首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Influence of Pythium ultimum and Cochliobolus sativus on growth and root efficiency of winter barley dependent on fertilizer level The colonization of barley roots by Pythium ultimum and Cochliobolus sativus can be symptomless or cause root rot. Disease severity of the root systems was increased at higher fertilizer level. Since root length growth was much more affected than shoot growth, the undamaged roots of an infected root systems had an increased efficiency per unit root length. Nevertheless the total root systems, when infected, were positively inferior to the healthy ones. Their utilization of additionaln, utrients was less efficient. This indicates the importance of root health in economical and ecological respect.  相似文献   

4.
Culturable rhizosphere bacterial communities had been shown to exhibit wave-like distribution patterns along wheat roots. In the current work we show, for the first time, significant wave-like oscillations of an individual bacterial strain, the biocontrol agent Pseudomonas fluorescens 32 marked with gfp, along 3-week-old wheat roots in a conventionally managed and an organically managed soil. Significant wave-like fluctuations were observed for colony forming units (CFUs) on selective media and direct fluorescent counts under the microscope. Densities of fluorescent cells and of CFUs fluctuated in a similar manner along wheat roots in the conventional soil. The frequencies of the first, second, and third harmonics were similar for direct cell counts and CFUs. Survival of P. fluorescens 32-gfp introduced into organically managed soil was lower than that of the same strain added to conventionally managed soil. Thus, when root tips reached a depth of 10–35 cm below soil level, the majority of the introduced cells may have died, so that no cells or CFU”s were detected in this region at the time of sampling. As a result, significant waves in CFUs or direct counts along roots were not found in organically managed soil, except when a sufficiently long series with detectable CFUs were obtained. In this last case the wave-like fluctuation in CFUs was damped toward the root tip. In conclusion, when cells of a single bacterial strain randomly mixed in soil survived until a root tip passed, growth and death cycles after passage of the root tip resulted in oscillating patterns of population densities of this strain along 3-week-old wheat roots.  相似文献   

5.
该文以接种不同砂生槐根瘤内生菌的黑青稞种子和不接种菌株的黑青稞种子为研究材料,采用培养皿作为基质,观察黑青稞种子萌发及幼苗生长情况,测定接种不同根瘤内生菌后的黑青稞发芽率、发芽势、发芽指数、株高、根长、须根数、根冠比、植株全株干/鲜重的生理性状,并对各不同处理进行隶属函数综合评价.结果表明:菌株R7和R17的发芽率均达...  相似文献   

6.
Indirect immunofluorescence techniques and confocal scanning laser microscopy were used to identify rhizobacterial strains on the root surfaces of pine seedlings, which were grown from seeds under gnotobiotic conditions. Conifer plant growth promoting rhizobacterial strains Paenibacillus polymyxa L6 and Pw-2, and the forest soil isolate Pseudomonas fluorescens M20, were inoculated onto surface-disinfested pine seeds, singly, or in dual combinations: strains L6 + M20, or strains Pw-2 + M20. Segments containing particular root microsites (root tip, root hair zone, or areas of lateral root emergence) were sampled randomly from roots 7 or 13 weeks after inoculation, and the colonization of roots by each bacterium was observed. Root segments were also sampled from individual roots at six different points along the length of the root, and the qualitative colonization of younger areas, closer to the root tip, contrasted with that of older areas, closer to the root base. The ability of strain M20 to colonize root areas adjacent to sites of lateral root emergence improves in the presence of either P. polymyxa strain, while the ability of the P. polymyxa strains to colonize these areas was not affected. More rhizobacteria were also generally observed on younger root tissues than on areas closer to the root base.  相似文献   

