首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Many aquatic and riparian plant species are characterized by the ability to reproduce both sexually and asexually. Yet, little is known about how spatial variation in sexual and asexual reproduction affects the genotypic diversity within populations of aquatic and riparian plants. We used six polymorphic microsatellites to examine the genetic diversity within and differentiation among 17 populations (606 individuals) of Sparganium emersum, in two Dutch-German rivers. Our study revealed a striking difference between rivers in the mode of reproduction (sexual vs. asexual) within S. emersum populations. The mode of reproduction was strongly related to locally reigning hydrodynamic conditions. Sexually reproducing populations exhibited a greater number of multilocus genotypes compared to asexual populations. The regional population structure suggested higher levels of gene flow among sexually reproducing populations compared to clonal populations. Gene flow was mainly mediated via hydrochoric dispersal of generative propagules (seeds), impeding genetic differentiation among populations even over river distances up to 50 km. Although evidence for hydrochoric dispersal of vegetative propagules (clonal plant fragments) was found, this mechanism appeared to be relatively less important. Bayesian-based assignment procedures revealed a number of immigrants, originating from outside our study area, suggesting intercatchment plant dispersal, possibly the result of waterfowl-mediated seed dispersal. This study demonstrates how variation in local environmental conditions in river systems, resulting in shifting balances of sexual vs. asexual reproduction within populations, will affect the genotypic diversity within populations. This study furthermore cautions against generalizations about dispersal of riparian plant species in river systems.  相似文献   

2.
The green hydra, Hydra viridissima, has three sexes: hermaphrodite, male, and female. I investigated the reproductive strategies of the green hydra and the relationship between asexual budding and sexual reproduction. The proportion of mature individuals in the asexually reproducing population increased with increasing temperature. Sexual reproduction did not interrupt asexual budding in hermaphrodites or males; sexual reproduction did interrupt asexual budding in females. Sexual reproduction also resulted in exponential population growth during the reproductive season. The number of asexual buds on each parental individual was positively correlated with the parental individual size in asexual individuals and in males. The same positive correlation was found between the number of testicles and the size of males. These correlations reflect a common tendency in asexual and sexual reproduction: larger parental individuals have a greater number of propagules or gametes. No correlation was found between size and buds or size and gonads in hermaphrodites; hermaphrodites had at most one asexual bud and were significantly larger than males, females, and asexual individuals. The larger size of hermaphrodites supports the hypothesis that producing both female and male gonads is more energetically costly than producing only one type of gamete (gonochorism).  相似文献   

3.
Marine organisms exhibit great variation in reproductive modes, larval types, and other life-history traits that may have major evolutionary consequences. We measured local and regional patterns of genetic variation in corals along Australia's Great Barrier Reef to determine the relative contributions of sexual and asexual reproduction to recruitment and to infer levels of gene flow both locally (among adjacent sites, < 5 km apart) and regionally (among reefs separated by 500-1,200 km). We selected five common brooding species (Acropora cuneata, A. palifera, Pocillopora damicornis, Seriatopora hystrix, and Stylophora pistillata) and four broadcast spawners (Acropora hyacinthus, A. cytherea, A. millepora, and A. valida), which encompassed a wide range of larval types and potential dispersal capabilities. We found substantial genotypic diversity at local scales in six of the nine species (four brooders, two spawners). For these six, each local population displayed approximately the levels of multilocus genotypic diversity (Go) expected for outcrossed sexual reproduction (mean values of Go:Ge ranged from 0.85 to 1.02), although consistent single-locus heterozygous deficits indicate that inbreeding occurs at the scale of whole reefs. The remaining three species, the brooder S. hystrix and the spawners A. valida and A. millepora displayed significantly less multilocus genotypic diversity (Go) than was expected for outcrossed sexual reproduction (Ge) within each of several sites. Acropora valida and A. millepora showed evidence of extensive localized asexual replication: (1) a small number of multilocus (clonal) genotypes were numerically dominant within some sites (Go:Ge values were as low as 0.17 and 0.20): (2) single-locus genotype frequencies were characterized by both excesses and deficits of heterozygotes (cf. Hardy-Weinberg expectations), and (3) significant linkage disequilibria occurred. For the brooding S. hystrix Go:Ge values were also low within each of four sites (x = 0.48). However, this result most likely reflects the highly restricted dispersal of gametes or larvae, because levels of genetic variation among sites within reefs were extremely high (FSR = 0.28). For all species, we detected considerable genetic subdivision among sites within each reef (high FSR-values), and we infer that larval dispersal is surprisingly limited (i.e., Nem among sites ranging from 0.6 to 3.3 migrants per generation), even in species that have relatively long planktonic durations. Nevertheless, our estimates of allelic variation among reefs (FRT) also imply that for all four broadcast spawning species and three of the brooders, larval dispersal is sufficient to maintain moderate to high levels of gene flow along the entire Great Barrier Reef (i.e., Nem among reefs ranged from 5 to 31). In contrast, widespread populations of S. hystrix and S. pistilata (the two remaining brooders) are relatively weakly connected (Nem among reefs was 1.4 and 2.5, respectively). We conclude that most recruitment by corals is very local, particularly in brooders, but that enough propagules are widely dispersed to ensure that both broadcast spawning and brooding species form vast effectively panmictic populations on the Great Barrier Reef.  相似文献   

