首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Benoit Pasquier 《Autophagy》2015,11(4):725-726
Autophagy plays an important role in cancer and it has been suggested that it functions not only as a tumor suppressor pathway to prevent tumor initiation, but also as a prosurvival pathway that helps tumor cells endure metabolic stress and resist death triggered by chemotherapeutic agents. We recently described the discovery of inhibitors of PIK3C3/Vps34 (phosphatidylinositol 3-kinase, catalytic subunit type 3), the lipid kinase component of the class III phosphatidylinositol 3-kinase (PtdIns3K). This PtdIns3K isoform has attracted significant attention in recent years because of its role in autophagy. Following chemical optimization we identified SAR405, a low molecular mass kinase inhibitor of PIK3C3, highly potent and selective with regard to other lipid and protein kinases. We demonstrated that inhibiting the catalytic activity of PIK3C3 disrupts vesicle trafficking from late endosomes to lysosomes. SAR405 treatment also inhibits autophagy induced either by starvation or by MTOR (mechanistic target of rapamycin) inhibition. Finally our results show that combining SAR405 with everolimus, the FDA-approved MTOR inhibitor, results in a significant synergy on the reduction of cell proliferation using renal tumor cells. This result indicates a potential therapeutic application for PIK3C3 inhibitors in cancer.  相似文献   

2.
Phosphatidylinositol phosphates are key regulators of vesicle identity, formation and trafficking. In mammalian cells, the evolutionarily conserved class III PtdIns 3-kinase PIK3C3/VPS34 is part of a large multiprotein complex that catalyzes the localized phosphorylation of phosphatidylinositol to phosphatidylinositol-3-phosphate (PtdIns3P). We demonstrate that PIK3C3 has a key function in vesicular trafficking, endocytosis and autophagosome-autolysosome formation in the highly specialized glomerular podocytes.  相似文献   

3.
The phosphatidylinositol (PI) 3-kinase Vps34p of Candida albicans influences vesicular intracellular transport, filamentous growth and virulence. To get a clearer understanding how these phenomena are connected, we analysed hyphal growth in a matrix under microaerophilic conditions at low temperature, the detoxification of metal ions and antifungal drugs, the secretion of aspartic proteinases (Saps), as well as expression of adhesion-associated proteins of the C. albicans vps34 null mutant strain. The hyphal growth in a matrix, which is repressed in the wild-type strain by Efg1p, was derepressed in the mutant. CZF1, which encodes an activator of hyphal growth in a matrix, was up-regulated in the mutant. In addition, CZF1 expression was pH-dependent in the wild-type. Expression of EFG1 was not changed. Examination of Saps secretion showed a reduction in the vps34 null mutant. Determination of sensitivity against metal ions and antimycotic drugs revealed defects in detoxification. Expression studies indicated that the vps34 mutant reacts to the phenotypical defects with an up-regulation of genes involved in these processes, including the aspartyl proteinases SAP2 and SAP9, adhesion proteins ALS1 and HWP1, and the ABC transporters CDR1 and HST6. We also found an increased expression of the PI 4-kinase LSB6 indicating a complex feed-back mechanism for the compensation of the multiple defects arising from the lack of the PI3-kinase VPS34.  相似文献   

4.
Vacuolar protein sorting 30 (Vps30)/autophagy-related protein 6 (Atg6) is a common component of two distinct phosphatidylinositol 3-kinase complexes. In complex I, Atg14 links Vps30 to Vps34 lipid kinase and exerts its specific role in autophagy, whereas in complex II, Vps38 links Vps30 to Vps34 and plays a crucial role in vacuolar protein sorting. However, the molecular role of Vps30 in each pathway remains unclear. Here, we report the crystal structure of the carboxyl-terminal domain of Vps30. The structure is a novel globular fold comprised of three β-sheet-α-helix repeats. Truncation analyses showed that the domain is dispensable for the construction of both complexes, but is specifically required for autophagy through the targeting of complex I to the pre-autophagosomal structure. Thus, the domain is named the β-α repeated, autophagy-specific (BARA) domain. On the other hand, the N-terminal region of Vps30 was shown to be specifically required for vacuolar protein sorting. These structural and functional investigations of Vps30 domains, which are also conserved in the mammalian ortholog, Beclin 1, will form the basis for studying the molecular functions of this protein family in various biological processes.  相似文献   

