首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Prostate tumorigenesis is coupled with an early metabolic switch in transformed prostate epithelial cells that effectively increases their mitochondrial bioenergetic capacity. The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) inhibits prostate cancer development in vivo, and triggers reactive oxygen species (ROS)-dependent prostate cancer cell apoptosis in vitro. The possibility that 4HPR-induced ROS production is associated with mitochondrial bioenergetics and required for apoptosis induction in transformed prostate epithelial cells in vitro would advocate a prospective mechanistic basis for 4HPR-mediated prostate cancer chemoprevention in vivo. We investigated this tenet by comparing and contrasting 4HPR’s effects on premalignant PWR-1E and malignant DU-145 human prostate epithelial cells. 4HPR promoted a dose- and/or time-dependent apoptosis induction in PWR-1E and DU-145 cells, which was preceded by and dependent on an increase in mitochondrial ROS production. In this regard, the PWR-1E cells were more sensitive than the DU-145 cells, and they consumed roughly twice as much oxygen as the DU-145 cells suggesting oxidative phosphorylation was higher in the premalignant cells. Interestingly, increasing the [Ca2+] in the culture medium of the PWR-1E cells attenuated their proliferation as well as their mitochondrial bioenergetic capacity and 4HPR’s cytotoxic effects. Correspondingly, the respiration-deficient derivatives (i.e., ρ0 cells lacking mitochondrial DNA) of DU-145 cells were markedly resistant to 4HPR-induced ROS production and apoptosis. Together, these observations implied that the reduction of mitochondrial bioenergetics protected PWR-1E and DU-145 cells against the cytotoxic effects of 4HPR, and support the concept that oxidative phosphorylation is an essential determinant in 4HPR’s apoptogenic signaling in transformed human prostate epithelial cells.  相似文献   

4.
The purpose of this study was to investigate the effects of thyroid state on rates and sites of H(2)O(2) production in rat muscle mitochondria. With Complex I- and Complex II-linked substrates, hypothyroidism decreased and hyperthyroidism increased the rates of O(2) consumption during State 4 and State 3 respiration and the rates of H(2)O(2) release during State 4 respiration. During State 3, the rates of H(2)O(2) release were not affected by thyroid state. However, the mitochondrial capacity to remove H(2)O(2) increased in the transition from hypothyroid to hyperthyroid state, thus suggesting that an increase in H(2)O(2) production rate also occurred in such a transition during State 3 respiration. The observation that mitochondrial coenzyme Q levels and cytochrome oxidase activities are higher in the hyperthyroid and lower in the hypothyroid groups suggests that the modifications of H(2)O(2) production are due to a modulation by thyroid hormone of the mitochondrial content of autoxidizable electron carriers. This idea is supported by measurements of H(2)O(2) release in the presence of respiratory inhibitors. In fact, such measurements indicate that the thyroid state-linked changes in H(2)O(2) production occur at both generator sites of the respiratory chain.  相似文献   

5.
N-(4-hydroxyphenyl)retinamide (4HPR) is a synthetic retinoid that has been tested in clinical trials as a cancer chemopreventive drug. 4HPR is cytotoxic to cancer cells but the underlying molecular mechanisms are at present only partially understood. Here we demonstrate that in the human cervical cancer cell line HeLa and the human leukemia cell line HL-60, 4HPR caused rapid, Reactive Oxygen Species (ROS)-dependent activation of the Unfolded Protein Response (UPR). In HeLa cells, 4HPR was shown to induce cell death and activation of procaspases. These effects of 4HPR could be abolished by the over-expression of dominant negative mutants of PERK or eIF2 alpha. HeLa cells incubated with 4HPR were found to form autophagosomes that were also mediated by the PERK/eIF2 alpha pathway. While 4HPR-induced cell death could be significantly prevented by the presence of specific caspase inhibitors, 3-methyladenine (3-MA) that inhibits autophagosome formation enhanced 4HPR-induced cell death. Examination of individual 4HPR-treated HeLa cells revealed that those without the development of autophagosomes hence exhibiting an incomplete UPR were caspase-active and were not viable, while those with autophagosomes were caspase-inactive and retained cell viability. Our data suggest that the PERK/eIF2 alpha pathway is essential for the cytotoxicity of 4HPR that targets on cancer cells with malfunctional UPR.  相似文献   

