首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously reported that ECH, (2R, 3R, 4S)-2,3-epoxy-4-hydroxy-5-hydroxymethyl-6-(1E)-propenyl-cyclohex-5-en-1-one inhibits Fas-mediated apoptosis by blocking self-activation of pro-caspase-8 in the death-inducing signaling complex (DISC). A series of ECH derivatives were asymmetrically synthesized via key synthetic intermediates obtained from lipase-catalyzed kinetic resolution. Inhibitory activities of the derivatives towards death receptor-mediated apoptosis both in type I and type II cells were investigated, revealing that novel non-peptide inhibitors, RKTS-33 and RKTS-34, are effective as ECH.  相似文献   

2.
Upon engagement with Fas ligand (FasL), Fas rapidly induces recruitment and self-processing of caspase-8 via the adaptor protein Fas-associated death domain (FADD), and activated caspase-8 cleaves downstream substrates such as caspase-3. We have found that penicillic acid (PCA) inhibits FasL-induced apoptosis and concomitant loss of cell viability in Burkitt's lymphoma Raji cells. PCA prevented activation of caspase-8 and caspase-3 upon treatment with FasL. However, PCA did not affect active caspase-3 in FasL-treated cells, suggesting that PCA primarily blocks early signaling events upstream of caspase-8 activation. FasL-induced processing of caspase-8 was severely impaired in the death-inducing signaling complex, although FasL-induced recruitment of FADD and caspase-8 occurred normally in PCA-treated cells. Although PCA inhibited the enzymatic activities of active recombinant caspase-3, caspase-8, and caspase-9 at similar concentrations, PCA exerted weak inhibitory effects on activation of caspase-9 and caspase-3 in staurosporine-treated cells but strongly inhibited caspase-8 activation in FasL-treated cells. Glutathione and cysteine neutralized an inhibitory effect of PCA on caspase-8, and PCA bound directly to the active center cysteine in the large subunit of caspase-8. Thus, our present results demonstrate that PCA inhibits FasL-induced apoptosis by targeting self-processing of caspase-8.  相似文献   

3.
Death receptors trigger apoptosis by activating the apical cysteine proteases caspase-8 and -10 within a death-inducing signaling complex (DISC). c-FLIP (cellular FLICE inhibitory protein) is an enzymatically inactive relative of caspase-8 and -10 that binds to the DISC. Two major c-FLIP variants result from alternative mRNA splicing: a short, 26-kDa protein (c-FLIP(S)) and a long, 55-kDa form (c-FLIP(L)). The role of c-FLIP(S) as an inhibitor of death receptor-mediated apoptosis is well established; however, the function of c-FLIP(L) remains controversial. Although overexpression of transfected c-FLIP(L) inhibits apoptosis, ectopic expression at lower levels supports caspase-8 activation and cell death. Simultaneous ablation of both c-FLIP variants augments death receptor-mediated apoptosis, but the impact of selective depletion of c-FLIP(L) on caspase-8 activation and subsequent apoptosis is not well defined. To investigate this, we developed small interfering RNAs that specifically knock down expression of c-FLIP(L) in several cancer cell lines and studied their effect on apoptosis initiation by Apo2L/TRAIL (Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand). Knockdown of c-FLIP(L) augmented DISC recruitment, activation, processing, and release of caspase-8, thereby enhancing effector-caspase stimulation and apoptosis. Thus, endogenous c-FLIP(L) functions primarily as an inhibitor of death receptor-mediated apoptosis.  相似文献   

