首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have demonstrated that Notch genes are expressed in developing mammalian ovarian follicles. Lunatic fringe is an important regulator of Notch signaling. In this study, data are presented that demonstrate that radical fringe and lunatic fringe are expressed in the granulosa cells of developing follicles. Lunatic fringe null female mice were found to be infertile. Histological analysis of the lunatic fringe-deficient ovary demonstrated aberrant folliculogenesis. Furthermore, oocytes from these mutants did not complete meiotic maturation. This is a novel observation because this is the first report describing a meiotic defect that results from mutations in genes that are expressed in the somatic granulosa cells and not the oocytes. This represents a new role for the Notch signaling pathway and lunatic fringe in mammalian folliculogenesis.  相似文献   

2.
3.
Lunatic fringe is a vertebrate homologue of Drosophila fringe, which plays an important role in modulating Notch signaling. This study examines the distribution of chick lunatic fringe at sites of neural crest formation and explores its possible function by ectopic expression. Shortly after neural tube closure, lunatic fringe is expressed in most of the neural tube, with the exception of the dorsal midline containing presumptive neural crest. Thus, there is a fringe/non-fringe border at the site of neural crest production. Expression of excess lunatic fringe in the cranial neural tube and neural crest by retrovirally mediated gene transfer resulted in a significant increase ( approximately 60%) in the percentage of cranial neural crest cells 1 day after infection. This effect was mediated by an increase in cell division as assayed by BrdU incorporation. Infected embryos had an up-regulation of Delta-1 in the dorsal neural tube and redistribution of Notch-1 to the lumen of the neural tube, confirming that excess fringe modulates Notch signaling. These findings point to a novel role for lunatic fringe in regulating cell division and/or production of neural crest cells by the neural tube.  相似文献   

4.
The Notch signaling pathway is important in regulating formation and anterior-posterior patterning of somites in vertebrate embryos. Here we show that distinct segmentation defects are displayed in embryos mutant for the Notch pathway genes Notch1, Lunatic fringe (Lfng), Delta-like 1 (Dll1), and Delta-like 3 (Dll3). Lfng-deficient mice and Dll3-deficient mice exhibit very similar defects, and marker analysis suggests that progression of the segmentation clock is disrupted in Dll3 mutants. We also show that Radical fringe (Rfng)-deficient mice exhibit no obvious phenotypic defects. To assess whether the absence of a phenotype in Rfng-deficient mice was the result of functional redundancy with the Lfng gene, we generated Lfng/Rfng double homozygous mutant mice. These mice exhibit the skeletal defects normally observed in Lfng-deficient mice, but we detected no obvious synergistic or additive effects in the double mutant animals.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
Male mice deficient for germ-cell cyritestin are infertile   总被引:15,自引:0,他引:15  
Cyritestin is a membrane-anchored sperm protein belonging to the ADAM (f1.gif" BORDER="0"> f2.gif" BORDER="0">isintegrin and f1.gif" BORDER="0"> f3.gif" BORDER="0">etalloprotease) family of proteins, which are proposed to be involved in cell-cell adhesion through binding to integrin receptors. Several lines of evidence support a role of cyritestin and other members of this protein family in the fusion of sperm and the egg plasma membrane. In an effort to elucidate the physiological function of cyritestin, we have disrupted its locus by homologous recombination. Male homozygous null mutants are infertile, even though spermatogenesis, mating, and migration of sperm from the uterus into the oviduct are normal. In vitro experiments showed that infertility is due to the inability of the cyritestin-deficient sperm to bind to the zona pellucida. However, after removal of the zona pellucida, sperm-egg membrane fusion monitored by the presence of pronuclei and generation of 2- and 4-cell embryos did not reveal any differences from the wild-type situation. These results demonstrate that cyritestin is crucial in the fertilization process at the level of the sperm-zona pellucida interaction.  相似文献   

