首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The experimental study was conducted during the period of 2008-2010 at the experimental field of the Institute of Forage Crops in Pleven. The hybridization scheme included direct and back crosses covering four varieties of forage pea (Pisum sativum L.), namely two spring ones, Usatii 90 and Kamerton from Ukraine, and a winter one from Bulgaria, Pleven 10. There was analyzed the inheritance of quantitative traits such as plant height, height to first pod, pod number per plant, seed number per plant, seed number per pod, seed weight per plant and number of fertile nodes per plant of parental components (P1 and P2) and both first (F1) and second (F2) hybrid generations. The cross Usatii 90 x Pleven 10 showed the highest real heterosis effect for plant height (8.26%), pods per plant (158.79%), seeds per plant (272.16%), seeds per pod (42.09%), seed weight per plant (432.43%) and number of fertile nodes per plant (117.14%). The cross Pleven 10 x Usatii 90 had the highest real heterosis effect height to first pod (11.06%). In F2 plants, the strongest depression for plant height (5.88%), seeds per plant (57.88%), seeds per pod (55.93%) and seed weight per plant (55.99%) was in the cross Usatii 90 x Pleven 10, for height to first pod (1.47%) in the cross Kamerton x Pleven 10 and for number of fertile nodes per plant (15.91%) in the cross Pleven 10 x Usatii 90. The highest positive degree of transgression for number of fertile nodes per plant (165.64%) and seed weight per plant (162.10%) was in the cross Pleven 10 x Kamerton and for pod number per plant (102.54%) and seeds per plant (99.13%) in Kamerton x Pleven 10. The stability of the characters was determined. Low variability in F1 and F2 was found in plant height (3.97-6.85%). Variability of number seeds per plant in F1 was highest (11.86-33.23%). For all other traits, the variability varied from average to high. A lower narrow-sense heritability coefficient was observed for plant height, height to first pod, pods per plant, seeds per plant and seed weight per plant (from 0.001 to 0.230). In few cases, such as in fertile nodes per plant (0.39 and 0.81) and seeds per pod (0.44), the coefficients ofbroad-sense heritability were higher.  相似文献   

2.
Meiosis in anthers and mitosis in somatic cells were studied in reciprocal F1 hybrids of the accession VIR320, which belonged to wild Pisum sativum ssp. elatius (Bieb.) Schmal., and the laboratory line Sprint-1. When VIR320 was used as a maternal form, the hybrids displayed nuclear-cytoplasmic conflict, which caused chlorophyll defects and meiotic abnormalities. One or two chromosomes lagged in the equatorial region during chromosome segregation to the poles, distorting cytokinesis and yielding abnormal microspores. Chlorophyll defects were not observed, and meiotic abnormalities were far less frequent in reciprocal hybrids and in the case of an abnormal paternal inheritance of plastids from Sprint-1. Mitosis lacked overt abnormalities in all of the hybrids.  相似文献   

3.
Aschochyta blight, caused by Mycosphaerella pinodes, is one of the most economically serious pea pathogens, particularly in winter sowings. The wild Pisum sativum subsp. syriacum accession P665 shows good levels of resistance to this pathogen. Knowledge of the genetic factors controlling resistance to M. pinodes in this wild accession would facilitate gene transfer to pea cultivars; however, previous studies mapping resistance to M. pinodes in pea have never included this wild species. The objective of this study was to identify quantitative trait loci (QTL) controlling resistance to M. pinodes in P. sativum subsp. syriacum and to compare these with QTLs previously described for the same trait in P. sativum. A population formed by 111 F6:7 recombinant inbred lines derived from a cross between accession P665 and a susceptible pea cultivar (Messire) was analysed using morphological, isozyme, RAPD, STS and EST markers. The map developed covered 1214 cM and contained 246 markers distributed in nine linkage groups, of which seven could be assigned to pea chromosomes. Six QTLs associated with resistance to M. pinodes were detected in linkage groups II, III, IV and V, which collectively explained between 31 and 75% of the phenotypic variation depending of the trait. While QTLs MpIII.1 and MpIII.2 were detected both for seedlings and field resistance, MpV.1 and MpII.1 were specific for growth chamber conditions and MpIII.3 and MpIV.1 for field resistance. Quantitative trait loci MpIII.1, MpII.1, MpIII.2 and MpIII.3 may coincide with other QTLs associated with resistance to M. pinodes previously described in P. sativum. Four QTLs associated with earliness of flowering were also identified. While dfIII.2 and dfVI.1, may correspond with other genes and QTLs controlling earliness in P. sativum, dfIII.1 and dfII.1 may be specific to P. sativum subsp. syriacum. Flowering date and growth habit were strongly associated with resistance to M. pinodes in the field evaluations. The relation observed between earliness, growth habit and resistance to M. pinodes is discussed.  相似文献   