7.
Bioremediation of soils contaminated with wood preservatives containing polycyclic aromatic hydrocarbons (PAHs) is desired because of their toxic, mutagenic, and carcinogenic properties. Creosote wood preservative–contaminated soils at the Champion International Superfund Site in Libby, Montana currently undergo bioremediation in a prepared-bed land treatment unit (LTU) process. Microbes isolated from these LTU soils rapidly mineralized the 14C-labeled PAH pyrene in the LTU soil. Gram staining, electron microscopy, and 16S rDNA-sequencing revealed that three of these bacteria, JLS, KMS, and MCS, were Mycobacterium strains. The phylogeny of the 16S rDNA showed that they were distinct from other Mycobacterium isolates with PAH-degrading activities. Catalase and superoxide dismutase (SOD) isozyme profiles confirmed that each isolate was distinct from each other and from the PAH-degrading mycobacterium, Mycobacterium vanbaalenii sp. nov, isolated from a petroleum-contaminated soil. We find that dioxygenase genes nidA and nidB are present in each of the Libby Mycobacterium isolates and are adjacent to each other in the sequence nidB-nidA, an order that is unique to the PAH-degrading mycobacteria.This revised version was published online in November 2004 with corrections to Volume 48.  相似文献   

8.
Pyrene degradation is known in bacteria. In this study, Mycobacterium sp. strain KMS was used to study the metabolites produced during, and enzymes involved in, pyrene degradation. Several key metabolites, including pyrene-4,5-dione, cis-4,5-pyrene-dihydrodiol, phenanthrene-4,5-dicarboxylic acid, and 4-phenanthroic acid, were identified during pyrene degradation. Pyrene-4,5-dione, which accumulates as an end product in some gram-negative bacterial cultures, was further utilized and degraded by Mycobacterium sp. strain KMS. Enzymes involved in pyrene degradation by Mycobacterium sp. strain KMS were studied, using 2-D gel electrophoresis. The first protein in the catabolic pathway, aromatic-ring-hydroxylating dioxygenase, which oxidizes pyrene to cis-4,5-pyrene-dihydrodiol, was induced with the addition of pyrene and pyrene-4,5-dione to the cultures. The subcomponents of dioxygenase, including the alpha and beta subunits, 4Fe-4S ferredoxin, and the Rieske (2Fe-2S) region, were all induced. Other proteins responsible for further pyrene degradation, such as dihydrodiol dehydrogenase, oxidoreductase, and epoxide hydrolase, were also found to be significantly induced by the presence of pyrene and pyrene-4,5-dione. Several nonpathway-related proteins, including sterol-binding protein and cytochrome P450, were induced. A pyrene degradation pathway for Mycobacterium sp. strain KMS was proposed and confirmed by proteomic study by identifying almost all the enzymes required during the initial steps of pyrene degradation.  相似文献   

9.
The screening of 27 isolates grown on nitrogen-free medium for nitrogen-fixing ability resulted in the isolation of five organisms belonging toBacillaceae, Enterobacteriaceae andPseudomonadaceae. Estimates of N2-fixation efficiencies of these isolates indicated that they may be responsible for low rates of N2-fixation in soil. The possible association of these isolates as well as ofAzotobacter andAzospirillum with wheat and barley was investigated in a greenhouse experiment. The highest values of nitrogenase activity on plant root were recorded in treatments inoculated with composite inocula of the isolated N2-fixers, particularly whenAzotobacter and/orAzospirillum were added in combination. Inoculation with single inoculum of each of the N2-fixing isolates had no significant influence on plant growth, except withPseudomonas andBacillus for wheat and barley, respectively. Highly significant increases in growth of both plants were recorded in all cases of multistrain inoculation.  相似文献   

10.
Extensive communication occurs between plants and microorganisms during different stages of plant development in which signaling molecules from the two partners play an important role. Volatile organic compounds (VOCs) emission by certain plant-growth promoting rhizobacteria (PGPR) has been found to be involved in plant growth. However, little is known about the role of bacterial VOCs in plant developmental processes. In this work, we investigated the effects of inoculation with twelve bacterial strains isolated from the rhizosphere of lemon plants (Citrus aurantifolia) on growth and development of Arabidopsis thaliana seedlings. Several bacterial strains showed a plant growth promoting effect stimulating biomass production, which was related to differential modulation of root-system architecture. The isolates L263, L266, and L272a stimulated primary root growth and lateral root development, while L254, L265a and L265b did not significantly alter primary root growth but strongly promoted lateral root formation. VOC emission analysis by SPME-GC-MS identified aldehydes, ketones and alcohols as the most abundant compounds common to most rhizobacteria. Other VOCs, including 1-octen-3-ol and butyrolactone were strain specific. Characterization of L254, L266 and L272a bacterial isolates by 16S rDNA analysis revealed the identity of these strains as Bacillus cereus, Bacillus simplex and Bacillus sp, respectively. Taken together, our data suggest that rhizospheric bacterial strains can modulate both plant growth promotion and root-system architecture by differential VOC emission.  相似文献   

