首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solution structure of a disulfide bond isomer of human insulin-like growth factor-I (IGF-I) was determined using homonuclear NMR methods. A total of 292 interatomic distance constraints, including 12 related to the disulfide bridges, was used in the distance geometry calculations. The determined structures contain two helical rods corresponding to the sequence regions, Ala8-Cys18 and Leu54-Cys61. Comparison with the previously determined structure of native human IGF-I revealed partial correspondence of the secondary structure (helices I: Ala8-Cys18 and helices III: Leu54-Cys61) and internal packing. Helix II in native human IGF-I (residues Gly42-Cys48) is disrupted in the isomer. A similar relationship has been described between the structure of native insulin and a homologous disulfide isomer, suggesting that these alternative folds represent general features of insulin-like sequences. In each case the precision of the distance geometry ensemble is low due in part to resonance broadening and a paucity of NOEs relative to other globular proteins of this size. These observations suggest that tertiary structure of the isomer is not highly ordered. Comparison of the biological activities of native and the disulfide bond isomer of human IGF-I highlight the importance of Tyr24, Phe25, Phe49-Cys52 and Phe16 in binding to the IGF-I receptor or specific IGFBPs. The relationship of this proposed receptor-binding surface of human IGF-I to those of insulin is discussed.  相似文献   

2.
F Ni  Y Konishi  H A Scheraga 《Biochemistry》1990,29(18):4479-4489
The interaction of the C-terminal fragments (residues 52-65 and 55-65) of the thrombin-specific inhibitor hirudin with bovine thrombin was studied by use of one- and two-dimensional NMR techniques in aqueous solution. Thrombin induces specific line broadening of the proton resonances of residues Asp(55) to Gln(65) of the synthetic hirudin fragments H-Asn-Asp-Gly-Asp(55)-Phe-Glu-Glu-Ile-Pro-Glu-Glu-Tyr(63)-Leu-Gln-COOH and acetyl-Asp(55)-Phe-Glu-Glu-Ile-Pro-Glu-Glu-Tyr(63)-Leu-Gln-COOH. This demonstrates that residues 55-65 are the predominant binding site of hirudin fragments with thrombin. Hirudin fragments take on a well-defined structure when bound to thrombin as indicated by several long-range transferred NOEs between the backbone and side-chain protons of the peptides, but they are not structured when free in solution. Particularly, transferred NOEs exist between the alpha CH proton of Glu(61) and the NH proton of Leu(64) [d alpha N(i,i+3)], between the alpha CH proton of Glu(61) and the beta CH2 protons of Leu(64) [d alpha beta(i,i+3)], and between the alpha CH proton of Glu(62) and the gamma CH2 protons of Gln(65) [d alpha gamma(i,i+3)]. These NOEs are characteristic of an alpha-helical structure involving residues Glu(61) to Gln(65). There are also NOEs between the side-chain protons of residues Phe(56), Ile(59), Pro(60), Tyr(63), and Leu(64). Distance geometry calculations suggest that in the structure of the thrombin-bound hirudin peptides all the charged residues lie on the opposite side of a hydrophobic cluster formed by the nonpolar side chains of residues Phe(56), Ile(59), Pro(60), Tyr(63), and Leu(64).  相似文献   

3.
A comparative 1H-NMR spectral study of a synthetic decapeptide containing the main immunogenic region of the Torpedo acetylcholine receptor (AChR; WNPADYGGIK, representing the alpha 67-76 fragment of Torpedo AChR) with four analogous peptides (WNP3-D5YGGIK, WNPAA5YGGIK, WNPADYGGA9K, and WNPD4DYGGV9K) has been carried out in dimethyl sulfoxide. One- and two-dimensional nmr experiments [correlated spectroscopy (COSY), relayed COSY, and phase-sensitive nuclear Overhauser enhancement spectroscopy (NOESY)] were performed to obtain complete assignments of the proton resonances. The presence of strong and multiple short- and long-range NOEs, and especially a strong long-range NOE between the two Asn2-C alpha H and Gly7-C alpha H protons, argues in favor of a rigid folded structure in all five cases. Temperature dependence measurements indicate the existence of three intramolecular interactions involving the Asp3, Gly8, and Lys10 amide protons.  相似文献   

