the mechanism of axonal degeneration in HSP.  相似文献   

12.
The nuclear gene OXA1 encodes a protein located within the mitochondrial inner membrane that is required for the biogenesis of both cytochrome c oxidase (Cox) and ATPase. In the absence of Oxa1p, the translocation of the mitochondrially encoded subunit Cox2p to the intermembrane space (also referred to as export) is prevented, and it has been proposed that Oxa1p could be a component of a general mitochondrial export machinery. We have examined the role of Oxa1p in light of its relationships with two mitochondrial proteases, the matrix protease Afg3p-Rca1p and the intermembrane space protease Yme1p, by analyzing the assembly and activity of the Cox and ATPase complexes in Deltaoxa1, Deltaoxa1Deltaafg3, and Deltaoxa1Deltayme1 mutants. We show that membrane subunits of both complexes are specifically degraded in the absence of Oxa1p. Neither Afg3p nor Yme1p is responsible for the degradation of Cox subunits. However, the F(0) subunits Atp4p, Atp6p, and Atp17p are stabilized in the Deltaoxa1Deltayme1 double mutant, and oligomycin-sensitive ATPase activity is restored, showing that the increased stability of the ATPase subunits allows significant translocation and assembly to occur even in the absence of Oxa1p. These results suggest that Oxa1p is not essential for the export of ATPase subunits. In addition, although respiratory function is dispensable in Saccharomyces cerevisiae, we show that the simultaneous inactivation of AFG3 and YME1 is lethal and that the essential function does not reside in their protease activity.  相似文献   

13.
The yeast protein cytochrome c peroxidase (Ccp1) is nuclearly encoded and imported into the mitochondrial intermembrane space, where it is involved in degradation of reactive oxygen species. It is known, that Ccp1 is synthesised as a precursor with a N-terminal pre-sequence, that is proteolytically removed during transport of the protein. Here we present evidence for a new processing pathway, involving novel signal peptidase activities. The mAAA protease subunits Yta10 (Afg3) and Yta12 (Rca1) were identified both to be essential for the first processing step. In addition, the Pcp1 (Ygr101w) gene product was found to be required for the second processing step, yielding the mature Ccp1 protein. The newly identified Pcp1 protein belongs to the rhomboid-GlpG superfamily of putative intramembrane peptidases. Inactivation of the protease motifs in mAAA and Pcp1 blocks the respective steps of proteolysis. A model of coupled Ccp1 transport and N-terminal processing by the mAAA complex and Pcp1 is discussed. Similar processing mechanisms may exist, because the mAAA subunits and the newly identified Pcp1 protein belong to ubiquitous protein families.  相似文献   

14.
The yeast nuclear gene YME1 was one of six genes recently identified in a screen for mutations that elevate the rate at which DNA escapes from mitochondria and migrates to the nucleus. yme1 mutations, including a deletion, cause four known recessive phenotypes: an elevation in the rate at which copies of TRP1 and ARS1, integrated into the mitochondrial genome, escape to the nucleus; a heat-sensitive respiratory-growth defect; a cold-sensitive growth defect on rich glucose medium; and synthetic lethality in rho- (cytoplasmic petite) cells. The cloned YME1 gene complements all of these phenotypes. The gene product, Yme1p, is immunologically detectable as an 82-kDa protein present in mitochondria. Yme1p is a member of a family of homologous putative ATPases, including Sec18p, Pas1p, Cdc48p, TBP-1, and the FtsH protein. Yme1p is most similar to the Escherichia coli FtsH protein, an essential protein involved in septum formation during cell division. This observation suggests the hypothesis that Yme1p may play a role in mitochondrial fusion and/or division.  相似文献   

15.
Mmutations in paraplegin, a putative mitochondrial metallopeptidase of the AAA family, cause an autosomal recessive form of hereditary spastic paraplegia (HSP). Here, we analyze the function of paraplegin at the cellular level and characterize the phenotypic defects of HSP patients' cells lacking this protein. We demonstrate that paraplegin coassembles with a homologous protein, AFG3L2, in the mitochondrial inner membrane. These two proteins form a high molecular mass complex, which we show to be aberrant in HSP fibroblasts. The loss of this complex causes a reduced complex I activity in mitochondria and an increased sensitivity to oxidant stress, which can both be rescued by exogenous expression of wild-type paraplegin. Furthermore, complementation studies in yeast demonstrate functional conservation of the human paraplegin-AFG3L2 complex with the yeast m-AAA protease and assign proteolytic activity to this structure. These results shed new light on the molecular pathogenesis of HSP and functionally link AFG3L2 to this neurodegenerative disease.  相似文献   

