首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
To study the roles of intracellular factors in neuronal morphogenesis, we used the mosaic analysis with a repressible cell marker (MARCM) technique to visualize identifiable single multiple dendritic (MD) neurons in living Drosophila larvae. We found that individual neurons in the peripheral nervous system (PNS) developed clear morphological polarity and diverse dendritic branching patterns in larval stages. Each MD neuron in the same dorsal cluster developed a unique dendritic field, suggesting that they have specific physiological functions. Single-neuron analysis revealed that Flamingo did not affect the general dendritic branching patterns in postmitotic neurons. Instead, Flamingo limited the extension of one or more dorsal dendrites without grossly affecting lateral branches. The dendritic overextension phenotype was partially conferred by the precocious initiation of dorsal dendrites in flamingo mutant embryos. In addition, Flamingo is required cell autonomously to promote axonal growth and to prevent premature axonal branching of PNS neurons. Our molecular analysis also indicated that the amino acid sequence near the first EGF motif is important for the proper localization and function of Flamingo. These results demonstrate that Flamingo plays a role in early neuronal differentiation and exerts specific effects on dendrites and axons.  相似文献   

2.
Neurons undergo extensive morphogenesis during development. To systematically identify genes important for different aspects of neuronal morphogenesis, we performed a genetic screen using the MARCM system in the mushroom body (MB) neurons of the Drosophila brain. Mutations on the right arm of chromosome 2 (which contains approximately 20% of the Drosophila genome) were made homozygous in a small subset of uniquely labeled MB neurons. Independently mutagenized chromosomes (4600) were screened, yielding defects in neuroblast proliferation, cell size, membrane trafficking, and axon and dendrite morphogenesis. We report mutations that affect these different aspects of morphogenesis and phenotypically characterize a subset. We found that roadblock, which encodes a dynein light chain, exhibits reduced cell number in neuroblast clones, reduced dendritic complexity and defective axonal transport. These phenotypes are nearly identical to mutations in dynein heavy chain Dhc64 and in Lis1, the Drosophila homolog of human lissencephaly 1, reinforcing the role of the dynein complex in cell proliferation, dendritic morphogenesis and axonal transport. Phenotypic analysis of short stop/kakapo, which encodes a large cytoskeletal linker protein, reveals a novel function in regulating microtubule polarity in neurons. MB neurons mutant for flamingo, which encodes a seven transmembrane cadherin, extend processes beyond their wild-type dendritic territories. Overexpression of Flamingo results in axon retraction. Our results suggest that most genes involved in neuronal morphogenesis play multiple roles in different aspects of neural development, rather than performing a dedicated function limited to a specific process.  相似文献   

3.
Neurons are highly polarized cells with distinct subcellular compartments, including dendritic arbors and an axon. The proper function of the nervous system relies not only on correct targeting of axons, but also on development of neuronal-class-specific geometry of dendritic arbors [1-4]. To study the intercellular control of the shaping of dendritic trees in vivo, we searched for cell-surface proteins expressed by Drosophila dendritic arborization (da) neurons [5-7]. One of them was Neuroglian (Nrg), a member of the Ig superfamily ; Nrg and vertebrate L1-family molecules have been implicated in various aspects of neuronal wiring, such as axon guidance, axonal myelination, and synapse formation [9-12]. A subset of the da neurons in nrg mutant embryos exhibited deformed dendritic arbors and abnormal axonal sprouting. Our functional analysis in a cell-type-selective manner strongly suggested that those da neurons employed Nrg to interact with the peripheral glia for suppressing axonal sprouting and for forming second-order dendritic branches. At least for the former role, Nrg functioned in concert with the intracellular adaptor protein Ankyrin (Ank) [13]. Thus, the neuron-glia interaction that is mediated by Nrg, together with Ank under some situations, contributes to axonal and dendritic morphogenesis.  相似文献   

4.
Fragile X syndrome is caused by loss-of-function mutations in the fragile X mental retardation 1 gene. How these mutations affect neuronal development and function remains largely elusive. We generated specific point mutations or small deletions in the Drosophila fragile X-related (Fmr1) gene and examined the roles of Fmr1 in dendritic development of dendritic arborization (DA) neurons in Drosophila larvae. We found that Fmr1 could be detected in the cell bodies and proximal dendrites of DA neurons and that Fmr1 loss-of-function mutations increased the number of higher-order dendritic branches. Conversely, overexpression of Fmr1 in DA neurons dramatically decreased dendritic branching. In dissecting the mechanisms underlying Fmr1 function in dendrite development, we found that the mRNA encoding small GTPase Rac1 was present in the Fmr1-messenger ribonucleoprotein complexes in vivo. Mosaic analysis with a repressor cell marker (MARCM) and overexpression studies revealed that Rac1 has a cell-autonomous function in promoting dendritic branching of DA neurons. Furthermore, Fmr1 and Rac1 genetically interact with each other in controlling the formation of fine dendritic branches. These findings demonstrate that Fmr1 affects dendritic development and that Rac1 is partially responsible for mediating this effect.  相似文献   