13.
Recently we reported on the expansion of riparian forests into savannas in central Brazil. To enlarge the scope of the earlier study we investigated whether upland deciduous and xeromorphic forests behaved similarly. We investigated past vegetation changes that occurred in forest/savanna transitions using carbon isotope ratios (δ13C) measured in the soil organic matter as a tracer. We analyzed the 14C activity where δ13C showed major shifts in vegetation. The role of soil chemical and physical attributes in defining vegetation distribution is discussed. Structural changes in vegetation were found to be associated with shifts in the isotope composition (δ13C) of soil organic matter. This was attributed to intrinsic differences in the biomass of trees and grasses and allowed for the determination of past shifts in vegetation by evaluating δ13C at different depths. The deciduous forest decreased in area approximately 980 years ago. Tree cover increased in the xeromorphic forest, but the border stayed stable through time. The deciduous forest and adjacent savanna have eutrophic soils while the xeromorphic forest and adjacent savanna have dystrophic soils. However, greater organic carbon, nitrogen and phosphorus concentrations are observed in the forests. We provide concrete evidence of deciduous forest retreat unlike the stability observed in the xeromorphic forest/savanna boundary. These results contrast with the expansion of riparian forests recently reported in the same region.  相似文献   

14.
15.
16.
Safeguarding the welfare of animals is an important aim when defining housing and management standards in animal based, experimental research. While such standards are usually defined per animal species, it is known that considerable differences between laboratory mouse strains exist, for example with regard to their emotional traits. Following earlier experiments, in which we found that 129P3 mice show a lack of habituation of anxiety related behaviour after repeated exposure to an initially novel environment (non-adaptive profile), we here investigated four other 129 inbred mouse substrains (129S2/SvPas, 129S2/SvHsd (exp 1); 129P2 and 129X1 (exp 2)) on habituation of anxiety related behaviour. Male mice of each strain were repeatedly placed in the modified hole board test, measuring anxiety-related behaviour, exploratory and locomotor behaviour. The results reveal that all four substrains show a lack of habituation behaviour throughout the period of testing. Although not in all of the substrains a possible confounding effect of general activity can be excluded, our findings suggest that the genetic background of the 129 substrains may increase their vulnerability to cope with environmental challenges, such as exposure to novelty. This vulnerability might negatively affect the welfare of these mice under standard laboratory conditions when compared with other strains. Based on our findings we suggest to consider (sub)strain-specific guidelines and protocols, taking the (subs)train-specific adaptive capabilities into account.  相似文献   

17.
Three mammalian fringe proteins are implicated in controlling Notch activation by Delta/Serrate/Lag2 ligands during tissue boundary formation. It was proved recently that they are glycosyltransferases that initiate elongation of O-linked fucose residues attached to epidermal growth factor-like sequence repeats in the extracellular domain of Notch molecules. Here we demonstrate the existence of functional diversity among the mammalian fringe proteins. Although both manic fringe (mFng) and lunatic fringe (lFng) decreased the binding of Jagged1 to Notch2 and not that of Delta1, the decrease by mFng was greater in degree than that by lFng. We also found that both fringe proteins reduced Jagged1-triggered Notch2 signaling, whereas neither affected Delta1-triggered Notch2 signaling. However, the decrease in Jagged1-triggered Notch2 signaling by mFng was again greater than that by lFng. Furthermore, we observed that each fringe protein acted on a different site of the extracellular region of Notch2. Taking these findings together, we propose that the difference in modulatory function of multiple fringe proteins may result from the distinct amino acid sequence specificity targeted by these glycosyltransferases.  相似文献   

