首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modulation of hepatic and extrahepatic detoxication enzymes Cyp1a1, Cyp2a5, glutathione S-transferse Ya (GSTYa) and NAD(P)H:quinone oxidoreductase (QOR) dependent catalytic activity and mRNA levels were investigated at 1, 2, or 4 days in liver, lung, or kidney of male, adult CD57 Bl/6 mice treated sc with a single dose (85 micromol/kg) of sodium arsenite (As3+). Maximum decreases of total hepatic cytochrome P450 (CYP) monooxygenase content and catalytic activities, occurring at 24 h, corresponded with maximum increases of heme oxygenase (HO-1) in all tissues, as well as maximum plasma total bilirubin. Extrahepatic increases in CYP were observed only in non-AHR dependent isozymes in the kidney, where both Cyp2a5 mRNA and catalytic activity increased maximally 24 h after treatment. In contrast, no significant changes in Cyp2b1/2-dependent PROD or mRNA activity and decreases in Cyp1a1-dependent-EROD activity were noted 1, 2, or 4 days after treatment. Increases in QOR catalytic activities were observed in all tissues examined with increased mRNA in kidney. On the other hand, GSTYa catalytic activity and mRNA increases were only detected in kidney. This study demonstrates the differential modulation of CYP, QOR, and GST-Ya, important drug metabolizing enzymes after acute As3+ administration. The induction of Cyp2a5, QOR, and GSTYa catalytic activity and gene expression occurred primarily in kidney during or shortly after conditions of oxidant stress.  相似文献   

2.
The identity and expression of hepatic P450 enzymes in marmosets was investigated using a panel of anti-peptide antibodies originally targeted against human P450 enzymes. In immunoblotting, of 12 antibodies examined, 10 bound specifically to bands in marmoset liver microsomal fraction corresponding to P450 enzymes. It is proposed that these represent marmoset CYP1A1, CYP1A2, CYP2A, CYP2B, CYP2C forms (CYP2C-1 and CYP2C-2), CYP2D19, CYP3A21 and another CYP3A form (CYP3A-m). The antibodies, together with an anti-marmoset CYP2E1 antibody, were used to investigate the expression of 10 P450 enzymes in marmosets treated with P450-inducing chemicals. Treatment with phenobarbitone caused CYP2B, CYP2C-2 and CYP3A21 levels to increase, rifampicin caused increases in CYP2B and CYP2C-1 and a decrease in CYP3A21 levels, whereas dioxin caused CYP1A1 and CYP1A2 levels to increase and CYP2E1 levels to decrease. Clofibric acid did not induce any P450. P450 enzyme activities were assessed using 8 different substrates and increases were found after treatment with phenobarbitone, rifampicin, and dioxin. However, due to species differences in substrate selectivity, it proved difficult to ascribe these changes to individual P450 enzymes. Thus, the use of anti-peptide antibodies provides a more informative way of assessing the levels of specific P450 enzymes than enzyme activity measurements.  相似文献   

3.
The role of drug metabolism in drug discovery (lead compound selection) and the traditional role of identifying the enzymes involved in biotransformation pathways (reaction phenotyping) have both relied heavily on the availability and use of a human liver bank. The assessment of drug metabolizing enzyme activity and variability in a series of individual human livers is essential when characterizing the enzymes involved in metabolic pathways (i.e. correlation analysis). In this regard, a human liver bank of 21 samples (14 males, six females, and one unknown) was characterized with respect to the activity of several important drug metabolizing enzymes. The total CYP450 content of the livers ranged from 0.06 to 0.46 nmol/mg microsomal protein. The fold variations found in specific enzyme contents were as follows: CYP1A2 (3x), CYP2A6 (21x), CYP2C9 (8x), CYP2C19 (175x), CYP2D6 (18x), CYP2E1 (5x), CYP3A4 (18x), FMO (2.5x), UDPGT (4x), NAT (7x), COMT (5x), ST (5x), TPMT (3x), and GST (2.5x). In general, the fold variation of the Phase II enzymes was lower compared with the Phase I enzymes, with the exceptions of CYP1A2, CYP2E1, and FMO. Similar data were reviewed from other established liver banks and compared with regard to the relative variability observed in drug metabolizing capacities found in this study.  相似文献   