4.
Most cases of cystic fibrosis (CF), a common inherited disease of epithelial cell origin, are caused by the deletion of Phe508 located in the first nucleotide-binding domain (NBF1) of the protein called CFTR (cystic fibrosis transmembrane conductance regulator). To gain greater insight into the structure within the Phe508 region of the wild-type protein and the change in structure that occurs when this residue is deleted, we conducted nuclear magnetic resonance (NMR) studies on representative synthetic 26 and 25 amino acid peptide segments. 2D 1H NMR studies at 600 MHz of the 26-residue peptide consisting of Met498 to Ala523 in 10% DMSO, pH 4.0, at 25 degrees C show a continuous but labile helix from Gly500 to Lys522, based on both NH-NH(i,i+1) and alphaH-NH(i,i+1) NOEs. Phe508 within this helix shows only short-range (i, 相似文献   

5.
Two-dimensional NMR experiments have been performed on a peptide, succinyl-AE-TAAAKFLRAHA-NH2, related to the amino-terminal sequence of ribonuclease A. This peptide contains 50-60% helix in 0.1 M NaCl solution, pH 5.2, 3 degrees C, as measured by circular dichroism. NOESY spectra of the peptide in aqueous solution at low temperatures show a number of NOE connectivities that are used to determine the highly populated conformations of the peptide in solution. Short-range dNN(i, i + 1) and d alpha N(i, i + 1) connectivities and medium-range d alpha beta(i, i + 3) and d alpha N(i, i + 3) connectivities are detected. The pattern of NOE connectivities unambiguously establishes the presence of helix in this peptide. The magnitudes of the 3JHN alpha coupling constants and the intensities of the dNN(i, i + 1) and d alpha N(i,i + 1) NOEs allow the evaluation of the position of the helix along the peptide backbone. These data indicate that the amino terminus of the peptide is less helical than the remainder of the peptide. The observation of several long-range NOEs that are atypical of helices indicates the presence of a high population of peptide molecules in which the first three residues are distorted out of the helical conformation. The absence of these NOEs in a related peptide, RN-31, in which Arg 10 has been changed to Ala, suggests that this distortion at the amino-terminal end of the peptide arises from the formation of a salt bridge between Glu 2 and Arg 10.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Sequence-specific 1H NMR resonance assignments for all but the C-terminal Lys 82 are reported for iron(II) cytochrome c551 from Pseudomonas aeruginosa at 25 degrees C and pH = 6.8. Spin systems were identified by using TOCSY and DQF-COSY spectra in 2H2O and 1H2O. Sequential assignments were made by using NOESY connectivities between adjacent amide, alpha, and beta protons. Resonances from several amino acids including His 16, Gly 24, Ile 48, and Met 61 experience strong ring-current shifts due to their placement near the heme. All heme protons, including the previously unassigned propionates, have been identified. Preliminary analysis of sequential and medium-range NOEs provides evidence for substantial amounts of helix in the solution structure. Long-range NOEs indicate that the folds in solution and crystal structures are similar. For one aromatic side chain (Tyr 27) that is close to the heme group we found a transition from hindered ring rotation at low temperature to rapid rotation at high temperature.  相似文献   

7.
The following interproton distances are reported for the decapeptide tyrocidine A in solution: (a) r(phi) distances between NH(i) and H alpha (i), (b) r(psi) distances between NH (i + 1) and H alpha (i), (c) r(phi psi) distances between NH(i + 1) and NH(i), (d) NH in equilibrium NH transannular distances, (e) H alpha in equilibrium H alpha transannular distances, (f) r x 1 distances between H alpha and H beta protons, (g) NH(i) in equilibrium H beta (i) distances, (h) NH (i + 1) in equilibrium H beta (i) distances, (i) carboxamide-backbone protons and carboxamide-side chain proton distances, (j) side chain proton-side chain proton distances. The procedures for distance calculations were: NOE ratios and calibration distances, sigma ratios and calibration distances, and correlation times and sigma parameters. The cross-relaxation parameters were obtained from the product, say, of NOE 1 leads to 2 and the monoselective relaxation rate of proton 2; the NOEs were measured by NOE difference spectroscopy. The data are consistent with a type I beta-turn/ type II' beta-turn/ approximately antiparallel beta-pleated sheet conformation of tyrocidine A in solution and the NOEs, cross-relaxation parameters, and interproton distances serve as distinguishing criteria for beta-turn and beta-pleated sheet conformations. It should be borne in mind that measurement of only r phi and r psi distances for a decapeptide only defines the ( phi, psi)-space in terms of 4(10) possible conformations; the distances b-j served to reduce the degeneracy in possible (phi, psi)-space to one tyrocidine A conformation. The latter conformation is consistent with that derived from scalar coupling constants, hydrogen bonding studies, and proton-chromophore distance measurement, and closely resembles the conformation of gramicidin S.  相似文献   