5.
6.
Fragile X Syndrome (FraX) is the most common form of inherited mental retardation. The disease is caused by the silencing of the fragile X mental retardation 1 (fmr1) gene, which encodes the RNA binding translational regulator FMRP . In FraX patients and fmr1 knockout mice, loss of FMRP causes denser and morphologically altered postsynaptic dendritic spines . Previously, we established a Drosophila FraX model and showed that dFMRP acts as a negative translational regulator of Futsch/MAP1B and negatively regulates synaptic branching and structural elaboration in the peripheral neuromuscular junction (NMJ) . Here, we investigate the role of dFMRP in the central brain, focusing on the mushroom body (MB), the learning and memory center . In MB neurons, dFMRP bidirectionally regulates multiple levels of structural architecture, including process formation from the soma, dendritic elaboration, axonal branching, and synaptogenesis. Drosophila fmr1 (dfmr) null mutant neurons display more complex architecture, including overgrowth, overbranching, and abnormal synapse formation. In contrast, dFMRP overexpression simplifies neuronal structure, causing undergrowth, underbranching, and loss of synapse differentiation. Studies of ultrastructural dfmr mutant neurons reveal enlarged and irregular synaptic boutons with dense accumulation of synaptic vesicles. Taken together, these data show that dFMRP is a potent negative regulator of neuronal architecture and synaptic differentiation in both peripheral and central nervous systems.  相似文献   

7.
A Role for ARF6 and ARNO in the regulation of endosomal dynamics in neurons   总被引:1,自引:1,他引:0  
During development, neuronal processes extend, branch and navigate to ultimately synapse with target tissue. We have shown a regulatory role for ARNO and ARF6 in dendritic branching and axonal elongation and branching during neuritogenesis, particularly with respect to cytoskeletal dynamics. Here, we have examined the role of ARF6 and the ARF GEF ARNO in endosomal dynamics during neurite elongation in hippocampal neurons. Axonal and dendritic endosomes were labeled by expression of the endosomal marker, endotubin. Expression of endotubin-green fluorescent protein resulted in targeting to tubular-vesicular structures throughout the somatodendritic and axonal domains. These endosomal structures did not colocalize with conventional early or late endosomal markers or with the synaptic vesicle marker, SV2. However, they did label with internalized lectin, indicating that they are endosomal structures. Expression of catalytically inactive ARNO (ARNO-E156K) or inactive ARF6 (ARF6-T27N) caused a redistribution of endotubin to the cell surface of the axons and dendrites. In contrast, expression of these constructs had no effect upon the distribution of SV2-positive structures. Furthermore, expression of inactive ARF1 (ARF1-T31N) did not change endotubin distribution. These results suggest that endotubin labels a distinct endosomal structure in neurons and that ARNO and ARF6 mediate neurite extension through the regulation of this compartment.  相似文献   

8.
Nervous system development requires the correct specification of neuron position and identity, followed by accurate neuron class-specific dendritic development and axonal wiring. Recently the dendritic arborization (DA) sensory neurons of the Drosophila larval peripheral nervous system (PNS) have become powerful genetic models in which to elucidate both general and class-specific mechanisms of neuron differentiation. There are four main DA neuron classes (I-IV)(1). They are named in order of increasing dendrite arbor complexity, and have class-specific differences in the genetic control of their differentiation(2-10). The DA sensory system is a practical model to investigate the molecular mechanisms behind the control of dendritic morphology(11-13) because: 1) it can take advantage of the powerful genetic tools available in the fruit fly, 2) the DA neuron dendrite arbor spreads out in only 2 dimensions beneath an optically clear larval cuticle making it easy to visualize with high resolution in vivo, 3) the class-specific diversity in dendritic morphology facilitates a comparative analysis to find key elements controlling the formation of simple vs. highly branched dendritic trees, and 4) dendritic arbor stereotypical shapes of different DA neurons facilitate morphometric statistical analyses. DA neuron activity modifies the output of a larval locomotion central pattern generator(14-16). The different DA neuron classes have distinct sensory modalities, and their activation elicits different behavioral responses(14,16-20). Furthermore different classes send axonal projections stereotypically into the Drosophila larval central nervous system in the ventral nerve cord (VNC)(21). These projections terminate with topographic representations of both DA neuron sensory modality and the position in the body wall of the dendritic field(7,22,23). Hence examination of DA axonal projections can be used to elucidate mechanisms underlying topographic mapping(7,22,23), as well as the wiring of a simple circuit modulating larval locomotion(14-17). We present here a practical guide to generate and analyze genetic mosaics(24) marking DA neurons via MARCM (Mosaic Analysis with a Repressible Cell Marker)(1,10,25) and Flp-out(22,26,27) techniques (summarized in Fig. 1).  相似文献   