11.
Ninety isolates of root nodule bacteria from an invasive Mimosa pigra population in Australia were characterized by PCR assays and by sequencing of ribosomal genes. All isolates belonged to the same bacterial genus (Burkholderia) that predominates on M. pigra in its native geographic range in tropical America. However, the Australian Burkholderia strains represented several divergent lineages, none of which had a close relationship to currently known Burkholderia strains in American M. pigra populations. Inoculation of M. pigra with Australian strains resulted in equal or higher plant growth and nodule nitrogenase activity (measured by acetylene reduction assays) relative to outcomes with bacteria from M. pigra’s native geographic region. The main difference in symbiotic phenotype for bacteria from the two regions involved responses to an alternate Mimosa host species: Central American strains failed to fix nitrogen in association with Mimosa pudica, while most Australian Burkholderia isolates tested had high nodule nitrogenase activity in association with both Mimosa species. Invasive M. pigra populations in Australia have therefore acquired a diverse assemblage of nodule bacteria that are effective nitrogen-fixing symbionts, despite having a broader host range and a distant genetic relationship to bacterial strains found in the plant’s ancestral region.  相似文献   

12.
The ability to decolorize four synthetic dyes (Phenol Red, Evans Blue, Eosin Yellowish and Poly B411) in fivePleurotus ostreatus strains (a parental strain and four isolates derived from it) was determined. Two of the isolates had markedly higher and other two substantially lower production of ligninolytic enzymes and hydrogen peroxide that the parental strain. Like the parental strain, the higher-producing isolates were able to decolorize all the tested dyes, but not to a higher extent than the parental strain. In contrast, two lower-producing isolates exhibited slow decolorization, which was incomplete even at the end of cultivation. Evans Blue and Eosin Yellowish strongly suppressed the growth of the strains, while Phenol Red and Poly B411 induced none or only a very slight growth reduction.  相似文献   

13.
The effect of seed‐borne pathogens of wheat and barley on crown and root rot diseases of seven barley cultivars (Jimah‐6, Jimah‐51, Jimah‐54, Jimah‐58, Omani, Beecher and Duraqi) and three wheat cultivars (Cooley, Maissani and Shawarir) was investigated. Bipolaris sorokiniana and Alternaria alternata were detected in seeds of at least eight cultivars, but Fusarium species in seeds of only two barley cultivars (Jimah‐54 and Jimah‐58). Crown rot and root rot symptoms developed on barley and wheat cultivars following germination of infected seeds in sterilized growing media. Bipolaris sorokiniana was the only pathogen consistently isolated from crowns and roots of the emerging seedlings. In addition, crown rot and root rot diseases of non‐inoculated barley cultivars correlated significantly with B. sorokiniana inoculum in seeds (P = 0.0019), but not with Fusarium or Alternaria (P > 0.05). These results indicate the role of seed‐borne inoculum of B. sorokiniana in development of crown rot and root rot diseases. Pathogenicity tests of B. sorokiniana isolates confirmed its role in inducing crown rot and root rot, with two wheat cultivars being more resistant to crown and root rots than most barley cultivars (P < 0.05). Barley cultivars also exhibited significant differences in resistance to crown rot (P < 0.05). In addition, black point disease symptoms were observed on seeds of three barley cultivars and were found to significantly affect seed germination and growth of some of these cultivars. This study confirms the role of seed‐borne inoculum of B. sorokiniana in crown and root rots of wheat and barley and is the first report in Oman of the association of B. sorokiniana with black point disease of barley.  相似文献   