8.
Tang Y  Goger MJ  Raleigh DP 《Biochemistry》2006,45(22):6940-6946
The villin headpiece subdomain (HP36) is the smallest naturally occurring protein that folds cooperatively. The protein folds on a microsecond time scale. Its small size and very rapid folding have made it a popular target for biophysical studies of protein folding. Temperature-dependent one-dimensional (1D) NMR studies of the full-length protein together with CD and 1D NMR studies of the 21-residue peptide fragment (HP21) derived from HP36 have shown that there is significant structure in the unfolded state of HP36 and have demonstrated that HP21 is a good model of these interactions. Here, we characterized the model peptide HP21 in detail by two-dimensional NMR. Strongly upfield shifted C(alpha) protons, the magnitude of the 3J(NH,alpha) coupling constants, and the pattern of backbone-backbone and backbone-side chain NOEs indicate that the ensemble of structures populated by HP21 contains alpha-helical structure and native as well as non-native hydrophobic contacts. The hydrogen-bonded secondary structure inferred from the NOEs is, however, not sufficient to confer significant protection against amide H-D exchange. These studies indicate that there is significant secondary structure and hydrophobic clustering in the unfolded state of HP36. The implications for the folding of HP36 are discussed.  相似文献   

9.
The human fibrinogen gamma-chain, C-terminal fragment, residues 385-411, i.e., KIIPFNRLTIGEGQQHHLGGAKQAGDV, contains two biologically important functional domains: (1) fibrinogen gamma-chain polymerization center and (2) platelet receptor recognition domain. This peptide was isolated from cyanogen bromide degraded human fibrinogen and was investigated by 1H NMR (500 MHz) spectroscopy. Sequence-specific assignments of NMR resonances were obtained for backbone and side-chain protons via analysis of 2D NMR COSY, double quantum filtered COSY, HOHAHA, and NOESY spectra. The N-terminal segment from residues 385-403 seems to adopt a relatively fixed solution conformation. Strong sequential alpha CH-NH NOESY connectivities and a continuous run of NH-NH NOESY connectivities and several long-lived backbone NH protons strongly suggest the presence of multiple-turn or helix-like structure for residues 390 to about 402. The conformation of residues 403-411 seems to be much less constrained as evidenced by the presence of weaker and sequential alpha CH-NH NOEs, the absence of sequential NH-NH NOEs, and the lack of longer lived amides. Chemical shifts of resonances from backbone and side-chain protons of the C-terminal dodecapeptide, residues 400-411, differ significantly from those of the parent chain, suggesting that some preferred C-terminal conformation does exist.  相似文献   

10.
The aqueous solution conformation of the bicyclic, 21 amino acid vasoconstrictor peptide, endothelin-1, has been determined using two dimensional NMR and a combination of distance geometry and molecular dynamics. The dominant structural feature is a helical region between Lys9 and Cys15 characterized by strong NHi-NHi+1 NOEs and several long range NOEs spanning 3 to 5 residues. Solvent inaccessibility and possible hydrogen bonding in the Cys3-Cys11 loop is suggested by the temperature independence of the chemical shifts of several amide protons. There is no evidence for association of the C-terminal hexapeptide with the bicyclic region.  相似文献   

11.
Solution structure of a mini IGF-1.   总被引:2,自引:1,他引:1       下载免费PDF全文
Mini insulin-like growth factor 1, an inactive insulin-like growth factor 1 mutant lacking the C region, was studied by 2D NMR spectroscopy. Resonances were assigned for almost all protons of the 57 amino acid residues. The 3D structure of the protein was determined by distance geometry methods. Three helical segments; Ala 8-Cys 18, Gly 42-Phe 49, and Leu 54-Cys 61, were identified, corresponding to those present in wild-type insulin-like growth factor 1 and in single-chain insulin. Their relative orientation, however, was found to be changed. This change is connected with a displacement of the Phe 23-Tyr 24-Phe 25-Asn 26 beta-strand-like segment, i.e., of aromatic side chains known to be important for receptor binding. Thus, deletion of the C region of IGF-1 results in a substantial tertiary structural rearrangement that accounts for the loss of receptor affinity.  相似文献   