6.
7.
8.
The events that precipitate cell death and the stress proteins responsible for cytoprotection during ATP depletion remain elusive. We hypothesize that exposure to metabolic inhibitors damages mitochondria, allowing proapoptotic proteins to leak into the cytosol, and suggest that heat stress-induced hsp72 accumulation prevents mitochondrial membrane injury. To test these hypotheses, renal epithelial cells were transiently ATP depleted with sodium cyanide and 2-deoxy-D-glucose in the absence of medium dextrose. Recovery from ATP depletion was associated with the release into the cytosol of cytochrome c and apoptosis-inducing factor (AIF), proapoptotic proteins that localize to the intermitochondrial membrane space. Concomitant with mitochondrial cytochrome c leak, a seven- to eightfold increase in caspase 3 activity was observed. In controls, state III mitochondrial respiration was reduced by 30% after transient exposure to metabolic inhibitors. Prior heat stress preserved mitochondrial ATP production and significantly reduced both cytochrome c release and caspase 3 activation. Despite less cytochrome c release, prior heat stress increased binding between cytochrome c and hsp72. The present study demonstrates that mitochondrial injury accompanies exposure to metabolic inhibitors. By reducing outer mitochondrial membrane injury and by complexing with cytochrome c, hsp72 could inhibit caspase activation and subsequent apoptosis.  相似文献   

9.
The skeletal muscle mitochondria contain two isoforms of uncoupling protein, UCP2 and mainly UCP3, which had been shown to be activated by free fatty acids and inhibited by purine nucleotides in reconstituted systems. On the contrary in isolated mitochondria, the protonophoretic action of muscle UCPs had failed to be demonstrated in the absence of superoxide production. We showed here for the first time that muscle UCPs were activated in state 3 respiration by linoleic acid and dissipated energy from oxidative phosphorylation by decreasing the ADP/O ratio. The efficiency of UCPs in mitochondrial uncoupling increased when the state 3 respiratory rate decreased. The inhibition of the linoleic acid-induced uncoupling by a purine nucleotide (GTP), was not observed in state 4 respiration, in uninhibited state 3 respiration, as well as in state 3 respiration inhibited by complex III inhibitors. On the contrary, the progressive inhibition of state 3 respiration by n -butyl malonate, which inhibits the uptake of succinate, led to a full inhibitory effect of GTP. Therefore, as the inhibitory effect of GTP was observed only when the reduced state of coenzyme Q was decreased, we propose that the coenzyme Q redox state could be a metabolic sensor that modulates the purine nucleotide inhibition of FFA-activated UCPs in muscle mitochondria.  相似文献   

10.
The effect of glucagon on hepatic respiratory capacity   总被引:1,自引:0,他引:1  
Data from numerous laboratories show that mitochondria isolated from livers treated acutely with glucagon have higher rates of state 3 respiration than control mitochondria. The purpose of the present study was to learn whether this phenomenon is an isolation artifact resulting from a stabilization of the mitochondrial membrane or whether it represents a real increase in the maximal respiratory capacity of liver cells due to glucagon treatment. Electron transport was measured through different spans of the electron transport chain by using ferricyanide as an alternate electron acceptor to O2. With isolated intact liver mitochondria, pretreatment with glucagon was found to cause an increase in electron flow, through both Complex I and Complex III, suggesting that the effect of glucagon was not specific for a single site in the electron transport chain. Using intact isolated hepatocytes, different results are obtained. Respiration was measured in isolated hepatocytes after quantitation of the hepatocyte mitochondrial content by assay of citrate synthase. Hepatocyte respiration could therefore be reported per mg of mitochondrial protein. By providing durohydroquinone to the cells, it was possible to measure electron flow from coenzyme Q to O2 in the absence of the physiological regulation of substrate supply. Likewise, the addition of carbonyl cyanide p-trifluoromethoxyphenylhydrazone released the in situ mitochondria from control by the cytosolic ATP/ADP ratio and it was possible to measure maximal electron flow rates through Complex III. In the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone, electron flow was higher in mitochondria in the cell than in isolated mitochondria. Glucagon caused no increase in mitochondrial respiration in situ either in the presence of the physiological substrates or in the presence of durohydroquinone. The data obtained do not support a role for the electron transport chain as a target of glucagon action in hepatocytes.  相似文献   