4.
Since its discovery, caspase-8 has been placed at the apex of the proteolytic cascade triggered by death receptor (DR) cross-linking. Because of its capacity to interact with the cytoplasmic portion of DR, it has been suggested that caspase-8 acts independently of other caspases in the initiation of Fas and other DR signaling. In this study, we demonstrate that in Jurkat cells, caspase-3 cleavage is an early step during Fas-induced apoptosis. We show that caspase-3 processing into its p20 occurs rapidly after Fas cross-linking, in the absence of mitochondrial depolarization and caspase-9 activation. Moreover, caspase-3 is present in lipid rafts of untreated Jurkat cells and peripheral T lymphocytes. Caspase-3, caspase-8, and Fas-associated death domain are further recruited to lipid rafts of Jurkat cells following anti-Fas treatment. Fas immunoprecipitation reveals that caspase-3 is a component of the death-inducing signaling complex, suggesting that this cysteine protease is in close proximity to caspase-8. Furthermore, transduction of Jurkat cells with a caspase-3 dominant-negative form inhibits caspase-8 processing and results in inhibition of apoptosis, suggesting that caspase-3 activity is required for caspase-8 activation. Overall, these findings support a model whereby caspase-3 is a component of the death-inducing signaling complex located in lipid rafts, and as such, is involved in the amplification of caspase-8 activity by the mitochondrion.  相似文献   

5.
Apoptosis is a highly controlled process, whose triggering is associated with the activation of caspases. Apoptosis can be induced via a subgroup of the tumor necrosis factor (TNF) receptor superfamily, which recruit and activate pro-caspase-8 and -10. Regulation of apoptosis is achieved by several inhibitors, including c-FLICE-inhibitory protein, which prevents apoptosis by inhibiting the pro-apoptotic activation of upstream caspases. Here we show that the human intracellular serine protease inhibitor (serpin), protease inhibitor 9 (PI9), inhibits TNF-, TNF-related apoptosis-inducing ligand- and Fas ligand-mediated apoptosis in certain TNF-sensitive cell lines. The reactive center P1 residue of PI9 was required for this inhibition since PI9 harboring a Glu --> Ala mutation in its reactive center failed to impair death receptor-induced cell death. This suggests a classical serpin-protease interaction. Indeed, PI9 inhibited apoptotic death by directly interacting with the intermediate active forms of caspase-8 and -10. This indicates that PI9 can regulate pro-apoptotic apical caspases.  相似文献   

6.
Death receptors, such as Fas and tumor necrosis factor-related apoptosis-inducing ligand receptors, recruit Fas-associated death domain and pro-caspase-8 homodimers, which are then autoproteolytically activated. Active caspase-8 is released into the cytoplasm, where it cleaves various proteins including pro-caspase-3, resulting in apoptosis. The cellular Fas-associated death domain-like interleukin-1-beta-converting enzyme-inhibitory protein long form (FLIP(L)), a structural homologue of caspase-8 lacking caspase activity because of several mutations in the active site, is a potent inhibitor of death receptor-induced apoptosis. FLIP(L) is proposed to block caspase-8 activity by forming a proteolytically inactive heterodimer with caspase-8. In contrast, we propose that FLIP(L)-bound caspase-8 is an active protease. Upon heterocomplex formation, a limited caspase-8 autoprocessing occurs resulting in the generation of the p43/41 and the p12 subunits. This partially processed form but also the non-cleaved FLIP(L)-caspase-8 heterocomplex are proteolytically active because they both bind synthetic substrates efficiently. Moreover, FLIP(L) expression favors receptor-interacting kinase (RIP) processing within the Fas-signaling complex. We propose that FLIP(L) inhibits caspase-8 release-dependent pro-apoptotic signals, whereas the single, membrane-restricted active site of the FLIP(L)-caspase-8 heterocomplex is proteolytically active and acts on local substrates such as RIP.  相似文献   