12.
We have used high resolution NMR and thermodynamics to characterize the secondary structure and stability of the selenocysteine insertion sequences (SECIS) of human glutathione peroxidase (58 nt) and thioredoxin reductase (51 nt). These sequences are members of the two classes of SECIS recently identified with two distinct structures capable of directing selenocysteine incorporation into proteins in eukaryotes. UV melting experiments showed a single cooperative and reversible transition for each RNA, which indicates the presence of stable secondary structures. Despite their large size, the RNAs gave well resolved NMR spectra for the exchangeable protons. Using NOESY, the imino protons as well as the cytosine amino protons of all of the Watson-Crick base pairs were assigned. In addition, a number of non-canonical base pairs including the wobble G.U pairs were identified. The interbase-pair NOEs allowed definition of the hydrogen-bonded structure of the oligonucleotides, providing an experimental model of the secondary structure of these elements. The derived secondary structures are consistent with several features of the predicted models, but with some important differences, especially regarding the conserved sequence motifs.  相似文献   

13.
The disulfide arrangement of yeast derived human insulin-like growth factor I (yIGF-I) was determined using a combination of Staphylococcus aureus V8 protease mapping, fast-atom-bombardment mass spectrometry as well as amino acid sequence and composition analysis. Three disulfide bridges were found between the following cysteine residues: Cys6-Cys48, Cys47-Cys52 and Cys18-Cys61. IGF-I isolated from human plasma (pIGF-I) was found to have an identical disulfide configuration. A yeast-derived isomeric form of IGF-I (yisoIGF-I) exhibited an altered disulfide arrangement: Cys6-Cys47, Cys48-Cys52 and Cys18-Cys61. Radioreceptor analysis of pIGF-I and yIGF-I showed high specific activity, 20,000 U/mg. However, yisoIGF-I demonstrated a severely reduced ability to bind to the IGF-I receptor (19%) and was less potent in provoking a mitogenic response in Balb/C 3T3 fibroblasts (50% at doses 10-100 ng/ml). The data demonstrate the importance of correct disulfide arrangement in IGF-I for full biological activity.  相似文献   

14.
Amino-acid sequence of human alpha 2-antiplasmin   总被引:4,自引:0,他引:4  
The amino-acid sequence of human alpha 2-antiplasmin was determined by Edman degradation of peptides purified from CNBr, tryptic and chymotryptic digests. Of the total sequence of 452 amino acids of mature alpha 2-antiplasmin, as deduced from the cDNA sequence [Holmes et al. (1987) J. Biol. Chem. 262, 1659-1664], 444 residues were identified by amino-acid sequencing. Two differences were found between the peptide and cDNA analyses (Gly instead of Leu at position 10 and Gly instead of Ser at position 369). alpha 2-Antiplasmin contains two disulfide bridges (Cys64-Cys104 and Cys31-Cys113) and four glucosamine-based carbohydrate chains attached to Asn87, Asn256, Asn270 and Asn277. alpha 2-Antiplasmin is homologous with 12 other proteins belonging to the serine protease inhibitor (serpin) superfamily.  相似文献   