4.
Phenobarbital, 3-methylcholanthrene, acetone and pyrazole were used as inducers of cytochrome P450 and the NADPH-dependent oxidase activity (O-2 production) of pulmonary and hepatic microsomes was determined. Oxidase activity of microsomes from 3-methylcholanthrene-treated rats was significantly decreased as compared to that of controls when expressed on the basis of cytochrome P450 content (30% decrease for liver, 60% decrease for lung). The oxidase activity of liver microsomes from pyrazole-treated rats showed a significant increase, whereas phenobarbital treated microsomes had average superoxide-generating activity. The contribution of cytochromes CYP 1A, CYP 2B and CYP 2E1 to superoxide-generating activity was investigated using monoclonal antibodies. Monoclonal antibody 1-91-3 against CYP 2E1 inhibited superoxide generation by 58% in liver microsomes from pyrazole-treated rats. Monoclonal antibodies 1-7-1 and 2-66-3 against CYP 1A and CYP2B, respectively, had no effect on superoxide generation. These results indicate that different cytochrome P450 isoforms are mainly responsible for differential superoxide generating activities of microsomes and complement the reconstitution study of Morehouse and Aust. Furthermore, our study indicates that CYP 1A1, induced by 3-MC, demonstrates an unusually low oxidase activity.  相似文献   

5.
Farnesol demonstrates antitumor activity in several animal models for human cancer and was being considered for development as a cancer chemopreventive agent. This study was performed to characterize the effects of minimally toxic doses of farnesol on the activity of phase I and II drug metabolizing enzymes. CD((R)) rats (20/sex/group) received daily gavage exposure to farnesol doses of 0, 500, or 1000 mg/kg/day for 28 days; 10 rats/sex/group were necropsied at the termination of farnesol exposure; remaining animals were necropsied after a 28-day recovery period. No deaths occurred during the study, and farnesol had no significant effects on body weight, food consumption, clinical signs, or hematology/coagulation parameters. Modest but statistically significant alterations in several clinical chemistry parameters were observed at the termination of farnesol exposure; all clinical pathology effects were reversed during the recovery period. At the termination of dosing, the activities of CYP1A, CYP2A1-3, CYP2B1/2, CYP2C11/12, CYP2E1, CYP3A1/2, CYP4A1-3, CYP19, glutathione reductase, NADPH/quinone oxidoreductase and UDP-glucuronosyltransferase were significantly increased in the livers of farnesol-treated rats; farnesol also increased the activity of glutathione S-transferase in the kidney. The effects of farnesol on hepatic and renal enzymes were reversed during the recovery period. At the end of the dosing period, increases in absolute and relative liver and kidney weights were seen in farnesol-treated rats. These increases may be secondary to induction of drug metabolizing enzymes, since organ weight increases were not associated with histopathologic alterations and were reversed upon discontinuation of farnesol exposure. Administration of farnesol at doses of up to 1000 mg/kg/day induced reversible increases in the activities of several hepatic and renal drug metabolizing enzymes in rats, while inducing only minimal toxicity. It is concluded that non-toxic or minimally toxic doses of farnesol could alter the metabolism, efficacy, and/or toxicity of drugs with which it is co-administered.  相似文献   

6.
The feeding of rats with high-fat diet (a part of fats was 50% of energy value of ration against 20% in control) during 4 weeks increased the level of cytochrome P-450 in the liver and enhanced aniline- and p-nitrophenol hydroxylase activity of CYP2E1 as well as erythromycin N-demethylase activity of CYP3A; the activity of aldehyde dehydrogenase class 3, UDP-glucuronosyl transferase, glutathione-S-transferase and N-acetyl transferase. At the same time, the moderate decrease of indomethacin-O-demethylase of CYP2C both phenolsulfotransferase activity were fixed. The changes of enzymatic activity correlated with activating of processes of gluconeogenesis, glycogenolysis and, especially, ketogenesis. A high-fat diet enhanced reactions of biotransformation of amidopyrine, acetanilide, toluene, sulfadimezine, were catalyzed with CYP2E1, CYP3A and enzymes of conjugation, simultaneously it increased the hepatotoxicity of paracetamol.  相似文献   