5.
《Autophagy》2013,9(2):213-221
Supplementation of branched chain amino acids, especially leucine, is critical to improve malnutrition by regulating protein synthesis and degradation. Emerging evidence has linked leucine deprivation induced protein breakdown to autophagy. In this study, we aimed to establish a cell-free assay recapitulating leucine-mediated autophagy in vitro and dissect its biochemical requirement. We found that in a cell-free assay, membrane association of Barkor/Atg14(L), a specific autophagosome-binding protein, is suppressed by cytosol from nutrient-rich medium and such suppression is released by nutrient deprivation. We also showed that rapamycin could efficiently reverse the suppression of nutrient rich cytosol, suggesting an essential role of mTORC1 in autophagy inhibition in this cell-free system. Furthermore, we demonstrated that leucine supplementation in the cultured cells blocks Barkor puncta formation and autophagy activity. Hence, we establish a novel cell-free assay recapitulating leucine-mediated autophagy inhibition in an mTORC1-dependent manner; this assay will help us to dissect the regulation of amino acids in autophagy and related human metabolic diseases.  相似文献   

6.
The mammalian class III phosphatidylinositol 3-kinase (PI3K-III) complex regulates fundamental cellular functions, including growth factor receptor degradation, cytokinesis and autophagy. Recent studies suggest the existence of distinct PI3K-III sub-complexes that can potentially confer functional specificity. While a substantial body of work has focused on the roles of individual PI3K-III subunits in autophagy, functional studies on their contribution to endocytic receptor downregulation and cytokinesis are limited. We therefore sought to elucidate the specific nature of the PI3K-III complexes involved in these two processes. High-content microscopy-based assays combined with siRNA-mediated depletion of individual subunits indicated that a specific sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates both receptor degradation and cytokinesis, whereas ATG14L, a PI3K-III subunit involved in autophagy, is not required. The unanticipated role of UVRAG and BIF-1 in cytokinesis was supported by a strong localisation of these proteins to the midbody. Importantly, while the tumour suppressive functions of Beclin 1, UVRAG and BIF-1 have previously been ascribed to their roles in autophagy, these results open the possibility that they may also contribute to tumour suppression via downregulation of mitogenic signalling by growth factor receptors or preclusion of aneuploidy by ensuring faithful completion of cell division.  相似文献   

7.
In several invertebrate organisms, the Sec1p/Munc18-like protein Vps45 interacts with the divalent Rab4/Rab5 effector, Rabenosyn-5 and carries out multiple functions in the endocytic/secretory pathways. In mammalian cells, Vps45 and Rabenosyn-5 also interact, but the molecular characterization of this binding, and the functional relationship between these two proteins has not been well defined. Here we identify a novel sequence within Rabenosyn-5 required for its interaction with Vps45. We demonstrate that hVps45-depletion decreases expression of Rabenosyn-5, likely resulting from Rabenosyn-5 degradation through the proteasomal pathway. Furthermore, we demonstrate that similar to Rabenosyn-5-depletion, hVps45-depletion causes impaired recycling of β1 integrins, and a subsequent delay in human fibroblast cell migration on fibronectin-coated plates. Moreover, β1 integrin recycling could be rescued by reintroduction of siRNA-resistant wild-type Rabenosyn-5, but not a mutant deficient in Vps45 binding. However, unlike Rabenosyn-5-depletion, which induces Golgi fragmentation and decreased recruitment of sorting nexin retromer subunits to the Golgi, hVps45-depletion induces Golgi condensation and accumulation of retromer subunits in the vicinity of the Golgi. In part, these phenomena could be attributed to reduced Syntaxin16 expression and altered localization of both Syntaxin16 and Syntaxin6 upon Vps45-depletion. Overall, these findings implicate hVps45 and Rabenosyn-5 in post early endosome transport, and we propose that their interaction serves as a nexus to promote bidirectional transport along the endosome-to-recycling compartment and endosome-to-Golgi axes.  相似文献   