7.
Mouse TOSO, the homologue of human TOSO gene, was cloned and characterized in the present study. Using immunofluorescence confocal microscopy we localized TOSO to the cytoplasmic membrane of expressing cells. Using stably transfected mouse TOSO (mTOSO)-expressing Jurkat cells, we show that TOSO protects cells from Fas/Fas ligand- and tumor necrosis factor-induced apoptosis but not from TNF-related apoptosis-inducing ligand-induced apoptosis. The Fas-induced activation of caspase-8 was significantly inhibited by the expression of mTOSO. Using deletion mutants and glutathione S-transferase pull-down approaches, we have shown that mTOSO regulates apoptosis by directly binding to Fas-associated death domain through its C-terminal domain, suggesting the disruption of death-inducing signaling complex formation as mechanism of action. Furthermore, we have expressed mTOSO in transgenic mice and show that mTOSO overexpressing primary T lymphocytes are resistant to Fas/Fas ligand-induced apoptosis.  相似文献   

8.
BRE, brain and reproductive organ-expressed protein, was found previously to bind the intracellular juxtamembrane domain of a ubiquitous death receptor, tumor necrosis factor receptor 1 (TNF-R1), and to down-regulate TNF-alpha-induced activation of NF-kappaB. Here we show that BRE also binds to another death receptor, Fas, and upon overexpression conferred resistance to apoptosis induced by TNF-alpha, anti-Fas agonist antibody, cycloheximide, and a variety of stress-related stimuli. However, down-regulation of the endogenous BRE by small interfering RNA increased apoptosis to TNF-alpha, but nottoetoposide, indicating that the physiological antiapoptotic role of this protein is specific to death receptor-mediated apoptosis. We further demonstrate that BRE mediates antiapoptosis by inhibiting the mitochondrial apoptotic machinery but without translocation to the mitochondria or nucleus or down-regulation of the cellular level of truncated Bid. Dissociation of BRE rapidly from TNF-R1, but not from Fas, upon receptor ligation suggests that this protein interacts with the death inducing signaling complex during apoptotic induction. Increased association of BREwith phosphorylated, sumoylated, and ubiquitinated proteins after death receptor stimulation was also detected. We conclude that in contrast to the truncated Bid that integrates mitochondrial apoptosis to death receptor-triggered apoptotic cascade, BRE inhibits the integration. We propose that BRE inhibits, by ubiquitination-like activity, components in or proximal to the death-inducing signaling complexes that are necessary for activation of the mitochondria.  相似文献   

9.
Activation of NF-kappaB by FADD, Casper, and caspase-8   总被引:14,自引:0,他引:14  
Fas-associated death domain protein (FADD), caspase-8-related protein (Casper), and caspase-8 are components of the tumor necrosis factor receptor type 1 (TNF-R1) and Fas signaling complexes that are involved in TNF-R1- and Fas-induced apoptosis. Here we show that overexpression of FADD and Casper potently activates NF-kappaB. In the presence of caspase inhibitors, overexpression of caspase-8 also activates NF-kappaB. A caspase-inactive point mutant, caspase-8(C360S), activates NF-kappaB as potently as wild-type caspase-8, suggesting that caspase-8-induced apoptosis and NF-kappaB activation are uncoupled. NF-kappaB activation by FADD and Casper is inhibited by the caspase-specific inhibitors crmA and BD-fmk, suggesting that FADD- and Casper-induced NF-kappaB activation is mediated by caspase-8. FADD, Casper, and caspase-8-induced NF-kappaB activation are inhibited by dominant negative mutants of TRAF2, NIK, IkappaB kinase alpha, and IkappaB kinase beta. A dominant negative mutant of RIP inhibits FADD- and caspase-8-induced but not Casper-induced NF-kappaB activation. A mutant of Casper and the caspase-specific inhibitors crmA and BD-fmk partially inhibit TNF-R1-, TRADD, and TNF-induced NF-kappaB activation, suggesting that FADD, Casper, and caspase-8 function downstream of TRADD and contribute to TNF-R1-induced NF-kappaB activation. Moreover, activation of caspase-8 results in proteolytic processing of NIK, which is inhibited by crmA. When overexpressed, the processed fragments of NIK do not activate NF-kappaB, and the processed C-terminal fragment inhibits TNF-R1-induced NF-kappaB activation. These data indicate that FADD, Casper, and pro-caspase-8 are parts of the TNF-R1-induced NF-kappaB activation pathways, whereas activated caspase-8 can negatively regulate TNF-R1-induced NF-kappaB activation by proteolytically inactivating NIK.  相似文献   