15.
Three-dimensional (3D) heteronuclear NMR techniques have been used to make sequential 1H and 15N resonance assignments for most of the residues of Lactobacillus casei dihydrofolate reductase (DHFR), a monomeric protein of molecular mass 18,300 Da. A uniformly 15N-labeled sample of the protein was prepared and its complex with methotrexate (MTX) studied by 3D 15N/1H nuclear Overhauser-heteronuclear multiple quantum coherence (NOESY-HMQC), Hartmann-Hahn-heteronuclear multiple quantum coherence (HOHAHA-HMQC), and HMQC-NOESY-HMQC experiments. These experiments overcame most of the spectral overlap problems caused by chemical shift degeneracies in 2D spectra and allowed the 1H-1H through-space and through-bond connectivities to be identified unambiguously, leading to the resonance assignments. The novel HMQC-NOESY-HMQC experiment allows NOE cross peaks to be detected between NH protons even when their 1H chemical shifts are degenerate as long as the amide 15N chemical shifts are nondegenerate. The 3D experiments, in combination with conventional 2D NOESY, COSY, and HOHAHA experiments on unlabelled and selectively deuterated DHFR, provide backbone assignments for 146 of the 162 residues and side-chain assignments for 104 residues of the protein. Data from the NOE-based experiments and identification of the slowly exchanging amide protons provide detailed information about the secondary structure of the binary complex of the protein with methotrexate. Sequential NHi-NHi+1 NOEs define four regions with helical structure. Two of these regions, residues 44-49 and 79-89, correspond to within one amino acid to helices C and E in the crystal structure of the DHFR.methotrexate.NADPH complex [Bolin et al. (1982) J. Biol. Chem. 257, 13650-13662], while the NMR-determined helix formed by residues 26-35 is about one turn shorter at the N-terminus than helix B in the crystal structure, which spans residues 23-34. Similarly, the NMR-determined helical region comprising residues 102-110 is somewhat offset from the crystal structure's helix F, which encompasses residues 97-107. Regions of beta-sheet structure were characterized in the binary complex by strong alpha CHi-NHi+1 NOEs and by slowly exchanging amide protons. In addition, several long-range NOEs were identified linking together these stretches to form a beta-sheet. These elements align perfectly with corresponding elements in the crystal structure of the DHFR.methotrexate.NADPH complex, which contains an eight-stranded beta-sheet, indicating that the main body of the beta-sheet is preserved in the binary complex in solution.  相似文献   

16.
The interaction of the following human fibrinogen-like peptides with bovine thrombin was studied by use of one- and two-dimensional NMR techniques in aqueous solution: Ala(1)-Asp-Ser-Gly-Glu-Gly-Asp-Phe(8)-Leu-Ala-Glu-Gly-Gly-Gly-Val-Arg(16 )- Gly(17)-Pro-Arg(19)-Val(20)-Val-Glu-Arg (F10), residues 1-16 of F10 (fibrinopeptide A), residues 17-23 of F10 (F12), residues 1-20 of F10 (F13), residues 6-20 of F10 with Arg(16) replaced by a Gly residue (F14), and residues 6-19 of F10 with Arg(16) replaced by a Leu residue (F15). At pH 5.3 and 25 degrees C, the Arg(16)-Gly(17) peptide bonds of both peptides F10 and F13 were cleaved instantaneously in the presence of 0.6 mM thrombin, whereas the cleavage of the Arg(19)-Val(20) peptide bonds in peptides F12, F13, and F14 took over 1 h for completion. On the basis of observations of line broadening, fibrinopeptide A was found to bind to thrombin. While resonances from residues Ala(1)-Glu(5) were little affected, binding of fibrinopeptide A to thrombin caused significant line broadening of NH and side-chain proton resonances within residues Asp(7)-Arg(16). There is a chain reversal within residues Asp(7)-Arg(16) such that Phe(8) is brought close to the Arg(16)-Gly(17) peptide bond in the thrombin-peptide complex, as indicated by transferred NOEs between the aromatic ring protons of Phe(8) and the C alpha H protons of Gly(14) and the C gamma H protons of Val(15). A similar chain reversal was obtained in the isolated peptide F10 at a subzero temperature of -8 degrees C. The titration behavior of Asp(7) in peptide F13 does not deviate from that of the reference peptide, N-acetyl-Asp-NHMe at both 25 and -8 degrees C, indicating that no strong interaction exists between Asp(7) and Arg(16) or Arg(19). Peptides with Arg(16) replaced by Gly and Leu, respectively, i.e., F14 and F15, were also found to bind to thrombin but with a different conformation, as indicated by the absence of the long-range NOEs observed with fibrinopeptide A. Residues Asp(7)-Arg(16) constitute an essential structural element in the interaction of thrombin with fibrinogen.  相似文献   