4.
Miller KJ  Ayre DJ 《Heredity》2004,92(6):557-568
The genotypic composition of populations of the asexually viviparous coral Pocillopora damicornis varies in a manner that challenges classical models of the roles of sexual and asexual reproduction. On the geographically isolated Hawaiian reefs and high latitude reefs in Western Australia, P. damicornis populations are highly clonal although it has been argued that sexual reproduction via broadcast spawning generates widely dispersed colonists. In contrast, on eastern Australia's tropical Great Barrier Reef populations show little evidence of clonality. Here, we compare the genotypic diversity of adult and juvenile colonies of P. damicornis at seven sites on eastern Australia's high latitude Lord Howe Island reefs to determine if levels of clonality vary with habitat heterogeneity and age of colonies (as predicted by theory) or alternatively if clonality is again always high as for other isolated reef systems. We found 55-100% of the genotypic diversity expected for random mating at all seven sites and little evidence of asexual recruitment irrespective of habitat heterogeneity (sheltered versus wave exposed) or colony age. We found reduced levels of genetic diversity compared with tropical reefs (2.75 versus 4 alleles/locus), which supports earlier findings that Lord Howe Island is an isolated reef system. Furthermore, heterozygote deficits coupled with significant genetic subdivision among sites (FST=0.102+/-0.03) is typical of populations that have limited larval connections and are inbred. We conclude that the genetic structure of P. damicornis at Lord Howe Island reflects populations that are maintained through localised recruitment of sexually produced larvae.  相似文献   

5.
SUMMARY. 1 Genetic (electrophoretic) and sex ratio data were used to assess the contributions of sexual and asexual reproduction to recruitment to populations of the freshwater ostracod Candonocypris novaezelandiae in temporary and permanent water bodies of varying size.
2. Two distinct types of population structure were found. Populations from eight permanent ponds, a reservoir and a temporary pond, apparently comprised only females and were dominated by a few highly replicated genotypes. Significant departures from Hardy-Weinberg equilibria were observed for at least one locus in all populations, and multi-locus genotypic diversity ranged between 16% and 48% of that expected in a population with the same underlying gene frequencies reproducing solely by sexual means. These results were consistent with the predicted consequences of predominantly asexually derived recruitment.
3. In contrast, sexual reproduction was probably most important in a population inhabiting a large temporary swamp. This population displayed 79% of the genotypic diversity expected for a sexually reproducing population, and contained both males and females.
4. Most theoretical models predict that sexually reproducing individuals should have a selective advantage in unstable environments. The results of this study do not provide a perfect association of sexually derived recruitment with unstable habitats.  相似文献   

