首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary An X-prolyl-dipeptidylaminopep tidase (Pep-XP) was purified from the crude intracellular extract of Lactococcus lactis subsp. cremoris NRRL 634 by ion exchange and gel filtration chromatographies. The enzyme was purified 80-fold with a recovery of 6%, and appeared as a single band with a molecular weight of about 80 kDa on polyacrylamide gel electrophoresis with sodium dodecyl sulphate (SDS-PAGE). The peptidase showed its maximal activity on arginyl-proline-p-nitroanilide at pH 7.0 and at a temperature of 45 °C, although there was a good activity of Pep-XP in the pH range of 5.5–7.0 and temperatures between 40 and 50 °C. The Michaelis constant (K m) and the maximum reaction velocity (V max) values were 0.92 mM and 7.9 U/mg protein min, respectively. The activity of Pep-XP was completely inhibited by phenylmethanesulphonyl fluoride, an inhibitor of serine peptidases, and metal chelators had little effect on enzyme activity. The purified enzyme hydrolyzed synthetic substrates whose structure is X-Pro-Y like Lys-Pro-pNA, but did not hydrolyse Pro-pNA or azocasein, showing that the enzyme did not have aminopeptidase or endopeptidase activities.  相似文献   

2.
P S Tan  K M Pos    W N Konings 《Applied microbiology》1991,57(12):3593-3599
An endopeptidase has been purified to homogeneity from a crude cell extract of Lactococcus lactis subsp. cremoris Wg2 by a procedure that includes diethyl-aminoethane-Sephacel chromatography, phenyl-Sepharose chromatography, hydroxylapatite chromatography, and fast protein liquid chromatography over an anion-exchange column and a hydrophobic-interaction column. Gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated a molecular mass of the purified enzyme of 70,000 Da. The endopeptidase can degrade several oligopeptides into various tetra-, tri-, and dipeptides. The endopeptidase has no aminopeptidase, carboxypeptidase, dipeptidase, or tripeptidase activity. It is optimally active at pH 6.0 to 6.5 and in the temperature range of 30 to 38 degrees C. The enzyme is inactivated by the chemical agents 1,10-phenanthroline, ethylenedinitrilotetraacetate, beta-mercaptoethanol, and phenylmethylsulfonyl fluoride and is inhibited by Cu2+ and Zn2+. The ethylenedinitrilotetraacetate- or 1,10-phenanthroline-treated enzyme can be reactivated by Co2+. Immunoblotting with specific antibodies raised against the purified endopeptidase indicated that the enzyme is also present in other Lactococcus spp., as well as in Lactobacillus spp. and Streptococcus salivarius subsp. thermophilus.  相似文献   

3.
An endopeptidase has been purified to homogeneity from a crude cell extract of Lactococcus lactis subsp. cremoris Wg2 by a procedure that includes diethyl-aminoethane-Sephacel chromatography, phenyl-Sepharose chromatography, hydroxylapatite chromatography, and fast protein liquid chromatography over an anion-exchange column and a hydrophobic-interaction column. Gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated a molecular mass of the purified enzyme of 70,000 Da. The endopeptidase can degrade several oligopeptides into various tetra-, tri-, and dipeptides. The endopeptidase has no aminopeptidase, carboxypeptidase, dipeptidase, or tripeptidase activity. It is optimally active at pH 6.0 to 6.5 and in the temperature range of 30 to 38 degrees C. The enzyme is inactivated by the chemical agents 1,10-phenanthroline, ethylenedinitrilotetraacetate, beta-mercaptoethanol, and phenylmethylsulfonyl fluoride and is inhibited by Cu2+ and Zn2+. The ethylenedinitrilotetraacetate- or 1,10-phenanthroline-treated enzyme can be reactivated by Co2+. Immunoblotting with specific antibodies raised against the purified endopeptidase indicated that the enzyme is also present in other Lactococcus spp., as well as in Lactobacillus spp. and Streptococcus salivarius subsp. thermophilus.  相似文献   