7.
Ontogeny of human hepatic cytochromes P450   总被引:1,自引:0,他引:1  
Significant changes in drug-metabolizing enzyme (DME) expression occur during ontogeny. Such changes can have a profound effect on therapeutic efficacy in the fetus and child, as well as the risk for adverse drug reactions. To gain a better understanding of DME ontogeny, enzyme contents for six key cytochromes P450 were measured in 240 human liver samples representing ages from 8 weeks gestation to 18 years. Where possible, both quantitative western blotting and activity assays with probe substrates were performed. Although oversimplified, the DME can be grouped into one of three categories. As typified by CYP3A7, some enzymes are expressed at their highest level during the first trimester and either remain at high concentrations or decrease during gestation and are silenced or expressed at low levels within 1-2 years after birth. These data cause one to query whether these enzymes have an important endogenous function. Representatives of a second group, CYP3A5 and CYP2C19, are expressed at relatively constant levels throughout gestation. Postnatal increases in CYP2C19 are observed within the first year, but not for CYP3A5. CYP2C9, 2E1, and 3A4 are more typical of a third group of enzymes that are not expressed or are expressed at low levels in the fetus with the onset of expression generally in either the second or third trimester. Substantial increases in expression are observed within the first 1-2 years after birth; however, considerable interindividual variability is observed in the immediate postnatal (1-6 months) onset or increase in expression of these enzymes, often resulting in a window of hypervariability.  相似文献   

8.
Expression and monooxygenase activity of various cytochrome P450 (CYP) enzymes along with constitutive androstane (CAR) and the pregnane X (PXR) receptors were investigated in the brain of control and phenobarbital-treated rabbits (80 mg/kg for 4 days). RT-PCR analysis, using specific primers, demonstrated that in control rabbits mRNAs of CYP 2A10, 2B4/5 and 3A6 were expressed, though to a different extent, in the liver, as well as in brain cortex, midbrain, cerebellum, striatum, hippocampus and hypothalamus, whilst CYP2A11 and 4B1 were not expressed in the hypothalamus. CAR was expressed in liver and all the brain regions examined, whereas the PXR was expressed only in liver and cortex. Real time RT-PCR analysis demonstrated that in vivo treatment with phenobarbital, in contrast with what happened in liver, did not induce the expression of CYP 2B4/5 mRNA in cortex, midbrain and cerebellum. NADPH cytochrome c reductase and some other enzymatic activities markers of CYP 2A, 2B, 3A and 4B activities were studied in liver microsomes as well as in microsomes and mitochondria of brain cortex, midbrain and cerebellum of control and phenobarbital-treated rabbits. In contrast to what was observed in liver, phenobarbital treatment did not induce the aforementioned monooxygenase activities in brain. However, we cannot exclude that a longer phenobarbital treatment may lead to a significant induction of CYP activities in brain. These findings indicated that brain CYPs, despite the presence of CAR, were resistant to phenobarbital induction, indicating a possible different regulation of these enzymes between brain and liver.  相似文献   