10.
Fas ligand and TNF-related apoptosis-inducing ligand (TRAIL) induce apoptosis in many different cell types. Jurkat T cells die rapidly by apoptosis after treatment with either ligand. We have previously shown that mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) can act as a negative regulator of apoptosis mediated by the Fas receptor. In this study we examined whether MAPK/ERK can also act as a negative regulator of apoptosis induced by TRAIL. Activated Jurkat T cells were efficiently protected from TRAIL-induced apoptosis. The protection was shown to be MAPK/ERK dependent and independent of protein synthesis. MAPK/ERK suppressed TRAIL-induced apoptosis upstream of the mitochondrial amplification loop because mitochondrial depolarization and release of cytochrome c were inhibited. Furthermore, caspase-8-mediated relocalization and activation of Bid, a proapoptotic member of the Bcl family, was also inhibited by the MAPK/ERK signaling. The protection occurred at the level of the apoptotic initiator caspase-8, as the cleavage of caspase-8 was inhibited but the assembly of the death-inducing signaling complex was unaffected. Both TRAIL and Fas ligand have been suggested to regulate the clonal size and persistence of different T cell populations. Our previous results indicate that MAPK/ERK protects recently activated T cells from Fas receptor-mediated apoptosis during the initial phase of an immune response before the activation-induced cell death takes place. The results of this study show clearly that MAPK/ERK also participates in the inhibition of TRAIL-induced apoptosis after T cell activation.  相似文献   

11.
Fas, a member of the tumor necrosis factor receptor family, can upon ligation by its ligand or agonistic antibodies trigger signaling cascades leading to cell death in lymphocytes and other cell types. Such signaling cascades are initiated through the formation of a membrane death-inducing signaling complex (DISC) that includes Fas, the Fas-associated death domain protein (FADD) and caspase-8. We report here that a considerable fraction of Fas is constitutively partitioned into sphingolipid- and cholesterol-rich membrane rafts in mouse thymocytes as well as the L12.10-Fas T cells, and Fas ligation promotes a rapid and specific recruitment of FADD and caspase-8 to the rafts. Raft disruption by cholesterol depletion abolishes Fas-triggered recruitment of FADD and caspase-8 to the membrane, DISC formation and cell death. Taken together, our results provide the first demonstration for an essential role of membrane rafts in the initiation of Fas-mediated cell death signaling.  相似文献   

12.
Initiator caspases in apoptosis signaling pathways   总被引:15,自引:0,他引:15  
Death receptor- or mitochondrion-dependent apoptosis is initiated by the recruitment and activation of apical caspases in the apoptosis signaling pathways. In death receptor-mediated apoptosis, engagement of death receptors leads to the formation of the death-inducing signaling complex (DISC) containing the death receptors, adaptor proteins, caspase-8 and caspase-10. In mitochondrion-dependent apoptosis, release of cytochrome C into the cytosol results in the formation of apoptosome containing cytochrome C, Apaf-1 and caspase-9. Caspase-8, caspase-10 and caspase-9 are believed to be the initiator caspases at the top of the caspase signaling cascade. Recruitment of caspases to DISC and apoptosome leads to their activation by dimer formation. Recent biochemical and structural analyses of components in the DISC and apoptosome shed new lights on their roles in inducing the onset of apoptosis signaling.  相似文献   