8.
BECN1 (Beclin 1), a highly conserved eukaryotic protein, is a key regulator of autophagy, a cellular homeostasis pathway, and also participates in vacuolar protein sorting, endocytic trafficking, and apoptosis. BECN1 is important for embryonic development, the innate immune response, tumor suppression, and protection against neurodegenerative disorders, diabetes, and heart disease. BECN1 mediates autophagy as a core component of the class III phosphatidylinositol 3‐kinase complexes. However, the exact mechanism by which it regulates the activity of these complexes, or mediates its other diverse functions is unclear. BECN1 interacts with several diverse protein partners, perhaps serving as a scaffold or interaction hub for autophagy. Based on extensive structural, biophysical and bioinformatics analyses, BECN1 consists of an intrinsically disordered region (IDR), which includes a BH3 homology domain (BH3D); a flexible helical domain (FHD); a coiled‐coil domain (CCD); and a β‐α‐repeated autophagy‐specific domain (BARAD). Each of these BECN1 domains mediates multiple diverse interactions that involve concomitant conformational changes. Thus, BECN1 conformational flexibility likely plays a key role in facilitating diverse protein interactions. Further, BECN1 conformation and interactions are also modulated by numerous post‐translational modifications. A better structure‐based understanding of the interplay between different BECN1 conformational and binding states, and the impact of post‐translational modifications will be essential to elucidating the mechanism of its multiple biological roles.  相似文献   

9.
PtdIns3P and PtdIns(3,4,5)P3 are regulated differently in fat body in response to nutritional status and insulin signalling. In feeding larvae PtdIns(3,4,5)P3 is upregulated at the cell membrane where it is generated in response to insulin signalling. In contrast PtdIns3P is down regulated in the fat body of well-fed larvae but on starvation it accumulates in punctate vesicles throughout the cytoplasm and on refeeding it relocalises to vesicles at the periphery of the cell. Both responses are independent of insulin signalling and on the presence of glutamine which has previously been linked to nutritional sensing. We find that both Class II and Class III PI3Ks are capable of generating PtdIns3P in vivo but the source of PtdIns3P in the fat body and the response to nutritional status can be exclusively accounted for by Class III PI3K activity.  相似文献   

10.
Triptolide, a diterpenoid triepoxide extracted from the Chinese herb Tripterygium wilfordii Hook f., exerts antitumorigenic actions against several tumor cells, but the intracellular target signal molecule(s) for this antitumorigenesis activity of triptolide remains to be identified. In the present study, we demonstrated that triptolide, in a dose-dependent manner, inhibited the proliferation of human fibrosarcoma HT-1080, human squamous carcinoma SAS, and human uterine cervical carcinoma SKG-II cells. In addition, triptolide was found to decrease phosphatidylinositol 3-kinase (PI3K) activity. A PI3K inhibitor, LY-294002, mimicked the triptolide-induced antiproliferative activity in HT-1080, SAS, and SKG-II cells. There was no change in the activity of Akt or protein kinase C (PKC), both of which are downstream effectors in the PI3K pathway. Furthermore, the phosphorylation of Ras, Raf, and mitogen-activated protein/extracellular signal-regulated kinase 1/2 was not modified in HT-1080 cells treated with triptolide. However, the phosphorylation of c-Jun NH(2)-terminal kinase 1 (JNK1) was found to increase in both triptolide- and LY-294002-treated cells. Furthermore, the triptolide-induced inhibition of HT-1080 cell proliferation was not observed by JNK1 siRNA-treatment. These results provide novel evidence that PI3K is a crucial target molecule in the antitumorigenic action of triptolide. They further suggest a possible triptolide-induced inhibitory signal for tumor cell proliferation that is initiated by the decrease in PI3K activity, which in turn leads to the augmentation of JNK1 phosphorylation via the Akt and/or PKC-independent pathway(s). Moreover, it is likely that the activation of JNK1 is required for the triptolide-induced inhibition of tumor proliferation.  相似文献   