9.
Liver microsomes are subcellular fractions that contain many metabolizing enzymes for drugs and endogeneous compounds. Some of these enzymes are regulated by sex hormonal control and exhibit sex-dependent expression pattern and metabolizing speed. Studying these enzymes, however, are complicated by the presence of isoforms such as cytochrome P450 (CYP450), which families share more than 50% amino acid identities. In this study, we applied quantitative shot-gun proteomics approach coupled with stable-isotope dimethyl labeling, two-dimensional reversed-phase peptide separation and tandem mass spectrometry (MS) to explore the gender-dependent expression of rat liver microsomal proteins. A total of 391 proteins were identified and quantified by this approach, and 56% of quantified proteins were enzymes. Although shot-gun approach is rarely used for identifying protein isoforms, we identified 53 isoforms by at least one unique peptide including 21 isoforms of CYP450s. Moreover, by quantitative and statistics assessment, we were able to classify them into 28 male dominant enzymes including CYP2C12 CYP2C11, CYP2C13, CYP2B3, CYP2C11, CYP2C70 and CYP3A2 which are known to be male specific, 21 female dominant enzymes including CYP2A1, CYP2C7, CYP2C12, CYP2D26, alcohol dehydrogenase 1, carboxylesterase 3, glutathione S-transferase, liver carboxylesterase 4, UDP-glucuronosyltransferase 2B1, and glyceraldehyde-3-phosphate dehydrogenase which are known to be female specific; and 125 sex-independent enzymes. However, most of the sex specificities revealed from this study, such as the male specificity of CYP2D1, were novel and not yet reported. We then conducted a mass spectrometry-multiple reaction mode (MS-MRM) based enzyme activity method to determine the catalyzing rate of CYP2D1 in male and female liver microsomes using carteolol as its specific substrate. The reaction rate catalyzed by CYP2D1 in female rats was determined to differ significantly with the rate in male rats. Moreover, the ratio (female/male) of reaction rate (0.68) was found to correlate with their relative protein abundance (0.72). This study revealed novel sex dependences of many rat liver enzymes and also demonstrated a unique MS-based analytical platform that could identify novel iso-enzymes and further quantify their abundance and enzyme activity.  相似文献   

10.
CYP1A1 and CYP1A2 enzymes metabolize polycyclic aromatic hydrocarbons (PAHs) to the reactive oxyderivatives. PAHs can induce the activity of both enzymes, which increases its conversion and enhances risk of carcinogenesis. Thus, the inhibition of CYP enzymes is recognized as a cancer chemoprevention strategy. A well‐known group of chemopreventive agents is isothiocyanates, which occur naturally in Brassica vegetables. In this paper, a naturally occurring sulforaphane and its two synthetic analogues isothiocyanate‐2‐oxohexyl and alyssin were investigated. The aim of the study was to determine whether the differences in the isothiocyanate structure change its ability to inhibit CYP1A1 and CYP1A2 activity induced by benzo[a]pyrene in HepG2 and Mcf7 cells. Also a mechanistic study was performed including isothiocyanates' influence on CYP1A1 and CYP1A2 catalytic activity, enzymatic protein level, and AhR translocation. It was shown that both enzymes were significantly induced by benzo[a]pyrene, and isothiocyanates were capable of decreasing the induced activity. The inhibitory properties depend on the types of isothiocyanate and enzyme. In general, CYP1A2 was altered in the more meaningful way than CYP1A1 by isothiocyanates. Sulforaphane exhibited weak inhibitory properties, whereas both analogues were capable of inhibiting BaP‐induced activity with the similar efficacy. The mechanistic study revealed that analogues decreased the CYP1A2 activity via the protein‐level reduction and CYP1A1 directly. The results indicate that isothiocyanates can be considered as potent chemopreventive substances and the change in the sulforaphane structure increases its chemopreventive potency. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:18–28, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20259  相似文献   

11.
When chlorine is introduced into public drinking water for disinfection, it can react with organic compounds in surface waters to form toxic by-products such as 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-furanone (MX). We investigated the effect of exposure to MX on cytochrome P450 2E1 (CYP2E1)-like activity and total glutathione (GSH) in the liver of the small fish model, medaka (Oryzias latipes). The multi-site carcinogen methylazoxymethanol acetate (MAMAc) was the positive control compound. Both medaka liver microsome preparations and S-9 fractions catalyzed the hydroxylation of p-nitrophenol (PNP), suggesting CYP2E1-like activity in the medaka. Male medaka exposed for 96 h to the CYP2E1 inducers ethanol and acetone under fasted conditions showed significant increases in PNP-hydroxylation activity. Furthermore, total reduced hepatic GSH was reduced in fish fasted for 96 h, indicating that normal feeding is a factor in maintaining xenobiotic defenses. Exposure to MX and MAMAc induced significant increases in hepatic CYP2E1-like activity, however MX exposure did not alter hepatic GSH levels. These data strengthen the role of the medaka as a suitable species for examining cytochrome P450 and GSH detoxification processes and the role these systems play in chemical carcinogenesis.  相似文献   