4.
Bacterial isolates from bean-sprouts were screened for anti- Listeria monocytogenes bacteriocins using a well diffusion method. Thirty-four of 72 isolates inhibited the growth of L.monocytogenes Scott A. One, HPB 1688, which had the biggest inhibition zone against L.monocytogenes Scott A, was selected for subsequent analysis. Both ribotyping and DNAsequencing of 16S ribosomal RNA gene demonstrated that the isolate was Lactococcus lactis subsp. lactis . Polymerase chain reaction and nucleotide sequencing revealed that thegenomic DNA of the bean-sprout isolates contained a nisin Z structural gene. In MRS broth,bean-sprout isolate HPB 1688 survived at 3–4·5°C for at least 20 d, grew at 4°Cand produced anti-listerial compoundsat 5°C. When co-cultured with L. monocytogenes in MRS broth, the isolate inhibited thegrowth of L. monocytogenes at 4°C after 14d and at 10°C after 2 d. When co-inoculatedwith 102cells g−1 of L.monocytogenes on fresh-cut ready-to-eat Caesar salad, L. lactis subsp. lactis (108cells g−1) was able to reduce the number of L. monocytogenes by 1–1·4 logs after storage for 10 d at 7° and 10°C. A bacteriocin-producing Enterococcusfaecium was also able to reduce the numbers of L. monocytogenes onCaesar salad, butdid not act synergistically when co-inoculated with L. lactis subsp. lactis .  相似文献   

5.
DNA fragments with promoter activity were isolated from the chromosome of Lactococcus lactis subsp. lactis. For the isolation, a promoter probe vector based on the cat gene was constructed, which allowed direct selection with chloramphenicol in Bacillus subtilis and L. lactis. Four of the putative promoters (P1, P2, P10, and P21) were analyzed further by sequencing, mapping of the 5' end of the mRNA, Northern (RNA blot) hybridization, and chloramphenicol acetyltransferase activity measurements. From these fragments, -10 and -35 regions resembling the consensus Escherichia coli sigma 70 and B. subtilis sigma 43 promoters were identified. Another set of promoters, together with a signal sequence, were also isolated from the same organism. These fragments promoted secretion of TEM beta-lactamase from L. lactis. When the two sets of promoters were compared, it was found that the ones isolated with the cat vector were more efficient (produced more mRNA). By changing the promoter part of the promoter-signal sequence fragment giving the best TEM beta-lactamase secretion into a more efficient one (P2), a 10-fold increase in enzyme production was obtained.  相似文献   

6.
DNA fragments with promoter activity were isolated from the chromosome of Lactococcus lactis subsp. lactis. For the isolation, a promoter probe vector based on the cat gene was constructed, which allowed direct selection with chloramphenicol in Bacillus subtilis and L. lactis. Four of the putative promoters (P1, P2, P10, and P21) were analyzed further by sequencing, mapping of the 5' end of the mRNA, Northern (RNA blot) hybridization, and chloramphenicol acetyltransferase activity measurements. From these fragments, -10 and -35 regions resembling the consensus Escherichia coli sigma 70 and B. subtilis sigma 43 promoters were identified. Another set of promoters, together with a signal sequence, were also isolated from the same organism. These fragments promoted secretion of TEM beta-lactamase from L. lactis. When the two sets of promoters were compared, it was found that the ones isolated with the cat vector were more efficient (produced more mRNA). By changing the promoter part of the promoter-signal sequence fragment giving the best TEM beta-lactamase secretion into a more efficient one (P2), a 10-fold increase in enzyme production was obtained.  相似文献   