9.
Dendrites allow neurons to integrate sensory or synaptic inputs, and the spatial disposition and local density of branches within the dendritic arbor limit the number and type of inputs. Drosophila melanogaster dendritic arborization (da) neurons provide a model system to study the genetic programs underlying such geometry in vivo. Here we report that mutations of motor-protein genes, including a dynein subunit gene (dlic) and kinesin heavy chain (khc), caused not only downsizing of the overall arbor, but also a marked shift of branching activity to the proximal area within the arbor. This phenotype was suppressed when dominant-negative Rab5 was expressed in the mutant neurons, which deposited early endosomes in the cell body. We also showed that 1) in dendritic branches of the wild-type neurons, Rab5-containing early endosomes were dynamically transported and 2) when Rab5 function alone was abrogated, terminal branches were almost totally deleted. These results reveal an important link between microtubule motors and endosomes in dendrite morphogenesis.  相似文献   

10.
Much attention has focused on dendritic translational regulation of neuronal signaling and plasticity. For example, long-term memory in adult Drosophila requires Pumilio (Pum), an RNA binding protein that interacts with the RNA binding protein Nanos (Nos) to form a localized translation repression complex essential for anterior-posterior body patterning in early embryogenesis. Whether dendrite morphogenesis requires similar translational regulation is unknown. Here we report that nos and pum control the elaboration of high-order dendritic branches of class III and IV, but not class I and II, dendritic arborization (da) neurons. Analogous to their function in body patterning, nos and pum require each other to control dendrite morphogenesis, a process likely to involve translational regulation of nos itself. The control of dendrite morphogenesis by Nos/Pum, however, does not require hunchback, which is essential for body patterning. Interestingly, Nos protein is localized to RNA granules in the dendrites of da neurons, raising the possibility that the Nos/Pum translation repression complex operates in dendrites. This work serves as an entry point for future studies of dendritic translational control of dendrite morphogenesis.  相似文献   

11.
12.
Lee T  Winter C  Marticke SS  Lee A  Luo L 《Neuron》2000,25(2):307-316
The pleiotropic functions of small GTPase Rho present a challenge to its genetic analysis in multicellular organisms. We report here the use of the MARCM (mosaic analysis with a repressible cell marker) system to analyze the function of RhoA in the developing Drosophila brain. Clones of cells homozygous for null RhoA mutations were specifically labeled in the mushroom body (MB) neurons of mosaic brains. We found that RhoA is required for neuroblast (Nb) proliferation but not for neuronal survival. Surprisingly, RhoA is not required for MB neurons to establish normal axon projections. However, neurons lacking RhoA overextend their dendrites, and expression of activated RhoA causes a reduction of dendritic complexity. Thus, RhoA is an important regulator of dendritic morphogenesis, while distinct mechanisms are used for axonal morphogenesis.  相似文献   

13.
Branching morphology is a hallmark feature of axons and dendrites and is essential for neuronal connectivity. To understand how this develops, I analyzed the stereotyped pattern of Drosophila mushroom body (MB) neurons, which have single axons branches that extend dorsally and medially. I found that components of the Wnt/Planar Cell Polarity (PCP) pathway control MB axon branching. frizzled mutant animals showed a predominant loss of dorsal branch extension, whereas strabismus (also known as Van Gogh) mutants preferentially lost medial branches. Further results suggest that Frizzled and Strabismus act independently. Nonetheless, branching fates are determined by complex Wnt/PCP interactions, including interactions with Dishevelled and Prickle that function in a context-dependent manner. Branching decisions are MB-autonomous but non-cell-autonomous as mutant and non-mutant neurons regulate these decisions collectively. I found that Wnt/PCP components do not need to be asymmetrically localized to distinct branches to execute branching functions. However, Prickle axonal localization depends on Frizzled and Strabismus.  相似文献   

14.
Kuo CT  Zhu S  Younger S  Jan LY  Jan YN 《Neuron》2006,51(3):283-290
Ubiquitin-proteasome system (UPS) is a multistep protein degradation machinery implicated in many diseases. In the nervous system, UPS regulates remodeling and degradation of neuronal processes and is linked to Wallerian axonal degeneration, though the ubiquitin ligases that confer substrate specificity remain unknown. Having shown previously that class IV dendritic arborization (C4da) sensory neurons in Drosophila undergo UPS-mediated dendritic pruning during metamorphosis, we conducted an E2/E3 ubiquitinating enzyme mutant screen, revealing that mutation in ubcD1, an E2 ubiquitin-conjugating enzyme, resulted in retention of C4da neuron dendrites during metamorphosis. Further, we found that UPS activation likely leads to UbcD1-mediated degradation of DIAP1, a caspase-antagonizing E3 ligase. This allows for local activation of the Dronc caspase, thereby preserving C4da neurons while severing their dendrites. Thus, in addition to uncovering E2/E3 ubiquitinating enzymes for dendrite pruning, this study provides a mechanistic link between UPS and the apoptotic machinery in regulating neuronal process remodeling.  相似文献   