6.
Many plants combine sexual reproduction with some form of asexual reproduction to different degrees, and lower genetic diversity is expected with asexuality. Moreover, the ratios of sexual morphs in species with gender dimorphism are expected to vary in proportion to the reproductive success of the sexual process. Hence, sex ratios can directly influence the genetic structure and diversity of a population. We investigated genotypic diversity in 23 populations of a facultative, apomictic gynodioecious orchid, Satyrium ciliatum, to examine the effect on genotypic diversity of variation in the frequency of females and in the amount of sexual reproduction. The study involved one pure female, seven gynodioecious (both females and hermaphrodites present) and 15 hermaphroditic populations. Pollinia receipt was higher in hermaphroditic than in gynodioecious populations. Analyses of variation in ISSRs demonstrated that genotypic diversity was high in all populations and was not significantly different between hermaphroditic and gynodioecious populations. We used character compatibility analysis to determine the extent to which recombination by sexual reproduction contributed to genotypic diversity. The results indicate that the contribution of recombination to genotypic diversity is higher in hermaphroditic than in gynodioecious populations, consistent with the finding that hermaphroditic populations received higher amounts of pollinia. Our finding of reduced recombination in gynodioecious populations suggests that maintenance of sex in hermaphrodites plays an important role in generating genotypic diversity in this apomictic orchid.  相似文献   

7.
Asexual reproduction in the fissiparous holothurian species Stichopus chloronotus from eight populations between Madagascar and the Great Barrier Reef (total N=149) was investigated using Amplified fragment length polymorphism (AFLP) markers; and results compared to previous allozyme studies. Specifically, we tested the hypotheses that (1) genetic diversity in this species is reduced in the West Indian Ocean and that (2) some populations rely nearly exclusively on asexual reproduction. Using 21 polymorphic markers (obtained by two primer combinations) resulted in 51 genotypes in the whole sample, with up to 20 individuals (nearly all within populations) having the same genotype. These repeated genotypes most likely represent clones. In most populations, more than 50% of individuals were inferred to result from asexual reproduction. In two extreme populations, both of which are comprised nearly entirely of male individuals (Great Palm Island, Trou deau), only up to 20% of all individuals were sexually produced. Although, the genetic diversity in two populations of La Réunion was reduced, the fact that diversity is high in a third population and on Madagascar showed that low genetic diversity in S. chloronotus is not a general feature of the West Indian Ocean. Cluster analysis using Rogers genetic distance did not result in distinct geographic clusters. This supports previous suggestions that although asexual reproduction is important for the maintenance of populations, large distance dispersal of sexually produced larvae provides the genetic link between populations.  相似文献   

8.
Ecological factors affecting reproduction and dispersal are particularly important in determining genetic structure of plant populations. Polyoicous reproductive system is not rare in bryophytes; however, to date, nothing is known about its functioning and possible population genetic effects. Using the liverwort Mannia fragrans as a model species, the main aims of this study were to separate the relative importance of the components of the polyoicous reproductive system and to assess its consequences on the genetic structure of populations. High sex expression rates increasing with patch size and strongly female-biased sex ratios were detected. Additional input into clonal growth after production of sex organs was found in males compared to females. Similar clonal traits of the rare bisexual and asexual plants and preference toward newly colonized patches suggest that selection prefers colonizers that first develop organs of both sexes, hence ensuring sexual reproduction when no partner is present. Despite frequent spore production, ISSR markers revealed low genetic diversity, probably resulting from the effective clonal propagation of the species and frequent crossing between genetically identical plants. The presence of numerous rare alleles and unique recombinant haplotypes indicates occasional recombination and mutation. Effective spreading of new haplotypes is probably hampered however by large spore size. Since populations are small and isolated, such haplotypes are probably continuously eliminated by genetic drift. These results suggest that although both sexual and asexual reproductions seem to be effective, asexual components of the reproductive system play a greater role in shaping the genetic composition of the populations.  相似文献   

