首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Many cases of frontotemporal dementia (FTD) are familial, often with an autosomal dominant pattern of inheritance. Some are due to a mutation in the tau- encoding gene, on chromosome 17, and show an accumulation of abnormal tau in brain tissue (FTDP-17T). Most of the remaining familial cases do not exhibit tau pathology, but display neuropathology similar to patients with dementia and motor neuron disease, characterized by the presence of ubiquitin-immunoreactive (ub-ir), dystrophic neurites and neuronal cytoplasmic inclusions in the neocortex and hippocampus (FTLD-U). Recently, we described a subset of patients with familial FTD with autopsy-proven FTLD-U pathology and with the additional finding of ub-ir neuronal intranuclear inclusions (NII). NII are a characteristic feature of several other neurodegenerative conditions for which the genetic basis is abnormal expansion of a polyglutamine-encoding trinucleotide repeat region. The genetic basis of familial FTLD-U is currently not known, however the presence of NII suggests that a subset of cases may represent a polyglutamine expansion disease.  相似文献   

2.

Background  

NF-κB is implicated in gene regulation involved in neuronal survival, inflammmatory response and cancer. There are relatively few neuronal target genes of NF-κB characterized.  相似文献   

3.

Background  

Prenatal ethanol exposure during pregnancy induces a spectrum of mental and physical disorders called fetal alcohol spectrum disorder (FASD). The central nervous system is the main organ influenced by FASD, and neurological symptoms include mental retardation, learning abnormalities, hyperactivity and seizure susceptibility in childhood along with the microcephaly. In this study, we examined whether ethanol exposure adversely affects the proliferation of NPC and de-regulates the normal ratio between glutamatergic and GABAergic neuronal differentiation using primary neural progenitor culture (NPC) and in vivo FASD models.  相似文献   

4.

Background  

The central nervous tissue contains diverse subtypes of neurons with characteristic morphological and physiological features and different neurotransmitter phenotypes. The generation of neurons with defined neurotransmitter phenotypes seems to be governed by factors differently expressed along the anterior-posterior and dorsal-ventral body axes. The mechanisms of the cell-type determination, however, are poorly understood. Selected neuronal phenotypes had been generated from embryonic stem (ES) cells, but similar results were not obtained on more restricted neural stem cells, presumably due to the lack of homogeneous neural stem cell populations as a starting material.  相似文献   

5.
6.

Background  

Tanabin, transitin and nestin are type VI intermediate filament (IF) proteins that are developmentally regulated in frogs, birds and mammals, respectively. Tanabin is expressed in the growth cones of embryonic vertebrate neurons, whereas transitin and nestin are found in myogenic and neurogenic cells. Another type VI IF protein, synemin, is expressed in undifferentiated and mature muscle cells of birds and mammals. In addition to an IF-typical α-helical core domain, type VI IF proteins are characterized by a long C-terminal tail often containing distinct repeated motifs. The molecular evolution of type VI IF proteins remains poorly studied.  相似文献   

7.

Background

Targeted differentiation of stem cells is mainly achieved by the sequential administration of defined growth factors and cytokines, although these approaches are quite artificial, cost-intensive and time-consuming. We now present a simple xenogeneic rat brain co-culture system which supports neuronal differentiation of adult human stem cells under more in vivo-like conditions.

Methods and Findings

This system was applied to well-characterized stem cell populations isolated from human skin, parotid gland and pancreas. In addition to general multi-lineage differentiation potential, these cells tend to differentiate spontaneously into neuronal cell types in vitro and are thus ideal candidates for the introduced co-culture system. Consequently, after two days of co-culture up to 12% of the cells showed neuronal morphology and expressed corresponding markers on the mRNA and protein level. Additionally, growth factors with the ability to induce neuronal differentiation in stem cells could be found in the media supernatants of the co-cultures.

Conclusions

The co-culture system described here is suitable for testing neuronal differentiation capability of numerous types of stem cells. Especially in the case of human cells, it may be of clinical relevance for future cell-based therapeutic applications.  相似文献   

8.

Background  

Opiate addiction reflects plastic changes that endurably alter synaptic transmission within relevant neuronal circuits. The biochemical mechanisms of these adaptations remain largely unknown and proteomics-based approaches could lead to a broad characterization of the molecular events underlying adaptations to chronic drug exposure.  相似文献   

9.

Background

Gap junction communication has been shown in glial and neuronal cells and it is thought they mediate inter- and intra-cellular communication. Connexin 36 (Cx36) is expressed extensively in the developing brain, with levels peaking at P14 after which its levels fall and its expression becomes entirely neuronal. These and other data have led to the hypothesis that Cx36 may direct neuronal coupling and neurogenesis during development.