15.
Sugimura K  Satoh D  Estes P  Crews S  Uemura T 《Neuron》2004,43(6):809-822
Morphological diversity of dendrites contributes to specialized functions of individual neurons. In the present study, we examined the molecular basis that generates distinct morphological classes of Drosophila dendritic arborization (da) neurons. da neurons are classified into classes I to IV in order of increasing territory size and/or branching complexity. We found that Abrupt (Ab), a BTB-zinc finger protein, is expressed selectively in class I cells. Misexpression of ab in neurons of other classes directed them to take the appearance of cells with smaller and/or less elaborated arbors. Loss of ab functions in class I neurons resulted in malformation of their typical comb-like arbor patterns and generation of supernumerary branch terminals. Together with the results of monitoring dendritic dynamics of ab-misexpressing cells or ab mutant ones, all of the data suggested that Ab endows characteristics of dendritic morphogenesis of the class I neurons.  相似文献   

16.
17.
18.
Dendritic arborization is a critical neuronal differentiation process. Here, we demonstrate that syndecan-2 (Sdc2), a synaptic heparan sulfate proteoglycan that triggers dendritic filopodia and spine formation, regulates dendritic arborization in cultured hippocampal neurons. This process is controlled by sterile α and TIR motif-containing 1 protein (Sarm1), a negative regulator of Toll-like receptor 3 (TLR3) in innate immunity signaling. We show that Sarm1 interacts with and receives signal from Sdc2 and controls dendritic arborization through the MKK4-JNK pathway. In Sarm1 knockdown mice, dendritic arbors of neurons were less complex than those of wild-type littermates. In addition to acting downstream of Sdc2, Sarm1 is expressed earlier than Sdc2, which suggests that it has multiple roles in neuronal morphogenesis. Specifically, it is required for proper initiation and elongation of dendrites, axonal outgrowth, and neuronal polarization. These functions likely involve Sarm1-mediated regulation of microtubule stability, as Sarm1 influenced tubulin acetylation. This study thus reveals the molecular mechanism underlying the action of Sarm1 in neuronal morphogenesis.  相似文献   

19.
Asymmetric division of sensory organ precursors (SOPs) in Drosophila generates different cell types of the mature sensory organ. In a genetic screen designed to identify novel players in this process, we have isolated a mutation in Drosophila sec15, which encodes a component of the exocyst, an evolutionarily conserved complex implicated in intracellular vesicle transport. sec15(-) sensory organs contain extra neurons at the expense of support cells, a phenotype consistent with loss of Notch signaling. A vesicular compartment containing Notch, Sanpodo, and endocytosed Delta accumulates in basal areas of mutant SOPs. Based on the dynamic traffic of Sec15, its colocalization with the recycling endosomal marker Rab11, and the aberrant distribution of Rab11 in sec15 clones, we propose that a defect in Delta recycling causes cell fate transformation in sec15(-) sensory lineages. Our data indicate that Sec15 mediates a specific vesicle trafficking event to ensure proper neuronal fate specification in Drosophila.  相似文献   

20.
Shivalkar M  Giniger E 《PloS one》2012,7(3):e33737
Abl tyrosine kinase and its effectors among the Rho family of GTPases each act to control dendritic morphogenesis in Drosophila. It has not been established, however, which of the many GTPase regulators in the cell link these signaling molecules in the dendrite. In axons, the bifunctional guanine exchange factor, Trio, is an essential link between the Abl tyrosine kinase signaling pathway and Rho GTPases, particularly Rac, allowing these systems to act coordinately to control actin organization. In dendritic morphogenesis, however, Abl and Rac have contrary rather than reinforcing effects, raising the question of whether Trio is involved, and if so, whether it acts through Rac, Rho or both. We now find that Trio is expressed in sensory neurons of the Drosophila embryo and regulates their dendritic arborization. trio mutants display a reduction in dendritic branching and increase in average branch length, whereas over-expression of trio has the opposite effect. We further show that it is the Rac GEF domain of Trio, and not its Rho GEF domain that is primarily responsible for the dendritic function of Trio. Thus, Trio shapes the complexity of dendritic arbors and does so in a way that mimics the effects of its target, Rac.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号