首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Xenopus embryos, the cell cycle is driven by an autonomous biochemical oscillator that controls the periodic activation and inactivation of cyclin B1-CDK1. The oscillator circuit includes a system of three interlinked positive and double-negative feedback loops (CDK1 -> Cdc25 -> CDK1; CDK1 -/ Wee1 -/ CDK1; and CDK1 -/ Myt1 -/ CDK1) that collectively function as a bistable trigger. Previous work established that this bistable trigger is essential for CDK1 oscillations in the early embryonic cell cycle. Here, we assess the importance of the trigger in the somatic cell cycle, where checkpoints and additional regulatory mechanisms could render it dispensable. Our approach was to express the phosphorylation site mutant CDK1AF, which short-circuits the feedback loops, in HeLa cells, and to monitor cell cycle progression by live cell fluorescence microscopy. We found that CDK1AF-expressing cells carry out a relatively normal first mitosis, but then undergo rapid cycles of cyclin B1 accumulation and destruction at intervals of 3-6 h. During these cycles, the cells enter and exit M phase-like states without carrying out cytokinesis or karyokinesis. Phenotypically similar rapid cycles were seen in Wee1 knockdown cells. These findings show that the interplay between CDK1, Wee1/Myt1, and Cdc25 is required for the establishment of G1 phase, for the normal approximately 20-h cell cycle period, and for the switch-like oscillations in cyclin B1 abundance characteristic of the somatic cell cycle. We propose that the HeLa cell cycle is built upon an unreliable negative feedback oscillator and that the normal high reliability, slow pace and switch-like character of the cycle is imposed by a bistable CDK1/Wee1/Myt1/Cdc25 system.  相似文献   

2.
Over the last 20 years, studies of the biochemical oscillator that drives cell reproduction have revolutionized our understanding of the cell cycle. A recent Jaques Monod Conference, at the Station Biologique in Roscoff (30 April - 3 May 2000), concentrated on dissecting the elaborate structural rearrangements that the oscillator induces in order to push cells from interphase to mitosis and then to divide them in two.  相似文献   

3.
4.
A cyanobacterial circadian clockwork   总被引:1,自引:0,他引:1  
Johnson CH  Mori T  Xu Y 《Current biology : CB》2008,18(17):R816-R825
  相似文献   

5.
In the early embryonic cell cycle, Cdc2-cyclin B functions like an autonomous oscillator, whose robust biochemical rhythm continues even when DNA replication or mitosis is blocked. At the core of the oscillator is a negative feedback loop; cyclins accumulate and produce active mitotic Cdc2-cyclin B; Cdc2 activates the anaphase-promoting complex (APC); the APC then promotes cyclin degradation and resets Cdc2 to its inactive, interphase state. Cdc2 regulation also involves positive feedback, with active Cdc2-cyclin B stimulating its activator Cdc25 (refs 5-7) and inactivating its inhibitors Wee1 and Myt1 (refs 8-11). Under the correct circumstances, these positive feedback loops could function as a bistable trigger for mitosis, and oscillators with bistable triggers may be particularly relevant to biological applications such as cell cycle regulation. Therefore, we examined whether Cdc2 activation is bistable. We confirm that the response of Cdc2 to non-degradable cyclin B is temporally abrupt and switch-like, as would be expected if Cdc2 activation were bistable. We also show that Cdc2 activation exhibits hysteresis, a property of bistable systems with particular relevance to biochemical oscillators. These findings help establish the basic systems-level logic of the mitotic oscillator.  相似文献   

6.
A mitotic oscillator with one slowly increasing variable (tau L of the order of hours) and one rapidly increasing variable (tau R of the order of minutes) modulated by a timer (ultradian clock) gives an auto-oscillating solution: cells divide when this relaxation oscillator reaches a critical threshold to initiate a rapid phase of the limit cycle. Increasing values of the velocity constant in the slow equation give quasi-periodic, chaotic and periodic solutions. Thus dispersed and quantized cell cycle times are consequences of a chaotic trajectory and have a purely deterministic basis. This model of the dispersion of cell cycle times contrasts with many previous ones in which cell cycle variability is a consequence of stochastic properties inherent in a sequence of many thousands of reactions or the random nature of a key transition step.  相似文献   