12.
Dimethylcyclosiloxanes (DMCS) are components of silicone gel containing implants and are known inducers of human drug metabolizing enzymes. The effects of the major DMCS, octamethyltetracyclosiloxane (D4) on cytochrome P450 (CYP) induction were examined in young adult, mature, and pregnant female Sprague-Dawley rats. Also, the ability of D4 administered to pregnant dams to affect CYP expression in fetal liver was examined. Female young, mature, and pregnant Sprague-Dawley rats were administered 0, 5, 20, and 100 mg/kg D4 daily by gavage for 8 days. Liver microsomal CYP (CYP2B, CYP3A, CYP1A) concentrations were evaluated by Western blots using specific antisera, and CYP activities were assayed using CYP selective assays. D4 treatment resulted in a significant induction of CYP2B and CYP3A isoforms. CYP induction was dose and age dependent. A comparison of the inducibility of CYP3A protein by D4 in rats from different age groups showed that the degree of increase was the highest in the pregnant rats at doses of 20 mg/kg D4 or higher. The mature rats had a lesser degree of responsiveness than did the young rats at the dose of 100 mg/ kg D4. Significant increases in CYP2B immunoreactive protein concentrations were observed in young and mature rats given D4 at doses >5 mg/kg and in pregnant rats at doses >20 mg/kg. Maximal CYP2B induction detected with blotting was more than 90-fold in mature rats; however, no significant changes were detected in CYP1A expression. There was a 20% increase of liver to body weight ratio in the mature rats treated with 100 mg/kg D4. D4 has different inductive properties in female rats of different ages and reproductive status. Also, D4 administered to the pregnant dam is capable of inducing CYP expression in fetal liver as well as decreasing fetal body weight.  相似文献   

13.
In mammals, Cytochrome P450 (CYP) enzymes are bound to membranes of the endoplasmic reticulum and mitochondria, where they are responsible for the oxidative metabolism of many xenobiotics as well as organic endogenous compounds. In humans, 57 isoforms were identified which are classified based on sequence homology. In the present work, we demonstrate the performance of a mass spectrometry-based strategy to simultaneously detect and differentiate distinct human Cytochrome P450 (CYP) isoforms including the highly similar CYP3A4, CYP3A5, CYP3A7, as well as CYP2C8, CYP2C9, CYP2C18, CYP2C19, and CYP4F2, CYP4F3, CYP4F11, CYP4F12. Compared to commonly used immunodetection methods, mass spectrometry overcomes limitations such as low antibody specificity and offers high multiplexing possibilities. Furthermore, CYP phosphorylation, which may affect various biochemical and enzymatic properties of these enzymes, is still poorly analyzed, especially in human tissues. Using titanium dioxide resin combined with tandem mass spectrometry for phosphopeptide enrichment and sequencing, we discovered eight human P450 phosphorylation sites, seven of which were novel. The data from surgical human liver samples establish that the isoforms CYP1A2, CYP2A6, CYP2B6, CYP2E1, CYP2C8, CYP2D6, CYP3A4, CYP3A7, and CYP8B1 are phosphorylated in vivo. These results will aid in further investigation of the functional significance of protein phosphorylation for this important group of enzymes.  相似文献   