4.
5.
Pisum sativum L., the garden pea crop plant, is serving as the unique model for genetic analyses of morphogenetic development of stipule, the lateral organ formed on either side of the junction of leafblade petiole and stem at nodes. The stipule reduced (st) and cochleata (coch) stipule mutations and afila (af), tendril-less (tl), multifoliate-pinna (mfp) and unifoliata-tendrilled acacia (uni-tac) leafblade mutations were variously combined and the recombinant genotypes were quantitatively phenotyped for stipule morphology at both vegetative and reproductive nodes. The observations suggest a role of master regulator to COCH in stipule development. COCH is essential for initiation, growth and development of stipule, represses the UNI-TAC, AF, TL and MFP led leafblade-like morphogenetic pathway for compound stipule and together with ST mediates the developmental pathway for peltate-shaped simple wild-type stipule. It is also shown that stipule is an autonomous lateral organ, like a leafblade and secondary inflorescence.  相似文献   

6.
7.
A recent study of apical dominance in isolated rhizomes of Agropyron repens L. Beauv. suggested that inhibition of the lateral buds by the rhizome apex largely depends on the supply of water, nitrogen and carbohydrate, any of which could act as a limiting factor and thus determine the degree of inhibition1. To test this hypothesis, further experiments were conducted with peas (Pisum sativum, variety ‘Alaska’), which exhibit strong apical dominance and which are widely used in the study of this phenomenon2. The results agreed well with the concept of limiting nutritional factors and suggest that for this species water stress may be particularly significant.  相似文献   

8.
The multifoliate pinna (mfp) mutation alters the leaf-blade architecture of pea, such that simple tendril pinnae of distal domain are replaced by compound pinna blades of tendrilled leaflets in mfp homozygotes. The MFP locus was mapped with reference to DNA markers using F2 and F2:5 RIL as mapping populations. Among 205 RAPD, 27 ISSR and 35 SSR markers that demonstrated polymorphism between the parents of mapping populations, three RAPD markers were found linked to the MFP locus by bulk segregant analyses on mfp/mfp and MFP/MFP bulks assembled from the F2:5 population. The segregational analysis of mfp and 267 DNA markers on 96 F2 plants allowed placement of 26 DNA markers with reference to MFP on a linkage group. The existence of common markers on reference genetic maps and MFP linkage group developed here showed that MFP is located on linkage group IV of the consensus genetic map of pea.  相似文献   

9.
Comparative genome analysis has been performed between alfalfa ( Medicago sativa) and pea ( Pisum sativum), species which represent two closely related tribes of the subfamily Papilionoideae with different basic chromosome numbers. The positions of genes on the most recent linkage map of diploid alfalfa were compared to those of homologous loci on the combined genetic map of pea to analyze the degree of co-linearity between their linkage groups. In addition to using unique genes, analysis of the map positions of multicopy (homologous) genes identified syntenic homologs (characterized by similar positions on the maps) and pinpointed the positions of non-syntenic homologs. The comparison revealed extensive conservation of gene order between alfalfa and pea. However, genetic rearrangements (due to breakage and reunion) were localized which can account for the difference in chromosome number (8 for alfalfa and 7 for pea). Based on these genetic events and our increasing knowledge of the genomic structure of pea, it was concluded that the difference in genome size between the two species (the pea genome is 5- to 10-fold larger than that of alfalfa) is not a consequence of genome duplication in pea. The high degree of synteny observed between pea and Medicago loci makes further map-based cloning of pea genes based on the genome resources now available for M. truncatula a promising strategy.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by W. R. McCombie  相似文献   