9.
The scleractinian coral Goniastrea aspera (Verrill) undergoes both broadcast spawning and planulae brooding in the Ryukyu Archipelago of southern Japan. Genetic variation and gene flow in G. aspera were studied using allozyme electrophoresis. We tested the hypothesis that gene flow is determined by the competency period of the planulae. We also assessed the relative contributions of sexual and asexual reproduction to recruitment. For the five staining systems surveyed, G. aspera encoded five polymorphic loci and one monomorphic locus. The genotype frequencies in each population significantly differed from the expected Hardy-Weinberg equilibrium (HWE), indicating that the local populations of G. aspera are not fully panmictic. The high ratio of the observed number of genotypes to the number of individuals (0.90 +/- 0.07, mean NG:N +/- SD) and the observed to expected genotypic diversity (0.84 +/- 0.11, mean GO:GE +/- SD) suggested that each population is likely maintained by sexual reproduction. The genetic differentiation (FST) and value of average number of migrants per generation (Nem) among and within regions ranged from 0.025 to 0.104 and 2.2 to 9.6, respectively. Comparisons with other species demonstrated that larva survival rates also influence gene flow. In addition, gene flow on distant reefs by planulae originating from spawning might prevent divergence by planulae originating from brooding for short-distant dispersal among and within populations of G. aspera in the Ryukyu Archipelago.  相似文献   

10.
Understanding patterns of reproduction, dispersal and recruitment in deep‐sea communities is increasingly important with the need to manage resource extraction and conserve species diversity. Glass sponges are usually found in deep water (>1000 m) worldwide but form kilometre‐long reefs on the continental shelf of British Columbia and Alaska that are under threat from trawling and resource exploration. Due to their deep‐water habitat, larvae have not yet been found and the level of genetic connectivity between reefs and nonreef communities is unknown. The genetic structure of Aphrocallistes vastus, the primary reef‐building species in the Strait of Georgia (SoG) British Columbia, was studied using single nucleotide polymorphisms (SNPs). Pairwise comparisons of multilocus genotypes were used to assess whether sexual reproduction is common. Structure was examined 1) between individuals in reefs, 2) between reefs and 3) between sites in and outside the SoG. Sixty‐seven SNPs were genotyped in 91 samples from areas in and around the SoG, including four sponge reefs and nearby nonreef sites. The results show that sponge reefs are formed through sexual reproduction. Within a reef and across the SoG basin, the genetic distance between individuals does not vary with geographic distance (r = ?0.005 to 0.014), but populations within the SoG basin are genetically distinct from populations in Barkley Sound, on the west coast of Vancouver Island. Population structure was seen across all sample sites (global FST = 0.248), especially between SoG and non‐SoG locations (average pairwise FST = 0.251). Our results suggest that genetic mixing occurs across sponge reefs via larvae that disperse widely.  相似文献   

11.
Numerous studies of population structure in sessile clonal marine invertebrates have demonstrated low genotypic diversity and nonequilibrium genotype frequencies within local populations that are monopolized by relatively few, highly replicated genets. All of the species studied to date produce planktonic sexual propagules capable of dispersing long distances; despite local genotypic disequilibria, populations are often panmictic over large geographic areas. The population structure paradigm these species represent may not be typical of the majority of clonal invertebrate groups, however, which are believed to produce highly philopatric sexual propagules. I used allozyme variation to examine the population structure of the temperate soft coral, Alcyonium rudyi, a typical clonal species whose sexually produced larvae and asexually produced ramets both have very low dispersal capabilities. Like other clonal plants and invertebrates, the local population dynamics of A. rudyi are dominated by asexual reproduction, and recruitment of new sexually produced genets occurs infrequently. As expected from its philopatric larval stage, estimates of genetic differentiation among populations of A. rudyi were highly significant at all spatial scales examined (mean θ = 0.300 among 20 populations spanning a 1100-km range), suggesting that genetic exchange seldom occurs among populations separated by as little as a few hundred meters. Mapping of multilocus allozyme genotypes within a dense aggregation of A. rudyi ramets confirmed that dispersal of asexual propagules is also very limited: members of the same genet usually remain within < 50 cm of one another on the same rock surface. Unlike most previously studied clonal invertebrates, populations of A. rudyi do not appear to be dominated by a few widespread genets: estimates of genotypic diversity (Go) within 20 geographically distinct populations did not differ from expectations for outcrossing, sexual populations. Despite theoretical suggestions that philopatric dispersal combined with typically small effective population sizes should promote inbreeding in clonal species, inbreeding does not appear to contribute significantly to the population structure of A. rudyi. Genet genotype frequencies conformed to Hardy-Weinberg expectations in all populations, and inbreeding coefficients (f) were close to zero. In general, the population structure of A. rudyi did not differ significantly from that observed among outcrossing sexual species with philopatric larval dispersal. Age estimates suggest, however, that genets of A. rudyi live for many decades. Genet longevity may promote high genotypic diversity within A. rudyi populations and may be the most important evolutionary consequence of clonal reproduction in this species and the many others that share its dispersal characteristics.  相似文献   