13.
We have characterized a phosphoprotein protein with a death effector domain that has a novel bifunctional role in programmed cell death. The 15-kDa phosphoprotein enriched in astrocytes (PEA-15) inhibits Fas-mediated apoptosis and increases tumor necrosis factor receptor-1 (TNF-R1)-mediated apoptosis in the same cell type in a ligand-dependent manner. Phosphorylation appears to play a role in its differential effects, since point mutations at one or both phosphorylation consensus sites within PEA-15 destroy its effect on Fas-mediated, but not TNF-R1-mediated, apoptosis. Furthermore, the differential effect is evident at the level of caspase-8 activity which is inhibited via Fas activation, but increased via TNF-R1 activation upon PEA-15 expression. These results show that PEA-15 provides a potential mechanism during development for distinguishing between diverse extracellular death-inducing signals that culminate either in apoptosis or in survival.  相似文献   

14.
CD95 (APO-1/Fas) is an apoptosis-inducing receptor belonging to the tumor necrosis factor receptor superfamily. Multimerization of CD95 leads to instant recruitment of the signaling molecules FADD and caspase-8 to the activated receptor forming the death-inducing signaling complex (DISC). DISC formation is the first essential step of CD95 signaling and results in activation of caspase-8 starting a signaling cascade that leads to apoptosis. Here we describe a method for analyzing the CD95 DISC. The method is based on coimmunoprecipitation of the signaling molecules with the activated CD95 receptor followed by Western blot detection of associated molecules. Therefore, this method can analyze the very first signaling events during CD95-mediated apoptosis.  相似文献   

15.
Tocotrienols, a subclass in the vitamin E family of compounds, have been shown to induce apoptosis by activating caspase-8 and caspase-3 in neoplastic mammary epithelial cells. Since caspase-8 activation is associated with death receptor apoptotic signaling, studies were conducted to determine the exact death receptor/ligand involved in tocotrienol-induced apoptosis. Highly malignant +SA mouse mammary epithelial cells were grown in culture and maintained in serum-free media. Treatment with 20 microM gamma-tocotrienol decreased+SA cell viability by inducing apoptosis, as determined by positive terminal dUTP nick end labeling (TUNEL) immunocytochemical staining. Western blot analysis showed that gamma-tocotrienol treatment increased the levels of cleaved (active) caspase-8 and caspase-3. Combined treatment with caspase inhibitors completely blocked tocotrienol-induced apoptosis. Additional studies showed that treatment with 100 ng/ml tumor necrosis factor-alpha (TNF-alpha), 100 ng/ml FasL, 100 ng/ml TNF-related apoptosis-inducing ligand (TRAIL), or 1 microg/ml apoptosis-inducing Fas antibody failed to induce death in +SA cells, indicating that this mammary tumor cell line is resistant to death receptor-induced apoptosis. Furthermore, treatment with 20 microM gamma-tocotrienol had no effect on total, membrane, or cytosolic levels of Fas, Fas ligand (FasL), or Fas-associated via death domain (FADD) and did not induce translocation of Fas, FasL, or FADD from the cytosolic to the membrane fraction, providing additional evidence that tocotrienol-induced caspase-8 activation is not associated with death receptor apoptotic signaling. Other studies showed that treatment with 20 microM gamma-tocotrienol induced a large decrease in the relative intracellular levels of phospho-phosphatidylinositol 3-kinase (PI3K)-dependent kinase 1 (phospho-PDK-1 active), phospho-Akt (active), and phospho-glycogen synthase kinase3, as well as decreasing intracellular levels of FLICE-inhibitory protein (FLIP), an antiapoptotic protein that inhibits caspase-8 activation, in these cells. Since stimulation of the PI3K/PDK/Akt mitogenic pathway is associated with increased FLIP expression, enhanced cellular proliferation, and survival, these results indicate that tocotrienol-induced caspase-8 activation and apoptosis in malignant +SA mammary epithelial cells is associated with a suppression in PI3K/PDK-1/Akt mitogenic signaling and subsequent reduction in intracellular FLIP levels.  相似文献   