16.
We report an early onset spastic ataxia-neuropathy syndrome in two brothers of a consanguineous family characterized clinically by lower extremity spasticity, peripheral neuropathy, ptosis, oculomotor apraxia, dystonia, cerebellar atrophy, and progressive myoclonic epilepsy. Whole-exome sequencing identified a homozygous missense mutation (c.1847G>A; p.Y616C) in AFG3L2, encoding a subunit of an m-AAA protease. m-AAA proteases reside in the mitochondrial inner membrane and are responsible for removal of damaged or misfolded proteins and proteolytic activation of essential mitochondrial proteins. AFG3L2 forms either a homo-oligomeric isoenzyme or a hetero-oligomeric complex with paraplegin, a homologous protein mutated in hereditary spastic paraplegia type 7 (SPG7). Heterozygous loss-of-function mutations in AFG3L2 cause autosomal-dominant spinocerebellar ataxia type 28 (SCA28), a disorder whose phenotype is strikingly different from that of our patients. As defined in yeast complementation assays, the AFG3L2(Y616C) gene product is a hypomorphic variant that exhibited oligomerization defects in yeast as well as in patient fibroblasts. Specifically, the formation of AFG3L2(Y616C) complexes was impaired, both with itself and to a greater extent with paraplegin. This produced an early-onset clinical syndrome that combines the severe phenotypes of SPG7 and SCA28, in additional to other "mitochondrial" features such as oculomotor apraxia, extrapyramidal dysfunction, and myoclonic epilepsy. These findings expand the phenotype associated with AFG3L2 mutations and suggest that AFG3L2-related disease should be considered in the differential diagnosis of spastic ataxias.  相似文献   

17.
18.
Prohibitins comprise a protein family in eukaryotic cells with potential roles in senescence and tumor suppression. Phb1p and Phb2p, members of the prohibitin family in Saccharomyces cerevisiae, have been implicated in the regulation of the replicative life span of the cells and in the maintenance of mitochondrial morphology. The functional activities of these proteins, however, have not been elucidated. We demonstrate here that prohibitins regulate the turnover of membrane proteins by the m-AAA protease, a conserved ATP-dependent protease in the inner membrane of mitochondria. The m-AAA protease is composed of the homologous subunits Yta10p (Afg3p) and Yta12p (Rca1p). Deletion of PHB1 or PHB2 impairs growth of Deltayta10 or Deltayta12 cells but does not affect cell growth in the presence of the m-AAA protease. A prohibitin complex with a native molecular mass of approximately 2 MDa containing Phb1p and Phb2p forms a supercomplex with the m-AAA protease. Proteolysis of nonassembled inner membrane proteins by the m-AAA protease is accelerated in mitochondria lacking Phb1p or Phb2p, indicating a negative regulatory effect of prohibitins on m-AAA protease activity. These results functionally link members of two conserved protein families in eukaryotes to the degradation of membrane proteins in mitochondria.  相似文献   

19.
Tim54p, a component of the inner membrane TIM22 complex, does not directly mediate the import of inner membrane substrates but is required for assembly/stability of the 300-kD TIM22 complex. In addition, Deltatim54 yeast exhibit a petite-negative phenotype (also observed in yeast harboring mutations in the F1Fo ATPase, the ADP/ATP carrier, mitochondrial morphology components, or the i-AAA protease, Yme1p). Interestingly, other import mutants in our strain background are not petite-negative. We report that Tim54p is not involved in maintenance of mitochondrial DNA or mitochondrial morphology. Rather, Tim54p mediates assembly of an active Yme1p complex, after Yme1p is imported via the TIM23 pathway. Defective Yme1p assembly is likely the major contributing factor for the petite-negativity in strains lacking functional Tim54p. Thus, Tim54p has two independent functions: scaffolding/stability for the TIM22 membrane complex and assembly of Yme1p into a proteolytically active complex. As such, Tim54p links protein import, assembly, and turnover pathways in the mitochondrion.  相似文献   

20.
Hereditary spastic paraplegia (HSP) comprises a group of clinically and genetically heterogeneous diseases that affect the upper motor neurons and their axonal projections. For the novel SPG31 locus on chromosome 2p12, we identified six different mutations in the receptor expression-enhancing protein 1 gene (REEP1). REEP1 mutations occurred in 6.5% of the patients with HSP in our sample, making it the third-most common HSP gene. We show that REEP1 is widely expressed and localizes to mitochondria, which underlines the importance of mitochondrial function in neurodegenerative disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号