11.
Both AILIM/ICOS and CD28 provide positive costimulatory signals for T-cell activation, resulting in proliferation and cytokine production. In this study, we attempted to clarify the key signaling molecules in T-cell proliferation, and also IL-2 and IL-10 production, during T-cell activation by CD3 induced by costimulation with either AILIM/ICOS or CD28. We examined the role of both the PI3-kinase/Akt pathway and MAP kinase family members such as ERK1/2, JNK, and p38 kinase in this process. PI3-kinase and Erk1/2 were shown to potentially regulate primary T-cell activation and subsequent proliferation via both AILIM/ICOS- or CD28-mediated costimulation and the Erk signaling cascade was essential for this proliferation induction and also for IL-2 production. The JAK inhibitor, AG490, inhibited this induction. Our studies indicate that IL-2 is necessary for induction of T-cell proliferation and that the quantities of IL-2 produced by AILIM/ICOS ligation are also sufficient for T-cells to proliferate. In contrast, inhibition of Akt and p38, that are phosphorylated by both AILIM/ICOS and CD28-ligation, could downregulate IL-10 production but not T-cell proliferation. These data raise the interesting possibility that the signaling cascades between T-cell proliferation and IL-10 production are regulated by different molecules in AILIM/ICOS- and CD28-costimulated T-cells.  相似文献   

12.
13.
14.

Purpose

Neurofibrillary tangles, one of pathological features of Alzheimer’s disease, are produced by the hyperphosphorylation and aggregation of tau protein. This study aimed to investigate the effects of treadmill exercise on PI3K/AKT/mTOR signal transmission, autophagy, and cognitive ability that are involved in the hyperphosphorylation and aggregation of tau protein.

Methods

Experimental animals (NSE/htau23 mice) were divided into non-transgenic control group (Non-Tg-Control; CON; n = 7), transgenic control group (Tg-CON; n = 7), and transgenic exercise group (Tg-Treadmill Exercise; TE; n = 7). The Tg-TE group was subjected to treadmill exercise for 12 weeks. After the treadmill exercise was completed, the cognitive ability was determined by conducting underwater maze tests. Western blot was conducted to determine the phosphorylation status of PI3K/AKT/mTOR proteins and autophagy-related proteins (Beclin-1, p62, LC3-B); hyperphosphorylation and aggregation of tau protein (Ser199/202, Ser404, Thr231, PHF-1); and phosphorylation of GSK-3β, which is involved in the phosphorylation of tau protein in the cerebral cortex of experimental animals.

Results

In the Tg-TE group that was subjected to treadmill exercise for 12 weeks, abnormal mTOR phosphorylation of PI3K/AKT proteins was improved via increased phosphorylation and its activity was inhibited by increased GSK-3β phosphorylation compared with those in the Tg-CON group, which was used as the control group. In addition, the expression of Beclin-1 protein involved in autophagosome formation was increased in the Tg-TE group compared with that in the Tg-CON group, whereas that of p62 protein was reduced in the Tg-TE group compared with that in the Tg-CON group. Autophagy was activated owing to the increased expression of LC3-B that controls the completion of autophagosome formation. The hyperphosphorylation and aggregation (Ser199/202, Ser404, Thr231, PHF-1) of tau protein was found to be reduced in the Tg-TE group compared with that in the Tg-CON group. Furthermore, in the underwater maze test, the Tg-TE group showed a reduced escape time and distance compared with those of the Tg-CON group, suggesting that learning and cognitive ability were improved.

Conclusion

These findings suggest that aerobic exercise such as treadmill exercise might be an effective approach to ameliorate the pathological features (or neurofibrillary tangles) of Alzheimer’s disease.  相似文献   