11.
Cytochrome c release from mitochondria is essential for apoptosis. Using human myelogenous leukemia ML-1a, its respiration-deficient and reconstituted cells, we demonstrated that respiratory function is essential for tumor necrosis factor-induced cytochrome c release. In a cell free system using mitochondrial fraction from ML-1a, initiation of respiration by substrates for complexes I, II, and III but not IV released cytochrome c, suggesting that reduction of coenzyme Q or complex III is essential for cytochrome c release. In the same system, disruption of mitochondrial outer membrane was neither enough nor the cause for cytochrome c release by succinate. These observations define an early pathway in which a change in respiration releases cytochrome c.  相似文献   

12.
Elevated levels of reactive oxygen species (ROS) play a critical role in cardiac myocyte signaling in both healthy and diseased cells. Mitochondria represent the predominant cellular source of ROS, specifically the activity of complexes I and III. The model presented here explores the modulation of electron transport chain ROS production for state 3 and state 4 respiration and the role of substrates and respiratory inhibitors. Model simulations show that ROS production from complex III increases exponentially with membrane potential (ΔΨm) when in state 4. Complex I ROS release in the model can occur in the presence of NADH and succinate (reverse electron flow), leading to a highly reduced ubiquinone pool, displaying the highest ROS production flux in state 4. In the presence of ample ROS scavenging, total ROS production is moderate in state 3 and increases substantially under state 4 conditions. The ROS production model was extended by combining it with a minimal model of ROS scavenging. When the mitochondrial redox status was oxidized by increasing the proton permeability of the inner mitochondrial membrane, simulations with the combined model show that ROS levels initially decline as production drops off with decreasing ΔΨm and then increase as scavenging capacity is exhausted. Hence, this mechanistic model of ROS production demonstrates how ROS levels are controlled by mitochondrial redox balance.  相似文献   

13.
Effects of the coenzyme Q analog (MitoQ10) carrying a positively charged decyltetraphenylphosphonium group on functional activity of phosphorylating liver mitochondria were studied. Using inhibitory analysis it was found that at micromolar concentrations this quinone is reduced by NADH-dependent DT-diaphorase. Under conditions of malate oxidation, MitoQ10 stimulates electron transfer from NADH to oxygen by shunting the block of rotenone-induced electron transport in Complex I. Steady-state mitochondrial respiration induced by rotenone and MitoQ10 (1 μM), as well as K3 shunt are both blocked by the DT-diaphorase inhibitor dicumarol, the Complex III inhibitor myxothiazole, and the cytochrome oxidase inhibitor cyanide. The electron transport chain induced in liver mitochondria by MitoQ10 in the presence of rotenone appears as follows: NADH → DT-diaphorase → MitoQ10 → Complex III → Complex IV → O2. Under conditions of malate (but not succinate) oxidation, MitoQ10 and high concentrations of vitamin K3 induce in mitochondria cyanide-resistant respiration and opening of the nonspecific pore eventually resulting in inhibition of oxidative phosphorylation. It is concluded that MitoQ10 should be regarded as an analog of hydrophilic quinones (vitamin K3, duroquinone, etc.) widely known as substrates for mitochondrial DT-diaphorase not interacting with CoQ10 rather than as a natural CoQ10 analog.  相似文献   