14.
Nitrogen‐fixing bacteria (rhizobia) form a nodule symbiosis with legumes, but also induce certain effects on non‐host plants. Here, we used a split‐root system of barley to examine whether inoculation with Rhizobium sp. strain NGR234 on one side of a split‐root system systemically affects arbuscular mycorrhizal (AM) root colonization on the other side. Mutant strains of NGR234 deficient in Nod factor production (strain NGRΔnodABC), perception of flavonoids (strain NGRΔnodD1) and secretion of type 3 effector proteins (strain NGRΩrhcN) were included in this study. Inoculation resulted in a systemic reduction of AM root colonization with all tested strains. However, the suppressive effect of strain NGRΩrhcN was less pronounced. Moreover, levels of salicylic acid, an endogenous molecule related to plant defense, were increased in roots challenged with rhizobia. These data indicate that barley roots perceived NGR234 and that a systemic regulatory mechanism of AM root colonization was activated. The suppressive effect appears to be Nod factor independent, but enhanced by type 3 effector proteins of NGR234.  相似文献   

15.
The role of bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity in the interaction between tomato (Lycopersicon esculentum=Solanum lycopersicum) and Pseudomonas brassicacearum was studied in different strains. The phytopathogenic strain 520-1 possesses ACC deaminase activity, an important trait of plant growth-promoting rhizobacteria (PGPR) that stimulates root growth. The ACC-utilizing PGPR strain Am3 increased in vitro root elongation and root biomass of soil-grown tomato cv. Ailsa Craig at low bacterial concentrations (10(6) cells ml-1 in vitro and 10(6) cells g-1 soil) but had negative effects on in vitro root elongation at higher bacterial concentrations. A mutant strain of Am3 (designated T8-1) that was engineered to be ACC deaminase deficient failed to promote tomato root growth in vitro and in soil. Although strains T8-1 and 520-1 inhibited root growth in vitro at higher bacterial concentrations (>10(6) cells ml-1), they did not cause disease symptoms in vitro after seed inoculation, or in soil supplemented with bacteria. All the P. brassicacearum strains studied caused pith necrosis when stems or fruits were inoculated with a bacterial suspension, as did the causal organism of this disease (P. corrugata 176), but the non-pathogenic strain Pseudomonas sp. Dp2 did not. Strains Am3 and T8-1 were marked with antibiotic resistance and fluorescence to show that bacteria introduced to the nutrient solution or on seeds in vitro, or in soil were capable of colonizing the root surface, but were not detected inside root tissues. Both strains showed similar colonization ability either on root surfaces or in wounded stems. The results suggest that bacterial ACC deaminase of P. brassicacearum Am3 can promote growth in tomato by masking the phytopathogenic properties of this bacterium.  相似文献   

16.
Plant growth‐promoting rhizobacteria (PGPR) affect growth of host plants through various direct and indirect mechanisms. Three native PGPR (Pseudomonas putida) strains isolated from rhizospheric soil of a Mentha piperita (peppermint) crop field near Córdoba, Argentina, were characterised and screened in vitro for plant growth‐promoting characteristics, such as indole‐3‐acetic acid (IAA) production, phosphate solubilisation and siderophore production, effects of direct inoculation on plant growth parameters (shoot fresh weight, root dry weight, leaf number, node number) and accumulation and composition of essential oils. Each of the three native strains was capable of phosphate solubilisation and IAA production. Only strain SJ04 produced siderophores. Plants directly inoculated with the native PGPR strains showed increased shoot fresh weight, glandular trichome number, ramification number and root dry weight in comparison with controls. The inoculated plants had increased essential oil yield (without alteration of essential oil composition) and biosynthesis of major essential oil components. Native strains of P. putida and other PGPR have clear potential as bio‐inoculants for improving productivity of aromatic crop plants. There have been no comparative studies on the role of inoculation with native strains on plant growth and secondary metabolite production (specially monoterpenes). Native bacterial isolates are generally preferable for inoculation of crop plants because they are already adapted to the environment and have a competitive advantage over non‐native strains.  相似文献   