16.
Apoptosis induction through CD95 (APO-1/Fas) critically depends on generation of active caspase-8 at the death-inducing signaling complex (DISC). Depending on the cell type, active caspase-8 either directly activates caspase-3 (type I cells) or relies on mitochondrial signal amplification (type II cells). In MCF7-Fas cells that are deficient for pro-caspase-3, even high amounts of caspase-8 produced at the DISC cannot directly activate downstream effector caspases without mitochondrial help. Overexpression of Bcl-x(L) in these cells renders them resistant to CD95-mediated apoptosis. However, activation of caspase-8 in control (vector) and Bcl-x(L) transfectants of MCF7-Fas cells proceeds with similar kinetics, resulting in a complete processing of cellular caspase-8. Most of the cytosolic caspase-8 substrates are not cleaved in the Bcl-x(L) protected cells, raising the question of how Bcl-x(L)-expressing MCF7-Fas cells survive large amounts of potentially cytotoxic caspase-8. We now demonstrate that active caspase-8 is initially generated at the DISC of both MCF7-Fas-Vec and MCF7-Fas-Bcl-x(L) cells and that the early steps of CD95 signaling such as caspase-8-dependent cleavage of DISC bound c-FLIP(L), caspase-8-dependent clustering, and internalization of CD95, as well as processing of pro-caspase-8 bound to mitochondria are very similar in both transfectants. However, events downstream of mitochondria, such as release of cytochrome c, only occur in the vector-transfected MCF7-Fas cells, and no in vivo caspase-8 activity can be detected in the Bcl-x(L)-expressing cells. Our data suggest that, in Bcl-x(L)-expressing MCF7-Fas cells, active caspase-8 is sequestered on the outer mitochondrial surface presumably by association with the protein "bifunctional apoptosis regulator" in a way that does not allow substrates to be cleaved, identifying a novel mechanism of regulation of apoptosis sensitivity by mitochondrial Bcl-x(L).  相似文献   

17.
Perez D  White E 《Journal of virology》2003,77(4):2651-2662
Tumor necrosis factor alpha (TNF-alpha) activates both apoptosis and NF-kappaB-dependent survival pathways, the former of which requires inhibition of gene expression to be manifested. c-FLIP is a TNF-alpha-induced gene that inhibits caspase-8 activation during TNF-alpha signaling. Adenovirus infection and E1A expression sensitize cells to TNF-alpha by allowing apoptosis in the absence of inhibitors of gene expression, suggesting that it may be disabling a survival signaling pathway. E1A promoted TNF-alpha-mediated activation of caspase-8, suggesting that sensitivity was occurring at the level of the death-inducing signaling complex. Furthermore, E1A expression downregulated c-FLIP(S) expression and prevented its induction by TNF-alpha. c-FLIP(S) and viral FLIP expression rescued E1A-mediated sensitization to TNF-alpha by restoring the resistance of caspase-8 to activation, thereby preventing cell death. E1A inhibited TNF-alpha-dependent induction of c-FLIP(S) mRNA and stimulated ubiquitination- and proteasome-dependent degradation of c-FLIP(S) protein. Since elevated c-FLIP levels confer resistance to apoptosis and promote tumorigenicity, interference with its induction by NF-kappaB and stimulation of its destruction in the proteasome may provide novel therapeutic approaches for facilitating the elimination of apoptosis-refractory tumor cells.  相似文献   

18.
Survival of endothelial cells is critical for cellular processes such as angiogenesis. Cell attachment to extracellular matrix inhibits apoptosis in endothelial cells both in vitro and in vivo, but the molecular mechanisms underlying matrix-induced survival signals or detachment-induced apoptotic signals are unknown. We demonstrate here that matrix attachment is an efficient regulator of Fas-mediated apoptosis in endothelial cells. Thus, matrix attachment protects cells from Fas-induced apoptosis, whereas matrix detachment results in susceptibility to Fas-mediated cell death. Matrix attachment modulates Fas-mediated apoptosis at two different levels: by regulating the expression level of Fas, and by regulating the expression level of c-Flip, an endogenous antagonist of caspase-8. The extracellular signal-regulated kinase (Erk) cascade functions as a survival pathway in adherent cells by regulating c-Flip expression. We further show that detachment-induced cell death, or anoikis, itself results from activation of the Fas pathway by its ligand, Fas-L. Fas-L/Fas interaction, Fas-FADD complex formation, and caspase-8 activation precede the bulk of anoikis in endothelial cells, and inhibition of any of these events blocks anoikis. These studies identify matrix attachment as a survival factor against death receptor-mediated apoptosis and provide a molecular mechanism for anoikis and previously observed Fas resistance in endothelial cells.  相似文献   