17.
Plastocyanin is a predominantly beta-sheet protein containing a type I copper center. The conformational ensemble of a denatured state of apo-plastocyanin formed in solution under conditions of low salt and neutral pH has been investigated by multidimensional heteronuclear NMR spectroscopy. Chemical shift assignments were obtained by using three-dimensional triple-resonance NMR experiments to trace through-bond heteronuclear connectivities along the backbone and side chains. The (3)J(HN,Halpha) coupling constants, (15)N-edited proton-proton nuclear Overhauser effects (NOEs), and (15)N relaxation parameters were also measured for the purpose of structural and dynamic characterization. Most of the residues corresponding to beta-strands in the folded protein exhibit small upfield shifts of the (13)C(alpha) and (13)CO resonances relative to random coil values, suggesting a slight preference for backbone dihedral angles in the beta region of (phi,psi) space. This is further supported by the presence of strong sequential d(alphaN)(i, i + 1) NOEs throughout the sequence. The few d(NN)(i, i + 1) proton NOEs that are observed are mostly in regions that form loops in the native plastocyanin structure. No medium or long-range NOEs were observed. A short sequence, between residues 59 and 63, was found to populate a nonnative helical conformation in the unfolded state, as indicated by the shift of the (13)C(alpha), (13)CO, and (1)H(alpha) resonances relative to random coil values and by the decreased values of the (3)J(HN,Halpha) coupling constants. The (15)N relaxation parameters indicate restriction of motions on a nanosecond timescale in this region. Intriguingly, this helical conformation is present in a sequence that is close to but not in the same location as the single short helix in the native folded protein. The results are consistent with earlier NMR studies of peptide fragments of plastocyanin and confirm that the regions of the sequence that form beta-strands in the native protein spontaneously populate the beta-region of (phi,psi) space under folding conditions, even in the absence of stabilizing tertiary interactions. We conclude that the state of apo-plastocyanin present under nondenaturing conditions is a noncompact unfolded state with some evidence of nativelike and nonnative local structuring that may be initiation sites for folding of the protein.  相似文献   

18.
Cellular RA binding proteins are thought to play important roles in the (RA), a hormonally active metabolite of vitamin A that has profound effects on cell growth, + differentiation and morphogenesis. Binding of RA to type II human cellular RA binding proteins (CRABPII) has been investigated by NMR spectroscopy. The sequential resonance assignments of +CRABPII in the presence of RA were established by heteronuclear three-dimensional NMR at pH 7.3. The resonance assignments of the bound RA were achieved by homonucl NMR. The secondary structures of holo-CRABPII determined by NMR were ess as revealed by the crystal structure of holo-CRABPII. Most of the nuclear Overhauser effects (NOEs) between CRABPII and the bound RA were consistent with those predicted crystal structure of holo-CRABPII. The results suggested that the conformations in solution and in the crystalline state are highly similar. Compared to the ligand binding pocket, especially the ligand entrance, was stabilize Ser12-Leu18, one of the structure elements that constitute the ligand binding pocket, became more mobile upon binding of RA. Intramolecular NOEs between protons of the bo the carboxylate end of the bound RA is well fixed but the β-ionone  相似文献   

19.
The primary structure of human IGF-I, except for the disulfide bond system, has been reported by Rinderknecht and Humbel. IGF-I afforded the corresponding characteristic peptide fragment on V8 protease digestion, which contained Cys6, Cys47, Cys48, and Cys52. Two possible fragments, Type I with Cys6-Cys47 and Cys48-Cys52, and Type II with Cys6-Cys48 and Cys47-Cys52, were synthesized. The disulfide bond system of IGF-I was unequivocally determined to be the Type II form along with Cys18-Cys61. Interestingly, the Type I system was included in the disulfide bond isomer produced as the main by-product in the refolding step on IGF-I synthesis by the recombinant DNA method.  相似文献   

20.
Nuclear Overhauser effect (NOE) studies of the symmetrical cystine peptides (Formula: see text) (n = 1-3) in dimethylsulfoxide, have resulted in the simultaneous observation of both positive and negative NOEs. Positive NOEs are observed on the Trp C2H and C4H protons of the indole ring upon irradiation of Trp C alpha H and C beta H2 resonances in the peptides where n = 1 and 2. Negative NOEs are observed between backbone NH and C alpha H protons. The magnitudes of the observed NOEs are sensitive to changes in molecular size and solvent viscosity. The results demonstrate that NOEs may be a useful probe of sidechain segmental motion in oligopeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号