17.
Pyrene degradation is known in bacteria. In this study, Mycobacterium sp. strain KMS was used to study the metabolites produced during, and enzymes involved in, pyrene degradation. Several key metabolites, including pyrene-4,5-dione, cis-4,5-pyrene-dihydrodiol, phenanthrene-4,5-dicarboxylic acid, and 4-phenanthroic acid, were identified during pyrene degradation. Pyrene-4,5-dione, which accumulates as an end product in some gram-negative bacterial cultures, was further utilized and degraded by Mycobacterium sp. strain KMS. Enzymes involved in pyrene degradation by Mycobacterium sp. strain KMS were studied, using 2-D gel electrophoresis. The first protein in the catabolic pathway, aromatic-ring-hydroxylating dioxygenase, which oxidizes pyrene to cis-4,5-pyrene-dihydrodiol, was induced with the addition of pyrene and pyrene-4,5-dione to the cultures. The subcomponents of dioxygenase, including the alpha and beta subunits, 4Fe-4S ferredoxin, and the Rieske (2Fe-2S) region, were all induced. Other proteins responsible for further pyrene degradation, such as dihydrodiol dehydrogenase, oxidoreductase, and epoxide hydrolase, were also found to be significantly induced by the presence of pyrene and pyrene-4,5-dione. Several nonpathway-related proteins, including sterol-binding protein and cytochrome P450, were induced. A pyrene degradation pathway for Mycobacterium sp. strain KMS was proposed and confirmed by proteomic study by identifying almost all the enzymes required during the initial steps of pyrene degradation.  相似文献   

18.
The role of cell surface hydrophobicity in the adhesion to stainless steel (SS) of 11 wild yeast strains isolated from the ultrafiltration membranes of an apple juice processing plant was investigated. The isolated yeasts belonged to four species: Candida krusei (5 isolates), Candida tropicalis (2 isolates), Kluyveromyces marxianus (3 isolates) and Rhodotorula mucilaginosa (1 isolate). Surface hydrophobicity was measured by the microbial adhesion to solvents method. Yeast cells and surfaces were incubated in apple juice and temporal measurements of the numbers of adherent cells were made. Ten isolates showed moderate to high hydrophobicity and 1 strain was hydrophilic. The hydrophobicity expressed by the yeast surfaces correlated positively with the rate of adhesion of each strain. These results indicated that cell surface hydrophobicity governs the initial attachment of the studied yeast strains to SS surfaces common to apple juice processing plants.  相似文献   

19.
Herbaspirillum frisingense is a diazotrophic betaproteobacterium isolated from C4-energy plants, for example Miscanthus sinensis. To demonstrate endophytic colonization unequivocally, immunological labeling techniques using monospecific polyclonal antibodies against two H. frisingense strains and green fluorescent protein (GFP)-fluorescence tagging were applied. The polyclonal antibodies enabled specific in situ identification and very detailed localization of H. frisingense isolates Mb11 and GSF30(T) within roots of Miscanthusxgiganteus seedlings. Three days after inoculation, cells were found inside root cortex cells and after 7 days they were colonizing the vascular tissue in the central cylinder. GFP-tagged H. frisingense strains could be detected and localized in uncut root material by confocal laser scanning microscopy and were found as endophytes in cortex cells, intercellular spaces and the central cylinder of barley roots. Concerning the production of potential plant effector molecules, H. frisingense strain GSF30(T) tested positive for the production of indole-3-acetic acid, while Mb11 was shown to produce N-acylhomoserine lactones, and both strains were able to utilize 1-aminocyclopropane-1-carboxylate (ACC), providing an indication of the activity of an ACC-deaminase. These results clearly present H. frisingense as a true plant endophyte and, although initial greenhouse experiments did not lead to clear plant growth stimulation, demonstrate the potential of this species for beneficial effects on the growth of crop plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号