10.
Total protein patterns were studied in the course of development of pea somatic embryos using simple protocol of direct regeneration from shoot apical meristems on auxin supplemented medium. Protein content and total protein spectra (SDS-PAGE) of somatic embryos in particular developmental stages were analysed in Pisum sativum, P. arvense, P. elatius and P. jomardi. Expression of seed storage proteins in somatic embryos was compared with their accumulation in zygotic embryos of selected developmental stages. Pea vegetative tissues, namely leaf and root, were used as a negative control not expressing typical seed storage proteins. The biosynthesis and accumulation of seed storage proteins was observed during somatic embryo development (since globular stage), despite of the fact that no special maturation treatment was applied. Major storage proteins typical for pea seed (globulins legumin, vicilin, convicilin and their subunits) were detected in somatic embryos. In general, the biosynthesis of storage proteins in somatic embryos was lower as compared to mature dry seed. However, in some cases the cotyledonary somatic embryos exhibited comparatively high expression of vicilin, convicilin and pea seed lectin, which was even higher than those in immature but morphologically fully developed zygotic embryos. Desiccation treatments did not affect the protein content of somatic embryos. The transfer of desiccated somatic embryos on hormone-free germination medium led to progressive storage protein degradation. The expression of true seed storage proteins may serve as an explicit marker of somatic embryogenesis pathway of regeneration as well as a measure of maturation degree of somatic embryos in pea.  相似文献   

11.
To understand the role of INSECATUS (INS) gene in pea, the leaf blades of wild-type, ins mutant and seven other genotypes, constructed by recombining ins with uni-tac, af, tl and mfp gene mutations, were quantitatively compared. The ins was inherited as a recessive mutant allele and expressed its phenotype in proximal leaflets of full size leaf blades. In ins leaflets, the midvein development was arrested in distal domain and a cleft was formed in lamina above this point. There was change in the identity of ins leaflets such that the intercalary interrupted midvein bore a leaf blade. Such adventitious blades in ins, ins tl and ins tl mfp were like the distal segment of respective main leaf blade. The ins phenotype was not seen in ins af and ins af uni-tac genotypes. There was epistasis of uni-tac over ins. The ins, tl and mfp mutations interacted synergistically to produce highly pronounced ins phenotype in the ins tl mfp triple mutant. The role(s) of INS in leaf-blade organogenesis are: positive regulation of vascular patterning in leaflets, repression of UNI activity in leaflet primordia for ectopic growth and in leaf-blade primordium for indeterminate growth of rachis, delimitation of proximal leaflet domain and together with TL and MFP homeostasis for meristematic activity in leaflet primordia. The variant apically bifid shape of the affected ins leaflets demonstrated that the leaflet shape is dependent on the venation pattern.  相似文献   

12.
Six pea (Pisum sativum L.) cultivars (Adept, Komet, Lantra, Olivin, Oskar, Tyrkys) were transformed via Agrobacterium tumefaciens strain EHA105 with pBIN19 plasmid carrying reporter uidA (β-glucuronidase, GUS, containing potato ST-LS1 intron) gene under the CaMV 35S promoter, and selectable marker gene nptII (neomycin phosphotransferase II) under the nos promoter. Two regeneration systems were used: continual shoot proliferation from axillary buds of cotyledonary node in vitro, and in vivo plant regeneration from imbibed germinating seed with removed testa and one cotyledon. The penetration of Agrobacterium into explants during co-cultivation was supported by sonication or vacuum infiltration treatment. The selection of putative transformants in both regeneration systems carried out on media with 100 mg dm−3 kanamycin. The presence of introduced genes was verified histochemically (GUS assay) and by means of PCR and Southern blot analysis in T0 putative transformants and their seed progenies (T1 to T3 generations). Both methods, but largely in vivo approach showed to be genotype independent, resulting in efficient and reliable transformation system for pea. The in vivo approach has in addition also benefit of time and money saving, since transgenic plants are obtained in much shorter time. All tested T0 – T3 plants were morphologically normal and fertile.This research was supported by the National Agency for Agricultural Research (grants No. QE 0046 and QF 3072) and Ministry of Education of the Czech Republic (grant No. ME 433).  相似文献   

13.
With increasing consumer demand for vegetables, edible-podded peas have become more popular. Stringlessness is one of most important traits for snap peas. A single recessive gene, sin-2, controls this trait. Because pollen carrying the stringless gene is less competitive than pollen carrying the stringy gene, there are fewer than expected stringless plants recovered in segregating generations. Marker-assisted selection (MAS) is a valuable tool to identify plants with the traits of interest at an early stage in the breeding process. The objective of this study was to identify robust, user-friendly molecular markers tightly linked to sin-2. A total of 144 target region amplification polymorphism (TRAP) primer combinations were used to screen four DNA bulks, which were constructed from 32 pea breeding lines based on their phenotypes. Sixty polymorphic TRAP primer combinations were identified between bulks of stringless and stringy pods. Five primer combinations, F6_Trap03_168, F6_SA12_145, F10_ODD8_130, F11_GA5_850, and F12_SA12_190, showed more than 90 % association with the stringless phenotype in 32 pea breeding lines. Two of the TRAP markers, F10_ODD8_130 and F12_SA12_190, were cloned, sequenced, and successfully converted to sequence characterized amplified region (SCAR) markers. These two SCAR markers were validated using 20 F5 recombinant inbred lines derived from a cross between Bohatyr (a dry pea variety with strings) and S1188 (a stringless snap pea variety) and showed strong marker-trait association. The results will have direct application in MAS of stringless edible-podded peas.  相似文献   