14.
Elevated levels of reactive oxygen species (ROS) play a critical role in cardiac myocyte signaling in both healthy and diseased cells. Mitochondria represent the predominant cellular source of ROS, specifically the activity of complexes I and III. The model presented here explores the modulation of electron transport chain ROS production for state 3 and state 4 respiration and the role of substrates and respiratory inhibitors. Model simulations show that ROS production from complex III increases exponentially with membrane potential (ΔΨm) when in state 4. Complex I ROS release in the model can occur in the presence of NADH and succinate (reverse electron flow), leading to a highly reduced ubiquinone pool, displaying the highest ROS production flux in state 4. In the presence of ample ROS scavenging, total ROS production is moderate in state 3 and increases substantially under state 4 conditions. The ROS production model was extended by combining it with a minimal model of ROS scavenging. When the mitochondrial redox status was oxidized by increasing the proton permeability of the inner mitochondrial membrane, simulations with the combined model show that ROS levels initially decline as production drops off with decreasing ΔΨm and then increase as scavenging capacity is exhausted. Hence, this mechanistic model of ROS production demonstrates how ROS levels are controlled by mitochondrial redox balance.  相似文献   

15.
Published experimental data pertaining to the participation of coenzyme Q as a site of free radical formation in the mitochondrial electron transfer chain and the conditions required for free radical production have been reviewed critically. The evidence suggests that a component from each of the mitochondrial NADH-coenzyme Q, succinate-coenzyme Q, and coenzyme QH2-cytochrome c reductases (complexes I, II, and III, most likely a nonheme iron-sulfur protein of each complex, is involved in free radical formation. Although the semiquinone form of coenzyme Q may be formed during electron transport, its unpaired electron most likely serves to aid in the dismutation of superoxide radicals instead of participating in free radical formation. Results of studies with electron transfer chain inhibitors make the conclusion dubious that coenzyme Q is a major free radical generator under normal physiological conditions but may be involved in superoxide radical formation during ischemia and subsequent reperfusion. Experiments at various levels of organization including subcellular systems, intact animals, and human subjects in theclinical setting, support the view that coenzyme Q, mainly in its reduced state, may act as an antioxidant protecting a number of cellular membranes from free radical damage.  相似文献   

16.
Acetaminophen, an analgesic and antipyretic, is toxic in overdose to liver and kidney. The effects on mitochondrial respiration of acetaminophen, its less toxic analog, 3-hydroxyacetanilide, and metabolites which arise from these compounds have been investigated. The parent compounds inhibited NADH-linked respiration reversibly, whereas the metabolites inhibit all mitochondrial respiration, apparently in the Complex III region of the respiratory chain. The quinone derivatives, 4-acetamido-o-benzoquinone and 2-acetamido-p-benzoquinone, are the best inhibitors, with the onset of inhibition dependent on active respiration, suggesting interaction of these compounds with oxidized components of the electron transport chain.  相似文献   

17.
1. 1. The development of thermotolerance has been shown to protect blowfly flight muscle mitochondrial function from damage resulting from an LD50 in vivo heat dose.
2. 2. The principal sites of the damage have been studied using specific inhibitors of the respiratory chain, rotenone and antimycin A, together with substrates that stimulate respiration through the different complexes.
3. 3. Complex I was identified as the primary site for heat damage. State III respiration was inhibited following the LD50 in vivo heat dose, and uncoupling with FCCP did not restore respiration to control levels, indicating that the respiratory enzymes were inactivated. The development of thermotolerance protected this site from heat damage.
4. 4. In contrast, G3-P stimulated respiration was the same in control, LD50 in vivo treated controls and LD50, in vivo treated thermotolerant mitochondria, and significantly higher than state III respiration of LD50 in vivo treated controls. This suggested that respiration through G3-P dehydrogenase, Co enzyme Q and Complex III is not damaged. However, as G3-P stimulated respiration of coupled mitochondria from LD50 in-vivo treated flies was markedly reduced (El-Wadawi and Bowler, 1995. J. exp. Biol. 198: 2413–2421), phosphorylation at complex III may be inhibited also.
5. 5. Ferrocyanide stimulated respiration through cytochrome c-Complex IV was also inhibited in LD50 in vivo treated flies, as compared with unheated control mitochondria. However, thermotolerance protected this site also from heat damage.
  相似文献   