7.
Raman micro-spectroscopy is a laser-based technique which enables rapid and non-invasive biochemical analysis of cells and tissues without the need for labels, markers or stains. Previous characterization of the mammalian cell cycle using Raman micro-spectroscopy involved the analysis of suspensions of viable cells and individual fixed and/or dried cells. Cell suspensions do not provide cell-specific information, and fixing/drying can introduce artefacts which distort Raman spectra, potentially obscuring both qualitative and quantitative analytical results. In this article, we present Raman spectral characterization of biochemical changes related to cell cycle dynamics within single living cells in vitro. Raman spectra of human osteosarcoma cells synchronized in G(0)/G(1), S, and G(2)/M phases of the cell cycle were obtained and multivariate statistics applied to analyze the changes in cell spectra as a function of cell cycle phase. Principal components analysis identified spectral differences between cells in different phases, indicating a decrease in relative cellular lipid contribution to Raman spectral signatures from G(0)/G(1) to G(2)/M, with a concurrent relative increase in signal from nucleic acids and proteins. Supervised linear discriminant analysis of spectra was used to classify cells according to cell cycle phase, and exhibited 97% discrimination between G(0)/G(1)-phase cells and G(2)/M-phase cells. The non-invasive analysis of live cell cycle dynamics with Raman micro-spectroscopy demonstrates the potential of this approach to monitoring biochemical cellular reactions and processes in live cells in the absence of fixatives or labels.  相似文献   

8.
HeLa cells exposed to Escherichia coli cytolethal distending toxins (CDT) arrest their cell cycle at the G2/M transition. We have shown previously that in these cells the CDK1/cyclin B complex is inactive and can be reactivated in vitro using recombinant CDC25 phosphatase. Here we have investigated in vivo the effects of CDC25 on this cell cycle checkpoint. We report that overexpression of CDC25B or CDC25C overrides an established CDT-induced G2 cell cycle arrest and leads the cells to accumulate in an abnormal mitotic stage with condensed chromatin and high CDK1 activity. This effect can be counteracted by coexpression of the WEE1 kinase. In contrast, overexpression of CDC25B or C prior to CDT treatment prevents G2 arrest and allows most of the cells to progress through mitosis with only a low percentage of cells arrested in abnormal mitosis. The implications of these results on the biochemical nature of the CDT-induced cell cycle arrest are discussed.  相似文献   

9.
10.
D.A. Gilbert 《Bio Systems》1978,10(3):235-240
The oscillator concept of the cell cycle predicts the existence of threshold conditions within the cell which must be exceeded before replication is initiated. It is shown (a) that if the conditions are subthreshold, random disturbances can trigger a cycle of the oscillation (round of replication) and (b) that the probability of this occurring increases as the state of the system approaches the threshold. It is concluded that the oscillator concept explains the data on which the transition probability model is based. It also accounts for the ability of cells to replicate even when the mitogen is present for a limited period only.  相似文献   

11.
12.
During the early development of Xenopus laevis embryos, the first mitotic cell cycle is long (∼85 min) and the subsequent 11 cycles are short (∼30 min) and clock-like. Here we address the question of how the Cdk1 cell cycle oscillator changes between these two modes of operation. We found that the change can be attributed to an alteration in the balance between Wee1/Myt1 and Cdc25. The change in balance converts a circuit that acts like a positive-plus-negative feedback oscillator, with spikes of Cdk1 activation, to one that acts like a negative-feedback-only oscillator, with a shorter period and smoothly varying Cdk1 activity. Shortening the first cycle, by treating embryos with the Wee1A/Myt1 inhibitor PD0166285, resulted in a dramatic reduction in embryo viability, and restoring the length of the first cycle in inhibitor-treated embryos with low doses of cycloheximide partially rescued viability. Computations with an experimentally parameterized mathematical model show that modest changes in the Wee1/Cdc25 ratio can account for the observed qualitative changes in the cell cycle. The high ratio in the first cycle allows the period to be long and tunable, and decreasing the ratio in the subsequent cycles allows the oscillator to run at a maximal speed. Thus, the embryo rewires its feedback regulation to meet two different developmental requirements during early development.  相似文献   