14.
Earlier studies have shown that members of the cytochrome P4501 (CYP1) enzyme family are constitutively expressed, and are elevated in the livers of ringed seals (Phoca hispida) and grey seals (Halichoerus grypus) living in the heavily polluted Baltic Sea. In this study, we compared the expression profiles of several additional CYP enzymes in the liver and extrahepatic tissues of Baltic ringed and grey seals with the corresponding CYP expression in seals from relatively unpolluted waters. We used marker enzyme activity levels, diagnostic inhibitors and immunoblot analysis to assess members of the CYP2A, CYP2B, CYP2C, CYP2D, CYP2E and CYP3A sub-families. Coumarin 7-hydroxylation (COH), a marker of CYP2A activity, was high in the liver and the lungs of all the studied seal populations. The presence of a putative CYP2A form in these seals was further supported by the strong inhibition of COH activity by a chemical inhibitor and by an anti-CYP2A5 antibody. However, antibodies to human and rodent CYP2B, CYP2C and CYP2E forms did not recognize any proteins in these seal species. Dextromethorphan O-demethylation (marker for CYP2D activity) and chlorzoxazone 6-hydroxylation (marker for CYP2E activity) were measurable in the livers of all the seals we studied. Both activities were elevated in the Baltic seal populations, showed a strong positive correlation with CYP1A activity and were at least partly inhibited by a typical CYP1A inhibitor, alpha-naphthoflavone. Further studies are needed to determine the presence and characteristics of CYP2D and CYP2E enzymes in ringed and grey seals. Testosterone 6beta-hydroxylation, a CYP3A marker, showed a relatively high level of activity in the livers of both seal species and was potently inhibited by ketoconazole, a CYP3A-selective inhibitor. The putative CYP3A activity showed an opposing geographical trend to that of CYP2D and CYP2E, since it was elevated in the control area. CYP3A protein levels, revealed by immunoblotting, showed a positive correlation with testosterone 6beta-hydroxylation. We conclude tentatively that CYP2A- and CYP3A-like enzymes are expressed in ringed and grey seals, but that CYP2B- and CYP2C-like ones are not. Further information on the individual contaminant profile is needed before any conclusions can be drawn on a possible connection between the varying CYP expressions and the contaminant load.  相似文献   

15.
Substances K-48 and HI-6, oxime-type acetylcholinesterase (AChE) reactivators, were tested for their potential to inhibit the activities of human liver microsomal cytochromes P450 (CYP). The compounds were shown to bind to microsomal cytochromes P450 with spectral binding constants of 0.25 ± 0.05 μM (K-48) and 0.54 ± 0.15 μM (HI-6). To find which cytochrome P450 from the human liver microsomal fraction interacts with these compounds, an inhibition of enzyme activities specific for nine individual CYP enzymes (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4) was studied. The results have shown no prominent inhibition of individual CYP activities with both compounds except the CYP2E1 activity and the HI-6 reactivator. However, the inhibition of this activity was less than 50% which makes the possible drug interactions highly unlikely. Hence, the interaction of K-48 and HI-6 oxime-type AChE reactivators with human liver microsomal CYP enzymes does not seem to be clinically significant and both compounds could be taken in this respect as antidotal drugs with low risk of drug interactions.  相似文献   

16.
Low molecular weight dimethylcyclosiloxanes (DMCS) are important precursors in the synthesis of polydimethysiloxane polymers widely used in industry, and in medical and personal care products. The objective of this study was to characterize the ability of two DMCS, octamethylcyclosiloxane (D4) and decamethylcyclopentasiloxane (D5) to induce drug metabolizing enzymes in rats. Male and female Sprague-Dawley rats were administered 1, 5, 20, or 100 mg/kg D4 or D5 in corn oil daily by gavage for 4 days. Changes in the levels of activity and/or immunoreactivity of CYP1A1/2, CYP2B1/2, CYP3A1/2 and NADPH cytochrome P450 reductase in liver microsomes were examined. Significant increases were observed in the liver to body weight ratio in female rats administered either D4 or D5 at doses > or = 20 mg/kg. Increases in the liver to body weight ratio were observed in male rats treated with > or = 100 mg/kg D5 but not with D4. Relatively large increases in CYP2B1/2 enzymatic activity and immunoreactive protein were observed with increasing concentrations of both D4 and D5. Significant increases in 7-pentoxyresorufin O-depentylase (PROD) activity were also detected in male and female rats given D4 at doses > or = 5 mg/kg. D5 increased PROD activity in male rats at doses > or = 20 mg/kg and in female rats at doses > or = 5 mg/kg. 7-Ethoxyresorufin O-deethylase (EROD) activity was increased in both male and female rats receiving > or = 20 mg/kg D4 or > or = 5 mg/kg D5; however, no changes were detected in CYP1A1/2 immunoreactive protein in rats of either sex. D4 and D5 caused significant increases in CYP3A1/2 immunoreactive protein in only male rats treated with 100 mg/kg of either compound. However, significant increases were detected in CYP3A1/2 immunoreactive protein in female rats at D4 doses > or = 20 mg/kg and D5 doses > or = 5 mg/kg. Induction of NADPH cytochrome P-450 reductase immunoreactive protein was observed with D4 in female rats and in both male and female rats with D5. Induction of CYP2B/1/2, CYP3A1/2 and NADPH cytochrome P450 reductase was observed in rats treated with 50 mg/kg phenobarbital by intraperitoneal injection. Maximal CYP2B induction detected with D4 was approximately 50% of the increase observed with phenobarbital. In summary, D4 and D5 induced CYP2B1/2 in adult rat liver in a manner similar to that observed with phenobarbital; however, differences were observed between D4 and D5 in their ability to induce CYP3A1/2 and NADPH cytochrome P450 reductase. Female rats were more sensitive to the inductive properties of low doses of both DMCS than male rats whereas male rats were more responsive to phenobarbital induction.  相似文献   