12.
Cnidarians display a diverse range of reproductive tactics including sexual and asexual modes of reproduction. Although few studies have looked for intraspecific variation in reproductive tactics, flexible expression of such life-history traits may be favoured in species that occupy a range of habitats. We tested this in the sea anemone Actinia tenebrosa by comparing cycles of reproductive activity and the mode of production of brooded larvae in local populations occupying boulder fields and stable rock platforms. We determined the mode of production of broods from eight rock platforms (separated by up to 1600 km) and two boulder shores on the south east coast of Australia using a combination of allozyme data and four newly characterised microsatellite markers.

We determined seasonal patterns of brooding and gonad development by monthly dissection of 15–30 adults from each of two boulder fields and two stable platforms. Previous genetic studies have shown that populations of A. tenebrosa on rock platforms can be highly clonal, whereas anemones on more heterogeneous boulder habitats display levels of genotypic diversity similar to that expected for sexual reproduction. We genotyped a total of 221 juveniles from 37 brooding adults including 11 broods and 80 juveniles from boulder shores. We did not detect any evidence of sexual production of broods. All brooded juveniles displayed identical multi-locus genotypes to their brood parent irrespective of habitat of origin or location, including 28 broods (200 juveniles) that were heterozygous at one or more locus. Similarly, we found that temporal patterns of gonad formation and brooding were consistent across habitats and locations. We detected 346 mature males, 234 non-reproductive or immature individuals, and no mature females within a total of 580 dissected individuals. These data suggest that the reproductive tactics of A. tenebrosa are essentially fixed and that variation in the genotypic diversity of populations may reflect variation in factors such as the input of sexually derived planktonically dispersed recruits or post-settlement processes. However, the apparent lack of females paradoxically implies that sexual reproduction, and hence recruitment, must be rare or no longer possible within some populations, and highlights the need for long-term studies of these populations.  相似文献   


13.
Measures of diversity within populations, and distance between populations, are compared for organisms with an asexual or mixed mode of reproduction. Examples are drawn from studies of plant pathogenic fungi based on binary traits including presence/absence of DNA bands or virulence/avirulence to differential hosts. Commonly used measures of population diversity or genetic distance consider either genotype frequencies or allele frequencies. Kosman's diversity and distance measures are the most suitable for populations with an asexual or mixed mode of reproduction, because by considering genetic patterns of all individuals they take into account not just the genotype frequencies but also the genetic similarities between genotypes in the populations. The Kosman distance and diversity measures for populations can be calculated using different measures of dissimilarity between individuals (the simple mismatch, Jaccard and Dice coefficients of dissimilarity). Kosman's distances based on the simple mismatch and Jaccard dissimilarities are metrics. Comparisons of diversity indices for hypothetical examples as well as for actual data sets are presented to demonstrate that inferences from diversity analysis of populations can be driven by techniques of diversity and distance assessments and not only data driven.  相似文献   

14.
The azooxanthellate scleractinian coral Lophelia pertusa has a near-cosmopolitan distribution, with a main depth distribution between 200 and 1000 m. In the northeast Atlantic it is the main framework-building species, forming deep-sea reefs in the bathyal zone on the continental margin, offshore banks and in Scandinavian fjords. Recent studies have shown that deep-sea reefs are associated with a highly diverse fauna. Such deep-sea communities are subject to increasing impact from deep-water fisheries, against a background of poor knowledge concerning these ecosystems, including the biology and population structure of L. pertusa. To resolve the population structure and to assess the dispersal potential of this deep-sea coral, specific microsatellites markers and ribosomal internal transcribed spacer (ITS) sequences ITS1 and ITS2 were used to investigate 10 different sampling sites, distributed along the European margin and in Scandinavian fjords. Both microsatellite and gene sequence data showed that L. pertusa should not be considered as one panmictic population in the northeast Atlantic but instead forms distinct, offshore and fjord populations. Results also suggest that, if some gene flow is occurring along the continental slope, the recruitment of sexually produced larvae is likely to be strongly local. The microsatellites showed significant levels of inbreeding and revealed that the level of genetic diversity and the contribution of asexual reproduction to the maintenance of the subpopulations were highly variable from site to site. These results are of major importance in the generation of a sustainable management strategy for these diversity-rich deep-sea ecosystems.  相似文献   