7.
A peptidase from the cell wall fraction of Lactococcus lactis subsp. cremoris IMN-C12 has been purified to homogeneity by hydrophobic interaction chromatography, two steps of anion-exchange chromatography, and gel filtration. The molecular mass of the purified enzyme was estimated to be 72 kDa by gel filtration and 23 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has a pI of 4.0, and it has the following N-terminal sequence from the 2nd to the 17th amino acid residues: -Arg-Leu-Arg-Arg-Leu-?-Val-Pro-Gly-Glu-Ileu-Val-Glu-Glu-Leu-Leu. The peptidase is most active at pH 5.8 and at 33 degrees C with trileucine as the substrate. Reducing agents such as dithiothreitol, beta-mercaptoethanol, and cysteine strongly stimulated enzyme activity, while p-chloromercuribenzoate had an inhibitory effect. Also, metal chelators lowered the peptidase activity, which could not be restored with Ca2+ and Mg2+. The divalent cations Cu2+, Zn2+, Fe2+, and Hg2+ completely inhibited peptidase activity. The peptidase is capable of hydrolyzing tripeptides and some dipeptides, with a preference for peptides containing leucine and with the highest activity towards the tripeptides Leu-Leu-Leu, Leu-Trp-Leu, and Ala-Leu-Leu, which were hydrolyzed with Kms of 0.37, 0.18, and 0.61 mM, respectively.  相似文献   

8.
9.
10.
This paper describes a simple and efficient method of isolation of a plullulanase type I from amylolytic lactic acid bacteria (ALAB). Extracellular pullulanase type I was purified from a cell-free culture supernatant of Lactococcus lactis IBB 500 by using ammonium sulfate fractionation and dialysis (instead of ultrafiltration), and ion-exchange chromatography with CM Sepharose FF followed by gel filtration chromatography with Sephadex G-150 as the final step. A final purification factor of 14.36 was achieved. The molecular mass of the enzyme was estimated as 73.9 kD. The optimum temperature for the enzyme activity was 45°C and the optimum pH was 4.5. Pullulanase activity was increased by addition Co(2+) and completely inhibited by Hg(2+). The enzyme activity was specifically directed toward α-1,6 glycosidic linkages of pullulan giving maltotriose units. Enzymatic hydrolysis of starch and amylose produced a mixture of maltose and maltotriose.  相似文献   

11.
A nucleoside N-deoxyribosyltransferase-homologous gene was detected by homological search in the genomic DNA of Lactococcus lactis subsp. lactis. The gene yejD is composed of 477 nucleotides encoding 159 amino acids with only 25% identity, which is low in comparison to the amino acid sequences of the N-deoxyribosyltransferases from other lactic acid bacteria, i.e. Lactobacillus leichmannii and Lactobacillus helveticus. The residues responsible for catalytic and substrate-binding sites in known enzymes are conserved at Gln49, Asp73, Asp93 (or Asp95), and Glu101, respectively. The recombinant YejD expressed in Escherichia coli shows a 2-deoxyribosyl transfer activity to and from both bases of purine and pyrimidine, showing that YejD should be categorized as a class II N-deoxyribosyltransferase. Interestingly, the base-exchange activity as well as the heat stability of YejD was enhanced by the presence of monovalent cations such as K(+), NH(4)(+), and Rb(+), indicating that the Lactococcus enzyme is a K(+)-activated Type II enzyme. However, divalent cations including Mg(2+) and Ca(2+) significantly inhibit the activity. Whether or not the yejD gene product actually participates in the nucleoside salvage pathway of Lc. lactis remains unclear, but the lactic acid bacterium possesses the gene coding for the nucleoside N-deoxyribosyltransferase activated by K(+) on its genome.  相似文献   

12.
Relatedness between Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis was assessed by Southern hybridization analysis, with cloned chromosomal genes as probes. The results indicate that strains of the two subspecies form two distinct groups and that the DNA sequence divergence between L. lactis subsp. lactis and L. lactis subsp. cremoris is estimated to be between 20 and 30%. The previously used phenotypic criteria do not fully discriminate between the groups; therefore, we propose a new classification which is based on DNA homology. In agreement with this revised classification, the L. lactis subsp. lactis and L. lactis subsp. cremoris strains from our collection have distinct phage sensitivities.  相似文献   