19.
Tumors display a high rate of glucose uptake and glycolysis. We investigated how inhibition of glucose metabolism could affect death receptor-mediated apoptosis in human tumor cells of diverse origin. We show that both substitution of glucose for pyruvate and treatment with 2-deoxyglucose enhanced apoptosis induced by tumor necrosis factor (TNF)-alpha, CD95 agonistic antibody, and TNF-related apoptosis-inducing ligand (TRAIL). Inhibition of glucose metabolism enhanced killing of myeloid leukemia U937, cervical carcinoma HeLa, and breast carcinoma MCF-7 cells upon death receptor ligation. Caspase activation, mitochondrial depolarization, and cytochrome c release were increased under these conditions. Glucose deprivation-mediated sensitization to apoptosis was prevented in MCF-7 cells overexpressing BCL-2. Interestingly, the human B-lymphoblastoid cell line SKW6.4, a prototype for mitochondria-independent death receptor-induced apoptosis, was also sensitized to anti-CD95 and TRAIL-induced apoptosis under glucose-free conditions. Changes in c-FLIP(L) and cFLIPs levels were observed in some but not all the cell lines studied following glucose deprivation. Glucose deprivation enhanced death receptor-triggered formation of death-inducing signaling complex and early processing of procaspase-8. Altogether, these results suggest that the glycolytic pathway may be an important target for therapeutic intervention to sensitize tumor cells to selectively toxic soluble death ligands or death ligand-expressing cells of the immune system by facilitating the activation of initiator caspase-8.  相似文献   

20.
Ab binding to CD20 has been shown to induce apoptosis in B cells. In this study, we demonstrate that rituximab sensitizes lymphoma B cells to Fas-induced apoptosis in a caspase-8-dependent manner. To elucidate the mechanism by which Rituximab affects Fas-mediated cell death, we investigated rituximab-induced signaling and apoptosis pathways. Rituximab-induced apoptosis involved the death receptor pathway and proceeded in a caspase-8-dependent manner. Ectopic overexpression of FLIP (the physiological inhibitor of the death receptor pathway) or application of zIETD-fmk (specific inhibitor of caspase-8, the initiator-caspase of the death receptor pathway) both specifically reduced rituximab-induced apoptosis in Ramos B cells. Blocking the death receptor ligands Fas ligand or TRAIL, using neutralizing Abs, did not inhibit apoptosis, implying that a direct death receptor/ligand interaction is not involved in CD20-mediated cell death. Instead, we hypothesized that rituximab-induced apoptosis involves membrane clustering of Fas molecules that leads to formation of the death-inducing signaling complex (DISC) and downstream activation of the death receptor pathway. Indeed, Fas coimmune precipitation experiments showed that, upon CD20-cross-linking, Fas-associated death domain protein (FADD) and caspase-8 were recruited into the DISC. Additionally, rituximab induced CD20 and Fas translocation to raft-like domains on the cell surface. Further analysis revealed that, upon stimulation with rituximab, Fas, caspase-8, and FADD were found in sucrose-gradient raft fractions together with CD20. In conclusion, in this study, we present evidence for the involvement of the death receptor pathway in rituximab-induced apoptosis of Ramos B cells with concomitant sensitization of these cells to Fas-mediated apoptosis via Fas multimerization and recruitment of caspase-8 and FADD to the DISC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号