15.
Genotypic characteristics of the Cladocera   总被引:11,自引:10,他引:1  
Work on the genetics of cladocerans reproducing by cyclic parthenogenesis has indicated that populations usually include a large number of genotypes, whose frequencies are in close approximation to Hardy-Weinberg equilibrium. Less diverse genotypic arrays and pronounced instability in genotype frequencies occur only in permanent populations exposed to limited ephippial recruitment. Genetic diversification among local cladoceran populations is greater than in most other organisms as a consequence of the inefficiency of passive dispersal. Genotypic characteristics of cladocerans reproducing by obligate parthenogenesis are markedly different from those of cyclic parthenogens. Local populations include few clones, but genetic distances between them are often large and accompanied by significant ecological and morphological divergence. When considered over their entire range, cladoceran taxa reproducing by obligate asexuality are the most genotypically diverse asexual organisms known. This diversity has originated from the spread of a sex-limited meiosis suppressor through species that originally reproduced by cyclic parthenogenesis. The confused state of cladoceran taxonomy is partially a consequence of the presence of such obligately asexual groups, but also results from the occurrence of hybridization and sibling species. The genome size of cladocerans is exceptionally small and is associated with a large amount of endopolyploidy. Somatic tissues in adult cladocerans show a range in nuclear DNA content from 2–2048 c. DNA quantification studies have additionally revealed the frequent occurrence of polyploid clones in obligately asexual taxa.  相似文献   

16.
Northeastern North American populations of the sea anemone Metridium senile show marked differences in levels of genotypic diversity. Comparisons with expectations generated by computer simulation show that some populations are genotypically as diverse as expected for sexually reproducing populations with free recombination, whereas others are significantly less diverse than expected, despite efforts to avoid collecting clonemates. These reductions in diversity are not attributable to the Wahlund effect; they probably result from extensive clonal reproduction. Reduced genotypic diversity may be produced by low rates of recruitment of planktonic larvae, followed by asexual proliferation. The resulting founder effect may account for previously documented random allele-frequency variation between adjacent populations. It is presently uncertain whether the few genotypes found in some populations are particularly well-adapted to local conditions.  相似文献   

17.
Swartzia glazioviana is a threatened legume tree species from the Brazilian Atlantic Forest characterized by aggregations of individuals and endemism to an area with extensive human occupation. It is critical to conduct studies on the species to conserve the remaining populations. Using ten nuclear microsatellite loci, we examined the genotypic and genetic diversity and structure, inbreeding, stand-level spatial genetic structure (SGS), effective population size, mating system, and pollen flow in three isolated remnant populations, aiming to inform conservation strategies. All adult individuals found in the populations were mapped and sampled and open-pollinated seeds were collected from two populations. The genotypic diversity (>0.85) indicates that sexual reproduction is predominant and the short distance between ramets indicates that asexual reproduction occurs by root development. In general, populations present SGS which is explained, in part, by root development. The genetic differentiation among populations was greater between more distant populations, suggesting a gene dispersal pattern of isolation by distance. Pollen flow (>27%) indicates that populations are not reproductively isolated, but fertilization followed an isolation by distance pattern. The outcrossing rate was high (\({t_m}\)?>?0.8), but some mating occurred among related individuals (\({t_m}\; - \;{t_s}\)?>?0.1) and were correlated (\({r_p}\)?>?0.15), indicating inbreeding and varying levels of relatedness within families. Inbreeding was higher in seed cohorts than adults, suggesting selection against inbred individuals between seed and adult stages. The results are discussed considering in situ conservation and strategies for seed collection for environmental reforestation.  相似文献   