13.
14.
Summary Cell wall-associated proteinases were isolated from Lactococcus lactis subsp. cremoris AC1 and subsp. lactis NCDO 763 in order to compare their specificities towards different caseins. Two purification strategies were applied. Cells grown in casein-free M17 medium were a suitable starting material for purification, since electrophoretic purity could be achieved after one chromatographic step. Both enzymes has an apparent molecular mass of about 145000 daltons as judged by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Electrophoresis and reversed phase HPLC patterns of hydrolysates of s1-, s2-, -, and K-caseins indicated that both proteinases had a similar specificity. The enzyme of L. lactis subsp. lactis split s1- and s2-caseins more extensively than that of L. lactis subsp. cremoris.  相似文献   

15.
Summary The cell wall proteinases of Lactococcus lactis subsp. lactis NCDO 763 and L. lactis subsp. cremoris AC1 hydrolyse -casein with a similar specificity even though some quantitative differences can be observed for a few degradation products analysed by reverse phase HPLC and sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The main peptides soluble in 1.1% trifluoroacetic acid and liberated by the two proteinases were identified and have been found to be the same for the two enzymes. They are located in two areas of the -casein sequence (53–93 and the C-terminal part: 129–209) and they include bitter tasting or physiologically active fragments. No narrow specificity was observed for these proteinases. However, glutamine and serine residues are more frequently encountered in position P1 and P1 of the sensitive peptide bond and the close environment (position P2 to P4 and P2 to P4) of the cleaved bond is mainly hydrophobic.  相似文献   

16.
A tripeptidase from a cell extract of Lactococcus lactis subsp. cremoris Wg2 has been purified to homogeneity by DEAE-Sephacel and phenyl-Sepharose chromatography followed by gel filtration over a Sephadex G-100 SF column and a high-performance liquid chromatography TSK G3000 SW column. The enzyme appears to be a dimer with a molecular weight of between 103,000 and 105,000 and is composed of two identical subunits each with a molecular weight of about 52,000. The tripeptidase is capable of hydrolyzing only tripeptides. The enzyme activity is optimal at pH 7.5 and at 55°C. EDTA inhibits the activity, and this can be reactivated with Zn2+, Mn2+, and partially with Co2+. The reducing agents dithiothreitol and β-mercaptoethanol and the divalent cation Cu2+ inhibit tripeptidase activity. Kinetic studies indicate that the peptidase hydrolyzes leucyl-leucyl-leucine with a Km of 0.15 mM and a Vmax of 151 μmol/min per mg of protein.  相似文献   

17.
An aminopeptidase was purified to homogeneity from a crude cell extract of Lactococcus lactis subsp. cremoris Wg2 by a procedure that included diethyl-aminoethane-Sephacel chromatography, phenyl-Sepharose chromatography, gel filtration, and high-performance liquid chromatography over an anion-exchange column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme showed a single protein band with a molecular weight of 95,000. The aminopeptidase was capable of degrading several peptides by hydrolysis of the N-terminal amino acid. The peptidase had no endopeptidase or carboxypeptidase activity. The aminopeptidase activity was optimal at pH 7 and 40°C. The enzyme was completely inactivated by the p-chloromecuribenzoate mersalyl, chelating agents, and the divalent cations Cu2+ and Cd2+. The activity that was lost by treatment with the sulfhydryl-blocking reagents was restored with dithiothreitol or β-mercapto-ethanol, while Zn2+ or Co2+ restored the activity of the 1,10-phenantroline-treated enzyme. Kinetic studies indicated that the enzyme has a relatively low affinity for lysyl-p-nitroanilide (Km, 0.55 mM) but that it can hydrolyze this substrate at a high rate (Vmax, 30 μmol/min per mg of protein).  相似文献   

18.
An aminopeptidase was purified from cell extracts of Lactococcus lactis subsp. cremoris AM2 by ion-exchange chromatography. After electrophoresis of the purified enzyme in the presence or absence of sodium dodecyl sulfate, one protein band was detected. The enzyme was a 300-kilodalton hexamer composed of identical subunits not linked by disulfide bridges. Activity was optimal at 40 degrees C and pH 7 and was inhibited by classical thiol group inhibitors. The aminopeptidase hydrolyzed naphthylamide-substituted amino acids, as well as dipeptides and tripeptides. Longer protein chains such as the B chain of insulin were hydrolyzed, but at a much slower rate. The Michaelis constant (K(m)) and the maximal rate of hydrolysis (V(max)) were, respectively, 4.5 mM and 3,600 pkat/mg for the substrate l-histidyl-beta-naphthylamide. Amino acid analysis showed that the enzyme contained low levels of hydrophobic residues. The partial N-terminal sequence of the first 19 residues of the mature enzyme was determined. Polyclonal antibodies were obtained from the purified enzyme, and after immunoblotting, there was no cross-reaction between these antibodies and other proteins in the crude extract.  相似文献   