Methodology/Principal Findings

To investigate Cx36 function we used a neurosphere model of neuronal cell development and developed lentiviral Cx36 knockdown and overexpression strategies. Cx36 knockdown was confirmed by western blotting, immunocytochemistry and functionally by fluorescence recovery after photobleaching (FRAP). We found that knockdown of Cx36 in neurosphere neuronal precursors significantly reduced neuronal coupling and the number of differentiated neurons. Correspondingly, the lentiviral mediated overexpression of Cx36 significantly increased the number of neurons derived from the transduced neurospheres. The number of oligodendrocytes was also significantly increased following transduction with Cx36 indicating they may support neuronal differentiation.

Conclusions/Significance

Our data suggests that astrocytic and neuronal differentiation during development are governed by mechanisms that include the differential expression of Cx36.  相似文献   

10.

Background  

Akt regulates various cellular processes, including cell growth, survival, and metabolism. Recently, Akt's role in neurite outgrowth has also emerged. We thus aimed to identify neuronal function-related genes that are regulated by Akt.  相似文献   

11.

Background  

Neuroblastoma is a childhood cancer derived from immature cells of the sympathetic nervous system. The disease is clinically heterogeneous, ranging from neuronal differentiated benign ganglioneuromas to aggressive metastatic tumours with poor prognosis. Amplification of the MYCN oncogene is a well established poor prognostic factor found in up to 40% of high risk neuroblastomas.  相似文献   

12.

Background  

Mesenchymal stem cells (MSCs) can be induced to differentiate into neuronal cells under appropriate cellular conditions and transplanted in brain injury and neurodegenerative diseases animal models for neuroregeneration studies. In contrast to the embryonic stem cells (ESCs), MSCs are easily subject to aging and senescence because of their finite ability of self-renewal. MSCs senescence seriously affected theirs application prospects as a promising tool for cell-based regenerative medicine and tissue engineering. In the present study, we established a reversible immortalized mesenchymal stem cells (IMSCs) line by using SSR#69 retrovirus expressing simian virus 40 large T (SV40T) antigen as an alternative to primary MSCs.  相似文献   

13.
WC Lee  D Kan  YY Chen  SK Han  KS Lu  CL Chien 《PloS one》2012,7(8):e43883
Intermediate filament (IF) overproduction induces abnormal accumulation of neuronal IF, which is a pathological indicator of some neurodegenerative disorders. In our study, α-Internexin- and peripherin-overexpressing PC12 cells (pINT-EGFP and pEGFP-peripherin) were used as models to study neuropathological pathways responsible for neurodegenerative diseases. Microarray data revealed that Cdk5-related genes were downregulated and Cdk5 regulatory subunit-associated protein 3 (GSK-3α and GSK-3β) were upregulated in pINT-EGFP cells. Increased expression of phosphorylated neurofilament and aberrant activation of Cdk5 and GSK-3β were detected in both pEGFP-peripherin and pINT-EGFP cells by Western blotting. In addition, pharmacological approaches to retaining viability of pINT-EGFP and pEGFP-peripherin cells were examined. Treatment with Cdk5 inhibitor and GSK-3β inhibitor significantly suppressed neuronal death. Dynamic changes of disaggregation of EGFP-peripherin and decrease in green fluorescence intensity were observed in pEGFP-peripherin and pINT-EGFP cells by confocal microscopy after GSK-3β inhibitor treatment. We conclude that inhibition of Cdk5 and GSK-3β suppresses neurofilament phosphorylation, slows down the accumulation of neuronal IF in the cytoplasm, and subsequently avoids damages to cell organelles. The results suggest that suppression of extensive neurofilament phosphorylation may be a potential strategy for ameliorating neuron death. The suppression of hyperphosphorylation of neuronal cytoskeletons with kinase inhibitors could be one of potential therapeutic treatments for neurodegenerative diseases.  相似文献   

14.

Background  

Due to the rapid data accumulation on pathogenesis and progression of chronic inflammation, there is an increasing demand for approaches to analyse the underlying regulatory networks. For example, rheumatoid arthritis (RA) is a chronic inflammatory disease, characterised by joint destruction and perpetuated by activated synovial fibroblasts (SFB). These abnormally express and/or secrete pro-inflammatory cytokines, collagens causing joint fibrosis, or tissue-degrading enzymes resulting in destruction of the extra-cellular matrix (ECM).  相似文献   

15.
16.

Background  

Prion diseases are fatal neurodegenerative disorders that accompany an accumulation of the disease-associated form(s) of prion protein (PrPSc) in the central nervous system. The neuropathological changes in the brain begin with focal deposits of PrPSc, followed by pathomorphological abnormalities of axon terminal degeneration, synaptic loss, atrophy of dendritic trees, and eventual neuronal cell death in the lesions. However, the underlying molecular basis for these neuropathogenic abnormalities is not fully understood.  相似文献   

17.