13.
14.
The large cells in early vertebrate development face an extreme physical challenge in organizing their cytoplasm. For example, amphibian embryos have to divide cytoplasm that spans hundreds of micrometres every 30 min according to a precise geometry, a remarkable accomplishment given the extreme difference between molecular and cellular scales in this system. How do the biochemical reactions occurring at the molecular scale lead to this emergent behaviour of the cell as a whole? Based on recent findings, we propose that the centrosome plays a crucial role by initiating two autocatalytic reactions that travel across the large cytoplasm as chemical waves. Waves of mitotic entry and exit propagate out from centrosomes using the Cdk1 oscillator to coordinate the timing of cell division. Waves of microtubule-stimulated microtubule nucleation propagate out to assemble large asters that position spindles for the following mitosis and establish cleavage plane geometry. By initiating these chemical waves, the centrosome rapidly organizes the large cytoplasm during the short embryonic cell cycle, which would be impossible using more conventional mechanisms such as diffusion or nucleation by structural templating. Large embryo cells provide valuable insights to how cells control chemical waves, which may be a general principle for cytoplasmic organization.  相似文献   

15.
We have previously reported spectral differences for cells at different stages of the eukaryotic cell division cycle. These differences are due to the drastic biochemical and morphological changes that occur as a consequence of cell proliferation. We correlate these changes in FTIR absorption and Raman spectra of individual cells with their biochemical age (or phase in the cell cycle), determined by immunohistochemical staining to detect the appearance (and subsequent disappearance) of cell-cycle-specific cyclins, and/or the occurrence of DNA synthesis. Once spectra were correlated with their cells' staining patterns, we used methods of multivariate statistics to analyze the changes in cellular spectra as a function of cell cycle phase.  相似文献   

16.
We have previously reported spectral differences for cells at different stages of the eukaryotic cell division cycle. These differences are due to the drastic biochemical and morphological changes that occur as a consequence of cell proliferation. We correlate these changes in FTIR absorption and Raman spectra of individual cells with their biochemical age (or phase in the cell cycle), determined by immunohistochemical staining to detect the appearance (and subsequent disappearance) of cell-cycle-specific cyclins, and/or the occurrence of DNA synthesis. Once spectra were correlated with their cells' staining patterns, we used methods of multivariate statistics to analyze the changes in cellular spectra as a function of cell cycle phase.  相似文献   

17.
We have obtained cells in various stages of granulocytic development by a combination of isopycnic separation and electronic cell sorting. Not only were immature cells (blast cells, promyelocytes and myelocytes) separated from mature cells (bands and polys), but the immature cells were separated into proliferating (S + G2 + M) and resting (Go/G1) compartments of the cell cycle. This permits the study of the morphological and biochemical changes associated with development apart from those changes associated with proliferation.  相似文献   

18.
Chemical agents for cell cycle synchronization have greatly facilitated the study of biochemical events driving cell cycle progression. G1, S and M phase inhibitors have been developed and used widely in cell cycle research. However, currently there are no effective G2 phase inhibitors and synchronization of cultured cells in G2 phase has been challenging. Recently, a selective CDK1 inhibitor, RO-3306, has been identified that reversibly arrests proliferating human cells at the G2/M phase border and provides a novel means for cell cycle synchronization. A single-step protocol using RO-3306 permits the synchronization of >95% of cycling cancer cells in G2 phase. RO-3306 arrested cells enter mitosis rapidly after release from the G2 block thus allowing for isolation of mitotic cells without microtubule poisons. RO-3306 represents a new molecular tool for studying CDK1 function in human cells.  相似文献   

19.
20.
In Neurospora crassa, FRQ, WC-1, and WC-2 proteins comprise the core circadian FRQ-based oscillator that is directly responsive to light and drives daily rhythms in spore development and gene expression. However, physiological and biochemical studies have demonstrated the existence of additional oscillators in the cell that function in the absence of FRQ (collectively termed FRQ-less oscillators [FLOs]). Whether or not these represent temperature-compensated, entrainable circadian oscillators is not known. The authors previously identified an evening-peaking gene, W06H2 (now called clock-controlled gene 16 [ccg-16]), which is expressed with a robust daily rhythm in cells that lack FRQ protein, suggesting that ccg-16 is regulated by a FLO. In this study, the authors provide evidence that the FLO driving ccg-16 rhythmicity is a circadian oscillator. They find that ccg-16 rhythms are generated by a temperature-responsive, temperature-compensated circadian FLO that, similar to the FRQ-based oscillator, requires functional WC-1 and WC-2 proteins for activity. They also find that FRQ is not essential for rhythmic WC-1 protein levels, raising the possibility that this WCFLO is involved in the generation of WC-1 rhythms. The results are consistent with the presence of 2 circadian oscillators within Neurospora cells, which the authors speculate may interact with each other through the shared WC proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号