14.
Studying Pneumocystis has proven to be a challenge from the perspective of propagating a significant amount of the pathogen in a facile manner. The study of several fungal pathogens has been aided by the use of invertebrate model hosts. Our efforts to infect the invertebrate larvae Galleria mellonella with Pneumocystis proved futile since P. murina neither caused disease nor was able to proliferate within G. mellonella. It did, however, show that the pathogen could be rapidly cleared from the host.  相似文献   

15.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

16.
The aim of this study was to investigate the inheritance of powdery mildew disease and to tag it with a DNA marker to utilize for the marker-assisted selection (MAS) breeding program. The powdery mildew resistant genotype Fallon er and susceptible genotype 11760-3 ER were selected from 177 genotypes by heavy infestation of germplasm with Erysiphe pisi through artificial inoculation The F1 plants of the cross Fallon/11760-3 indicated the dominance of the susceptible allele, while F2 plants segregated in 3: 1 ratio (susceptible: resistant) that fit for goodness of fitness by χ2 (P > 0.07), indicating monogenic recessive inheritance for powdery mildew resistance in Pisum sativum. A novel RAPD marker OPB18 (5′-CCACAGCAGT-3′) was linked to the er-1 gene with 83% probability with a LOD score of 4.13, and was located at a distance of 11.2 cM from the er-1 gene.  相似文献   

17.
Metabolic profiling is a key approach in current basic and applied research in biology. Comparative analysis of different metabolite extraction methods for pea (P. sativum) and black medick (M. lupulina) made it possible to find the optimal conditions for metabolite extraction and subsequent detection by gas chromatography coupled with mass spectrometry. The optimized method was shown to be reliable for assessment of the organ and species metabolic profiles for roots and leaves in pea and black medick plants.  相似文献   

18.
Crenate broomrape (Orobanche crenata) is the major constraint for pea cultivation in the Mediterranean Basin and Middle East. Cultivation of resistant varieties would be the most efficient, economical and environmentally friendly way to control this parasite. However, little resistance is available within cultivated pea. Promising sources of resistance have been identified in wild peas but their use in breeding programs is hampered by the polygenic nature of the resistance. The identification of molecular markers linked to the resistance would allow tracking of the underlying genes, facilitating their introgression into pea cultivars. The main objective of this study was the identification of genomic regions associated with resistance to O. crenata. A RIL (Recombinant Inbred Lines) population derived from a cross between a resistant accession of the wild pea Pisum sativum ssp. syriacum, and a susceptible pea variety was screened for resistance to O. crenata under field conditions during two seasons. In addition, resistance reactions at different stages of the O. crenata infection cycle were assessed using a Petri dish method. The approach allowed the identification of four Quantitative Trait Loci (QTL) associated with field resistance, assessed as the number of emerged broomrape shoots per pea plant under field conditions. These identified QTLs explained individually from 10 to 17% of the phenotypic variation. In addition QTLs governing specific mechanisms of resistance, such as low induction of O. crenata seed germination, lower number of established tubercles per host root length unit, and slower development of tubercles were also identified. Identified QTLs explained individually from 8 to 37% of the variation observed depending on the trait. Host plant aerial biomass and root length were also assessed and mapped. Both traits were correlated with the level of O. crenata infection and three out of the four QTLs controlling resistance under field conditions co-localized with QTLs controlling plant aerial biomass or root length. The relationship observed among these traits and resistance is discussed.  相似文献   

19.
A revision of Penstemon sect. Saccanthera subsect. Serrulati includes a new species (P. salmonensis), a new variety (P. triphyllus var. infernalis), and the elevation of a subspecies to species (P. curtiflorus), bringing the total number of species to eight, which are keyed and described, complete with nomenclature and type citations.  相似文献   

20.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号