19.
Two Lactococcus lactis subsp. lactis strains, NCK400 and LJH80, isolated from a commercial sauerkraut fermentation were shown to produce nisin. LJH80 was morphologically unstable and gave rise to two stable, nisin-producing (Nip+) derivatives, NCK318-2 and NCK318-3. NCK400 and derivatives of LJH80 exhibited identical morphological and metabolic characteristics, but could be distinguished on the basis of plasmid profiles and genomic hybridization patterns to a DNA probe specific for the iso-ISS1 element, IS946. NCK318-2 and NCK318-3 harbored two and three plasmids, respectively, which hybridized with IS946. Plasmid DNA was not detected in NCK400, and DNA from this strain failed to hybridize with IS946. Despite the absence of detectable plasmid DNA in NCK400, nisin-negative derivatives (NCK402 and NCK403) were isolated after repeated transfer in broth at 37 degrees C. Nisin-negative derivatives concurrently lost the ability to ferment sucrose and became sensitive to nisin. A 4-kbp HindIII fragment containing the structural gene for nisin (spaN), cloned from L. lactis subsp. lactis ATCC 11454, was used to probe genomic DNA of NCK318-2, NCK318-3, NCK400, and NCK402 digested with EcoRI or HindIII. The spaN probe hybridized to an 8.8-kbp EcoRI fragment and a 10-kbp HindIII fragment in the Nip+ sauerkraut isolates, but did not hybridize to the Nip- derivative, NCK402. A different hybridization pattern was observed when the same probe was used against Nip+ L. lactis subsp. lactis ATCC 11454 and ATCC 7962. These phenotypic and genetic data confirmed that unique Nip+ L. lactis subsp. lactis strains were isolated from fermenting sauerkraut.  相似文献   

20.
Two Lactococcus lactis subsp. lactis strains, NCK400 and LJH80, isolated from a commercial sauerkraut fermentation were shown to produce nisin. LJH80 was morphologically unstable and gave rise to two stable, nisin-producing (Nip+) derivatives, NCK318-2 and NCK318-3. NCK400 and derivatives of LJH80 exhibited identical morphological and metabolic characteristics, but could be distinguished on the basis of plasmid profiles and genomic hybridization patterns to a DNA probe specific for the iso-ISS1 element, IS946. NCK318-2 and NCK318-3 harbored two and three plasmids, respectively, which hybridized with IS946. Plasmid DNA was not detected in NCK400, and DNA from this strain failed to hybridize with IS946. Despite the absence of detectable plasmid DNA in NCK400, nisin-negative derivatives (NCK402 and NCK403) were isolated after repeated transfer in broth at 37 degrees C. Nisin-negative derivatives concurrently lost the ability to ferment sucrose and became sensitive to nisin. A 4-kbp HindIII fragment containing the structural gene for nisin (spaN), cloned from L. lactis subsp. lactis ATCC 11454, was used to probe genomic DNA of NCK318-2, NCK318-3, NCK400, and NCK402 digested with EcoRI or HindIII. The spaN probe hybridized to an 8.8-kbp EcoRI fragment and a 10-kbp HindIII fragment in the Nip+ sauerkraut isolates, but did not hybridize to the Nip- derivative, NCK402. A different hybridization pattern was observed when the same probe was used against Nip+ L. lactis subsp. lactis ATCC 11454 and ATCC 7962. These phenotypic and genetic data confirmed that unique Nip+ L. lactis subsp. lactis strains were isolated from fermenting sauerkraut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号