18.
D. J. Ayre 《Oecologia》1984,62(2):222-229
Allelic and genotypic frequencies were determined for samples from 35 widely distributed Australasian colonies of Actinia tenebrosa and 2 South African colonies of A. equina. These data provided no evidence of gene flow between Australisian and South African Actinia colonies and indicated that there may be some restriction of gene flow between widely separated Australasian colonies.Both species are viviparous, and brooded A. tenebrosa are known to be produced asexually. The present data indicate that, within both species, almost all genotypic diversity is generated by sexual reproduction with recombination. Sexually produced juveniles appear to be widely dispersed and panmixis may occur over thousands of kilometres. However, successful sexual recruitment must be episodic or rare. Colonies on stable shores displayed relatively low levels of genotypic diversity, as compared with expectations for sexually reproducing populations, indicating strong local effects of asexual recruitment. Clonal genotypes may be spread over hundreds of metres of shore, but are typically restricted to discrete colonies. Asexual recruitment is highly localised and asexual dispersal appears to be limited by lengths of shore (500 m) which are unsuitable for colonization. Colonies on unstable shores are significantly more diverse genotypically and show little evidence of clonal proliferation.  相似文献   

19.
Genetic variation in sexual and clonal lineages of a freshwater snail   总被引:3,自引:0,他引:3  
Sexual reproduction within natural populations of most plants and animals continues to remain an enigma in evolutionary biology. That the enigma persists is not for lack of testable hypotheses but rather because of the lack of suitable study systems in which sexual and asexual females coexist. Here we review our studies on one such organism, the freshwater snail Potamopyrgus antipodarum (Gray). We also present new data that bear on hypotheses for the maintenance of sex and its relationship to clonal diversity. We have found that sexual populations of the snail are composed of diploid females and males, while clonal populations are composed of a high diversity of triploid apomictic females. Sexual and asexual individuals coexist in stable frequencies in many ‘mixed’ populations; genetic data indicate that clones from these mixed populations originated from the local population of sexual individuals without interspecific hybridization. Field data show that clonal and sexual snails have completely overlapping life histories, but individual clonal genotypes are less variable than individuals from the sympatric sexual population. Field data also show segregation of clones among depth‐specific habitat zones within a lake, but clonal diversity remains high even within habitats. A new laboratory experiment revealed extensive clonal variation in reproductive rate, a result which suggests that clonal diversity would be low in nature without some form of frequency‐dependent selection. New results from a long‐term field study of a natural, asexual population reveal that clonal diversity remained nearly constant over a 10‐year period. Nonetheless, clonal turnover occurs, and it occurs in a manner that is consistent with parasite‐mediated, frequency‐dependent selection. Reciprocal cross‐infection experiments have further shown that parasites are more infective to sympatric host snails than to allopatric snails, and that they are also more infective to common clones than rare clones within asexual host populations. Hence we suggest that sexual reproduction in these snails may be maintained, at least in part, by locally adapted parasites. Parasite‐mediated selection possibly also contributes to the maintenance of local clonal diversity within habitats, while clonal selection may be responsible for the distribution of clones among habitats. © 2003 The Linnean Society of London. Biological Journal of the Linnean Society 2003, 79 , 165–181.  相似文献   

20.
The persistence of asexual reproduction in many taxa depends on a balance between the origin of new asexual lineages and the extinction of old ones. This turnover determines the diversity of extant asexual populations and so influences the interaction between sexual and asexual modes of reproduction. Species with mixed reproduction, like the freshwater ostracod (Crustacea) morphospecies Eucypris virens, are a good model to examine these dynamics. This species is also a geographic parthenogen, in which sexual females and males co-exist with asexual females in the circum-Mediterranean area only, whereas asexual females occur all over Europe. A molecular phylogeny of E. virens based on the mitochondrial COI and 16S fragments is presented. It is characterised by many distinct clusters of haplotypes which are either exclusively sexual or asexual, with only one exception, and are often separated by deep branches. Analysis of the phylogeny reveals an astonishing cryptic diversity, which indicates the existence of a species complex with more than 40 cryptic taxa. We therefore suggest a revision of the single species status of E. virens. The phylogeny indicates multiple transitions from diverse sexual ancestor populations to asexuality. Although many transitions appear to be ancient, we argue that this may be an artefact of the existence of unsampled or extinct sexual lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号