17.
18.
19.
Blood-stage malaria of Plasmodium chabaudi is characterized by its responsiveness to testosterone (T): T suppresses development of protective immunity, whereas once acquired immunity is T-unresponsive. Here, we have analyzed the liver, a T target and lymphoid organ with anti-malaria activity, for its T-responsiveness of gene expression in immune mice. Using Affymetrix microarray technology, in combination with quantitative RT-PCR, we have identified (i) T-unresponsive expression of newly acquired mRNAs encoding diverse sequences of IgG- and IgM-antibodies, (ii) 24 genes whose expression has become T-unresponsive including those encoding the T(H)2 response promoting EHMT2 and the erythrocyte membrane protein band 7.2 STOM, (iii) T-unresponsive expression of mRNAs for the cytokines IL-1β, IL-6, TNFα, and IFNγ, as well as iNOS, which are even not inducible by infection, and (iv) 35 genes retaining their T-responsiveness, which include those encoding the infection-inducible acute phase proteins SAA1, SAA2, and ORM2 as well as those of liver metabolism which encode the T-downregulated female-prevalent enzymes CYP2B9, CYP2B13, CYP3A41, CYP7A1, and SULT2A2 and the T-upregulated male-prevalent enzymes CYP2D9, CYP7B1, UGT2B1, HSD3B2, HSD3B5, respectively. The mRNA of the latter T-metabolizing enzyme is even 5-fold increased by T, suggesting a decrease in the effective T concentrations in the liver of immune mice. Collectively, our data suggest that the liver, which has acquired a selective T-unresponsiveness of gene expression, contributes to the acquired T-unresponsive, antibody-mediated protective immunity to blood-stage malaria of P. chabaudi.  相似文献   

20.
Medroxyprogesterone acetate (MPA) is a drug commonly used in endocrine therapy for advanced breast cancer, although it is known to cause thrombosis as a serious side effect. Recently, we found that cytochrome P450 3A4 (CYP3A4) mainly catalyzed the metabolism of MPA via CYP in human liver microsomes. However, the metabolic products of MPA in humans and rats have not been elucidated. In addition, it is not clear whether thrombosis could be induced by MPA itself or by its metabolites. In this study, we determined the overall metabolism of MPA as the disappearance of the parent drug from an incubation mixture, and identified the enzymes catalyzing the metabolism of MPA via CYP in rats. Moreover, the effects of CYP-modulators on MPA-induced hypercoagulation in vivo were examined. Intrinsic clearance of MPA in rat liver microsomes was increased by treatment with CYP3A-inducers. The intrinsic clearance of MPA in liver microsomes of rats treated with various CYP-inducers showed a significant correlation with CYP3A activity, but not CYP1A activity, CYP2B activity or CYP2C contents. Among the eight recombinant rat CYPs studied, CYP3A1, CYP3A2 and CYP2A2 catalyzed the metabolism of MPA. However, since CYP3A2 and CYP2A2 are male-specific isoforms, CYP3A1 appears to be mainly involved in the metabolism of MPA in liver microsomes of female rats. In an in vivo study, pretreatment of female rats with SKF525A, an inhibitor of CYPs including CYP3A1, significantly (p < 0.05) enhanced MPA-induced hypercoagulation, whereas pretreatment with phenobarbital, an inducer of CYPs including CYP3A1, reduced it. These findings suggest that CYP-catalyzed metabolism of MPA is mainly catalyzed by CYP3A1 and that MPA-induced hypercoagulation is predominantly caused by MPA itself in female rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号