15.
Cilnidipine, a calcium channel blocker, has been reported to have neuroprotective effects. We investigated whether cilnidipine could protect neurons from hypoxia and explored the role of the phosphatidylinositol 3-kinase (PI3K) and extracellular signal-related kinase (ERK) pathways in the neuroprotective effect of cilnidipine. The viability of a primary culture of cortical neurons injured by hypoxia, measured by trypan blue staining and lactate dehydrogenase (LDH) assay, was dramatically restored by cilnidipine treatment. TUNEL and DAPI staining showed that cilnidipine significantly reduced apoptotic cell death induced by hypoxia. Free radical stress and calcium influx induced by hypoxia were markedly decreased by treatment with cilnidipine. Survival signaling proteins associated with the PI3K and ERK pathways were significantly increased while death signaling proteins were markedly decreased in the primary culture of cortical neurons simultaneously exposed to cilnidipine and hypoxia when compared with the neurons exposed only to hypoxia. These neuroprotective effects of cilnidipine were blocked by treatment with a PI3K inhibitor or an ERK inhibitor. These results show that cilnidipine protects primary cultured cortical neurons from hypoxia by reducing free radical stress, calcium influx, and death-related signaling proteins and by increasing survival-related proteins associated with the PI3K and ERK pathways, and that activation of those pathways plays an important role in the neuroprotective effects of cilnidipine against hypoxia. These findings suggest that cilnidipine has neuroprotective effects against hypoxia through various mechanisms, as well as a blood pressure-lowering effect, which might help to prevent ischemic stroke and reduce neuronal injury caused by ischemic stroke.  相似文献   

16.
The Atg2–Atg18 complex acts in parallel to Atg8 and regulates Atg9 recycling from phagophore assembly site (PAS) during autophagy in yeast. Here we show that in Drosophila, both Atg9 and Atg18 are required for Atg8a puncta formation, unlike Atg2. Selective autophagic degradation of ubiquitinated proteins is mediated by Ref(2)P/p62. The transmembrane protein Atg9 accumulates on refractory to Sigma P (Ref(2)P) aggregates in Atg7, Atg8a and Atg2 mutants. No accumulation of Atg9 is seen on Ref(2)P in cells lacking Atg18 or Vps34 lipid kinase function, while the Atg1 complex subunit FIP200 is recruited. The simultaneous interaction of Atg18 with both Atg9 and Ref(2)P raises the possibility that Atg18 may facilitate selective degradation of ubiquitinated protein aggregates by autophagy.  相似文献   

17.
《Autophagy》2013,9(1):123-136
Removal of ubiquitinated targets by autophagosomes can be mediated by receptor molecules, like SQSTM1, in a mechanism referred to as selective autophagy. While cytoplasmic protein aggregates, mitochondria, and bacteria are the best-known targets of selective autophagy, their role in the turnover of membrane receptors is scarce. We here showed that fasting-induced wasting of skeletal muscle involves remodeling of the neuromuscular junction (NMJ) by increasing the turnover of muscle-type CHRN (cholinergic receptor, nicotinic/nicotinic acetylcholine receptor) in a TRIM63-dependent manner. Notably, this process implied enhanced production of endo/lysosomal carriers of CHRN, which also contained the membrane remodeler SH3GLB1, the E3 ubiquitin ligase, TRIM63, and the selective autophagy receptor SQSTM1. Furthermore, these vesicles were surrounded by the autophagic marker MAP1LC3A in an ATG7-dependent fashion, and some of them were also positive for the lysosomal marker, LAMP1. While the amount of vesicles containing endocytosed CHRN strongly augmented in the absence of ATG7 as well as upon denervation as a model for long-term atrophy, denervation-induced increase in autophagic CHRN vesicles was completely blunted in the absence of TRIM63. On a similar note, in trim63?/? mice denervation-induced upregulation of SQSTM1 and LC3-II was abolished and endogenous SQSTM1 did not colocalize with CHRN vesicles as it did in the wild type. SQSTM1 and LC3-II coprecipitated with surface-labeled/endocytosed CHRN and SQSTM1 overexpression significantly induced CHRN vesicle formation. Taken together, our data suggested that selective autophagy regulates the basal and atrophy-induced turnover of the pentameric transmembrane protein, CHRN, and that TRIM63, together with SH3GLB1 and SQSTM1 regulate this process.  相似文献   