18.
As naive CD8+ T cells circulate throughout the bloodstream and secondary lymphoid tissues (i.e. spleen and lymph nodes), they sample complexes of peptides and MHC class I molecules expressed on the surface of professional antigen presenting cells (APCs). A proper fit between lymphocyte and APCs sets into motion a complex series of events that result in the generation of activated cytotoxic T lymphocytes (CTLs) that are the principal immune effectors against infected and transformed cells. Owing to the severe immunopathology that can result from the aberrant stimulation of CTLs, the activation of na?ve CD8(+) T cells is a tightly regulated process. A growing body of evidence suggests that the quality of stimulation na?ve CD8+ T cells receive during the induction and maintenance of an immune response dictates the functional competency of the responding antigen-specific CTLs, and that CD8+ T cells and their progeny "effector cells" can exist long-term in vastly different activation states.  相似文献   

19.
NOTCH signaling induced by Delta1 (DLL1) and Jagged1 (JAG1) NOTCH ligands is modulated by the β3N-acetylglucosaminyl transferase Fringe. LFNG (Lunatic Fringe) and MFNG (Manic Fringe) transfer N-acetylglucosamine (GlcNAc) to O-fucose attached to EGF-like repeats of NOTCH receptors. In co-culture NOTCH signaling assays, LFNG generally enhances DLL1-induced, but inhibits JAG1-induced, NOTCH signaling. In mutant Chinese hamster ovary (CHO) cells that do not add galactose (Gal) to the GlcNAc transferred by Fringe, JAG1-induced NOTCH signaling is not inhibited by LFNG or MFNG. In mouse embryos lacking B4galt1, NOTCH signaling is subtly reduced during somitogenesis. Here we show that DLL1-induced NOTCH signaling in CHO cells was enhanced by LFNG, but this did not occur in either Lec8 or Lec20 CHO mutants lacking Gal on O-fucose glycans. Lec20 mutants corrected with a B4galt1 cDNA became responsive to LFNG. By contrast, MFNG promoted DLL1-induced NOTCH signaling better in the absence of Gal than in its presence. This effect was reversed in Lec8 cells corrected by expression of a UDP-Gal transporter cDNA. The MFNG effect was abolished by a DDD to DDA mutation that inactivates MFNG GlcNAc transferase activity. The binding of soluble NOTCH ligands and NOTCH1/EGF1-36 generally reflected changes in NOTCH signaling caused by LFNG and MFNG. Therefore, the presence of Gal on O-fucose glycans differentially affects DLL1-induced NOTCH signaling modulated by LFNG versus MFNG. Gal enhances the effect of LFNG but inhibits the effect of MFNG on DLL1-induced NOTCH signaling, with functional consequences for regulating the strength of NOTCH signaling.  相似文献   

20.
The Notch pathway plays multiple roles during vertebrate somitogenesis, functioning in the segmentation clock and during rostral/caudal (R/C) somite patterning. Lunatic fringe (Lfng) encodes a glycosyltransferase that modulates Notch signaling, and its expression patterns suggest roles in both of these processes. To dissect the roles played by Lfng during somitogenesis, a novel allele was established that lacks cyclic Lfng expression within the segmentation clock, but that maintains expression during R/C somite patterning (Lfng(DeltaFCE1)). In the absence of oscillatory Lfng expression, Notch activation is ubiquitous in the PSM of Lfng(DeltaFCE1) embryos. Lfng(DeltaFCE1) mice exhibit severe segmentation phenotypes in the thoracic and lumbar skeleton. However, the sacral and tail vertebrae are only minimally affected in Lfng(DeltaFCE1) mice, suggesting that oscillatory Lfng expression and cyclic Notch activation are important in the segmentation of the thoracic and lumbar axial skeleton (primary body formation), but are largely dispensable for the development of sacral and tail vertebrae (secondary body formation). Furthermore, we find that the loss of cyclic Lfng has distinct effects on the expression of other clock genes during these two stages of development. Finally, we find that Lfng(DeltaFCE1) embryos undergo relatively normal R/C somite patterning, confirming that Lfng roles in the segmentation clock are distinct from its functions in somite patterning. These results suggest that the segmentation clock may employ varied regulatory mechanisms during distinct stages of anterior/posterior axis development, and uncover previously unappreciated connections between the segmentation clock, and the processes of primary and secondary body formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号