18.
线粒体呼吸链膜蛋白复合体的结构   总被引:8,自引:0,他引:8  
线粒体作为真核细胞的重要“能量工厂”,是细胞进行呼吸作用的场所,呼吸作用包括柠檬酸循环和氧化磷酸化两个过程,其中氧化磷酸化过程的电子传递链(又称线粒体呼吸链)位于线粒体内膜上,由四个相对分子质量很大的跨膜蛋白复合体(Ⅰ、Ⅱ、Ⅲ、和Ⅳ)、介于Ⅰ/Ⅱ与Ⅲ之间的泛醌以及介于Ⅲ与Ⅳ之间的细胞色素c共同组成。线粒体呼吸链的功能是进行生物氧化,并与称之为复合物V的ATP合成酶(磷酸化过程)相偶联,共同完成氧化磷酸化过程,并生产能量分子ATP。线粒体呼吸链的结构生物学研究对于彻底了解电子传递和能量转化的机理是至关重要的,本文分别论述线粒体呼吸链复合体Ⅰ、Ⅱ、Ⅲ和Ⅳ的结构,并跟踪线粒体呼吸链超复合体的结构研究进展。  相似文献   

19.
Oxidative respiration produces adenosine triphosphate through the mitochondrial electron transport system controlling the energy supply of plant cells. Here we describe a mitochondrial pentatricopeptide repeat (PPR) domain protein, PPR40, which provides a signaling link between mitochondrial electron transport and regulation of stress and hormonal responses in Arabidopsis (Arabidopsis thaliana). Insertion mutations inactivating PPR40 result in semidwarf growth habit and enhanced sensitivity to salt, abscisic acid, and oxidative stress. Genetic complementation by overexpression of PPR40 complementary DNA restores the ppr40 mutant phenotype to wild type. The PPR40 protein is localized in the mitochondria and found in association with Complex III of the electron transport system. In the ppr40-1 mutant the electron transport through Complex III is strongly reduced, whereas Complex IV is functional, indicating that PPR40 is important for the ubiqinol-cytochrome c oxidoreductase activity of Complex III. Enhanced stress sensitivity of the ppr40-1 mutant is accompanied by accumulation of reactive oxygen species, enhanced lipid peroxidation, higher superoxide dismutase activity, and altered activation of several stress-responsive genes including the alternative oxidase AOX1d. These results suggest a close link between regulation of oxidative respiration and environmental adaptation in Arabidopsis.  相似文献   

20.
A destructive cycle of oxidative stress and mitochondrial dysfunction is proposed in neurodegenerative disease. Lipid peroxidation, one outcome of oxidative challenge, can lead to the formation of 4-hydroxy-2(E)-nonenal (HNE), a lipophilic alkenal that forms stable adducts on mitochondrial proteins. In this study, we characterized the effects of HNE on brain mitochondrial respiration. We used whole rat brain mitochondria and concentrations of HNE comparable to those measured in patients with Alzheimer's disease. Our results showed that HNE inhibited respiration at multiple sites. Complex I-linked and complex II-linked state 3 respirations were inhibited by HNE with IC50 values of approximately 200 microM HNE. Respiration was apparently diminished owing to the inhibition of complex III activity. In addition, complex II activity was reduced slightly. The lipophilicity and adduction characteristics of HNE were responsible for the effects of HNE on respiration. The inhibition of respiration was not prevented by N-acetylcysteine or aminoguanidine. Studies using mitochondria isolated from porcine cerebral cortex also demonstrated an inhibition of complex I- and complex II-linked respiration. Thus, in neurodegenerative disease, oxidative stress may impair mitochondrial respiration through the production of HNE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号