Background  

The highly reactive aldehyde acrolein is a very potent endogenous toxin with a long half-life. Acrolein is produced within cells after insult, and is a central player in slow and progressive "secondary injury" cascades. Indeed, acrolein-biomolecule complexes formed by cross-linking with proteins and DNA are associated with a number of pathologies, especially central nervous system (CNS) trauma and neurodegenerative diseases. Hydralazine is capable of inhibiting or reducing acrolein-induced damage. However, since hydralazine's principle activity is to reduce blood pressure as a common anti-hypertension drug, the possible problems encountered when applied to hypotensive trauma victims have led us to explore alternative approaches. This study aims to evaluate such an alternative - a chitosan nanoparticle-based therapeutic system.  相似文献   

18.

Background

Activin A is a protein that participates principally in reproductive functions. In the adult brain, Activin is neuroprotective, but its role in brain development is still elusive.

Methodology/Principal Findings

We studied if Activin A influences proliferation, differentiation or survival in rat cerebrocortical neural progenitor cells (NPC). After stimulation of NPC with Activin A, phosphorylation and nuclear translocation of Smad 2/3 were induced. In proliferating NPC, Activin produced a significant decrease in cell area and also a discrete increase in the number of neurons in the presence of the mitogen Fibroblast Growth Factor 2. The percentages of cells incorporating BrdU, or positive for the undifferentiated NPC markers Nestin and Sox2, were unchanged after incubation with Activin. In differentiating conditions, continuous treatment with Activin A significantly increased the number of neurons without affecting astroglial differentiation or causing apoptotic death. In cells cultured by extended periods, Activin treatment produced further increases in the proportion of neurons, excluding premature cell cycle exit. In clonal assays, Activin significantly increased neuronal numbers per colony, supporting an instructive role. Activin-induced neurogenesis was dependent on activation of its receptors, since incubation with the type I receptor inhibitor SB431542 or the ligand-trap Follistatin prevented neuronal differentiation. Interestingly, SB431542 or Follistatin by themselves abolished neurogenesis and increased astrogliogenesis, to a similar extent to that induced by Bone Morphogenetic Protein (BMP)4. Co-incubation of these Activin inhibitors with the BMP antagonist Dorsomorphin restored neuronal and astrocytic differentiation to control levels.

Conclusions

Our results show an instructive neuronal effect of Activin A in cortical NPC in vitro, pointing out to a relevant role of this cytokine in the specification of NPC towards a neuronal phenotype.  相似文献   

19.

Background

Alzheimer''s disease (AD) is characterized by the presence of early intraneuronal deposits of amyloid-β 42 (Aβ42) that precede extracellular amyloid deposition in vulnerable brain regions. It has been hypothesized that endosomal/lysosomal dysfunction might be associated with the pathological accumulation of intracellular Aβ42 in the brain. Our previous findings suggest that the LDL receptor-related protein 1 (LRP1), a major receptor for apolipoprotein E, facilitates intraneuronal Aβ42 accumulation in mouse brain. However, direct evidence of neuronal endocytosis of Aβ42 through LRP1 is lacking.

Methodology/Principal Findings

Here we show that LRP1 endocytic function is required for neuronal Aβ42 uptake. Overexpression of a functional LRP1 minireceptor, mLRP4, increases Aβ42 uptake and accumulation in neuronal lysosomes. Conversely, knockdown of LRP1 expression significantly decreases neuronal Aβ42 uptake. Disruptions of LRP1 endocytic function by either clathrin knockdown or by removal of its cytoplasmic tail decreased both uptake and accumulation of Aβ42 in neurons. Finally, we show that LRP1-mediated neuronal accumulation of Aβ42 is associated with increased cellular toxicity.

Conclusions/Significance

These results demonstrate that LRP1 endocytic function plays an important role in the uptake and accumulation of Aβ42 in neuronal lysosomes. These findings emphasize the central function of LRP1 in neuronal Aβ metabolism.  相似文献   

20.

Background

Recently, several studies have reported Yokukansan (Tsumura TJ-54), a traditional Japanese medicine, as a potential new drug for the treatment of Alzheimer''s disease (AD). Endoplasmic reticulum (ER) stress is known to play an important role in the pathogenesis of AD, particularly in neuronal death. Therefore, we examined the effect of Yokukansan on ER stress-induced neurotoxicity and on familial AD-linked presenilin-1 mutation-associated cell death.

Methods

We employed the WST-1 assay and monitored morphological changes to evaluate cell viability following Yokukansan treatment or treatment with its components. Western blotting and PCR were used to observe the expression levels of GRP78/BiP, caspase-4 and C/EBP homologous protein.

Results

Yokukansan inhibited neuronal death during ER stress, with Cnidii Rhizoma (Senkyu), a component of Yokukansan, being particularly effective. We also showed that Yokukansan and Senkyu affect the unfolded protein response following ER stress and that these drugs inhibit the activation of caspase-4, resulting in the inhibition of ER stress-induced neuronal death. Furthermore, we found that the protective effect of Yokukansan and Senkyu against ER stress could be attributed to the ferulic acid content of these two drugs.

Conclusions

Our results indicate that Yokukansan, Senkyu and ferulic acid are protective against ER stress-induced neuronal cell death and may provide a possible new treatment for AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号