18.
Removal of ubiquitinated targets by autophagosomes can be mediated by receptor molecules, like SQSTM1, in a mechanism referred to as selective autophagy. While cytoplasmic protein aggregates, mitochondria, and bacteria are the best-known targets of selective autophagy, their role in the turnover of membrane receptors is scarce. We here showed that fasting-induced wasting of skeletal muscle involves remodeling of the neuromuscular junction (NMJ) by increasing the turnover of muscle-type CHRN (cholinergic receptor, nicotinic/nicotinic acetylcholine receptor) in a TRIM63-dependent manner. Notably, this process implied enhanced production of endo/lysosomal carriers of CHRN, which also contained the membrane remodeler SH3GLB1, the E3 ubiquitin ligase, TRIM63, and the selective autophagy receptor SQSTM1. Furthermore, these vesicles were surrounded by the autophagic marker MAP1LC3A in an ATG7-dependent fashion, and some of them were also positive for the lysosomal marker, LAMP1. While the amount of vesicles containing endocytosed CHRN strongly augmented in the absence of ATG7 as well as upon denervation as a model for long-term atrophy, denervation-induced increase in autophagic CHRN vesicles was completely blunted in the absence of TRIM63. On a similar note, in trim63−/− mice denervation-induced upregulation of SQSTM1 and LC3-II was abolished and endogenous SQSTM1 did not colocalize with CHRN vesicles as it did in the wild type. SQSTM1 and LC3-II coprecipitated with surface-labeled/endocytosed CHRN and SQSTM1 overexpression significantly induced CHRN vesicle formation. Taken together, our data suggested that selective autophagy regulates the basal and atrophy-induced turnover of the pentameric transmembrane protein, CHRN, and that TRIM63, together with SH3GLB1 and SQSTM1 regulate this process.  相似文献   

19.
Along the degradation pathway, endosomes exhibit a characteristic multivesicular organization, resulting from the budding of vesicles into the endosomal lumen. After endocytosis and transport to early endosomes, activated signaling receptors are incorporated into these intralumenal vesicles through the action of the ESCRT machinery, a process that contributes to terminate signaling. Then, the vesicles and their protein cargo are further transported towards lysosomes for degradation. Evidence also shows that intralumenal vesicles can undergo “back-fusion” with the late endosome limiting membrane, a route exploited by some pathogens and presumably followed by proteins and lipids that need to be recycled from within the endosomal lumen. This process depends on the late endosomal lipid lysobisphosphatidic acid and its putative effector Alix/AIP1, and is presumably coupled to the invagination of the endosomal limiting membrane at the molecular level via ESCRT proteins. In this review, we discuss the intra-endosomal transport routes in mammalian cells, and in particular the different mechanisms involved in membrane invagination, vesicle formation and fusion in a space inaccessible to proteins known to control intracellular membrane traffic.  相似文献   

20.
The potential benefits of drugs directly targeting the ErbB receptors for cancer therapy have led to an extensive development within this field. However, the clinical effects of ErbB receptor-targeting drugs in cancer treatment are limited due to a high frequency of resistance. It has been reported that, when inhibiting the epidermal growth factor receptor (EGFR) with the tyrosine kinase inhibitor gefitinib, increased activation of ErbB3 via MET, or by re-localization of ErbB3 mediates cell survival. Here we show further evidence that members of the ErbB receptor family facilitate resistance to EGFR inhibitor treatment in ErbB2 overexpressing breast cancer cells. We found that gefitinib treatment increased ErbB3 expression, both at protein and mRNA levels. ErbB3 expression was upregulated not only by gefitinib but also by a panel of different EGFR inhibitors, suggesting that inhibition of EGFR in general affects ErbB3 expression. In addition, we found that gefitinib treatment increased ErbB2 expression levels while EGFR inhibitors decreased the activity of ErbB2. Concentrations of gefitinib that decreased phospho-ErbB2 reversely increased ErbB3 levels. We further examined changes induced by gefitinib treatment on mRNA levels of the most common genes known to be involved in breast cancer. As expected, we found that gefitinib downregulated genes whose functions were linked to cellular proliferation, such as Ki-67, topoisomerase II alpha and cyclins, and surprisingly downregulated gene expression of FAS which is involved in apoptotic signaling. Together, our data strongly suggest that resistance to EGFR inhibitors may result from the compensation of other family members and that combinations of anti-cancer drugs are required to increase the sensitivity of these treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号