首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian erythropoiesis, as assayed by erythroid colony formation in vitro, is enhanced by cyclic adenosine nucleotides and agents which are capable of raising intracellular cyclic AMP (cAMP) levels. With canine marrow cells as target, this enhancement was shown to be specific for cAMP and its mono- and dibutyryl derivatives. Adenosine and its derivatives, such as AMP, ADP and ATP, and other cyclic nucleotides, such as cGMP, dibutyryl-cGMP, cCMP and cIMP and sodium butyrate were inactive. The phosphodiesterase inhibitor, RO-20-1724, and the adenyl cyclase stimulator, cholera enterotoxin, both markedly increased colony numbers. Studies with tritiated thymidine showed that about 50% of the cells responding to either erythropoietin (ESF) or dibutyryl cAMP (db-cAMP) were in DNA synthesis. However, by unit gravity sedimentation velocity analysis, the peak of ESF-responsive colony forming cells sedimented more rapidly (8-7 +/- 0-2 mm/hr) than the peak of db-cAMP-responsive cells (7-5 +/- 0 mm/hr). These results demonstrate that adenyl cyclase-linked mechanisms influence in vitro erythropoietic proliferation and suggest that other hormones and simple molecules might interact with surface receptors and thus modulate the action of ESF at the cellular level.  相似文献   

2.
The effect of exogenous cyclic AMP on mitogen-induced suppression and enhancement of the in vitro plaque-forming cell (PFC) response and on mitogen induction of immune interferon (also called type II) in cultures was examined. Mitogen induction of immune interferon was quantitatively associated with mitogen-induced suppressor activity, and cyclic AMP blocked both the suppressor activity and the production of immune interferon in mouse (C57B1/6) spleen cell cultures. The evidence is as follows: (a) The concentrations of dibutyryl cyclic AMP that blocked T-cell mitogen (staphylococcal enterotoxin A) suppressor activity were the same as those that blocked mitogen induction of immune interferon. (b) The blocking action of dibutyryl cAMP on both the suppressor and interferon effects of mitogen was a function of the time of dibutyryl cAMP addition to cultures relative to mitogen addition. (c) A dramatic immunoenhancing effect of mitogen occurred in the presence of dibutyryl cAMP under conditions that blocked production of immune interferon. Specifically, mitogen-induced helper cell function is dramatically enhanced in the presence of dibutyryl cyclic AMP, if the mitogen is added to cultures 24 to 48 hr after SRBC and dibutyryl cyclic AMP. Dibutyryl cyclic GMP did not affect the mitogen- or cyclic AMP-induced effects under the conditions of our test system. Under the conditions described here, then, cyclic AMP appears to selectively block suppressor cell activity while allowing or aiding mitogen-induced helper cell activity. It is possible that the immune response is a reflection of the ratio of helper to suppressor activities in the system.  相似文献   

3.
Intracellular radioactivity following incubation of HTC or RLC cells in [3H]cAMP exceeds that following incubation in either [3H]mono- or dibutyryl cAMP by 30-fold, yet little [3H]cAMP is found within the cells. Even at early times (30 min) the label derived from [3H]cAMP is predominantly found in ADP or ATP, suggesting it mostly enters the cell as the nucleoside. Significant intracellular concentrations of monobutyryl cAMP (2–10 μm) result from incubation of both cell lines in either N6 mono- or dibutyryl cAMP. A very small percentage of this label is in cAMP, and within 2 h of incubation > 65% of the label is again found in ADP or ATP.Liver cytosol contains three major cAMP-dependent protein kinases, designated A, B, and C, as resolved by DEAE-Sephadex chromatography. cAMP is the most effective in vitro activator (10- to 16-fold stimulation) of kinases A and B, the preponderant forms, in the order cAMP > N6 monobutyryl cAMP ? dibutyryl cAMP. Kinase C, a minor fraction, was stimulated two to threefold with the order cAMP ≥ N6 monobutyryl cAMP > dibutyryl cAMP. HTC and RLC cell cytosol protein kinase has Chromatographic and cyclic nucleotide activation properties similar to those of liver fraction C.The activation state of the protein kinases of HTC and RLC cells incubated in the various cyclic nucleotides was also studied. The ability of such nucleotides to occupy regulatory protein binding sites in intact cells (as determined by the inhibition of subsequent in vitro binding of [3H]cAMP) was of the order N6 monobutyryl cAMP > dibutyryl cAMP > cAMP > untreated cells. Correspondingly, the ratio of basal protein kinase activity in cyclic nucleotide treated:control cells was higher in cells incubated in monobutyryl cAMP > dibutyryl cAMP > cAMP. This in vivo activation suggests that little additional stimulation would be obtained by adding cAMP to extracts prepared from such cells. This activation can be expressed as the ratio ? cAMP: + cAMP (a ratio of 1 being maximal activation). The highest such ratio was seen in cells which had been incubated in monobutyryl cAMP > dibutyryl cAMP > cAMP > untreated cells. The studies indicate that all three cyclic nucleotides are capable of activating protein kinase in intact RLC and HTC cells; however the monobutyryl derivative is the most effective, and the degree of stimulation is greater in RLC than in HTC cells.RLC cell tyrosine aminotransferase activity is increased two to threefold by butyrylated cAMP derivatives (but not by cAMP) whereas the HTC cell enzyme is not induced. The rate of replication of both lines is unaltered by the butyrylated compounds.Since HTC and RLC cells accumulate and metabolize cAMP and its derivatives equally, and since they both contain a protein kinase with similar in vivo and in vitro activation properties, it is suggested that the effects of butyrylated cAMP derivatives on cell replication and tyrosine aminotransferase induction are mediated separately, either by distinct protein kinases, or at a point distal to protein kinase, or by a mechanism independent of protein kinase.  相似文献   

4.
N6,O2-′Dibutyryl cyclic AMP (dibutyryl cyclic AMP), a derivative of 3′,5′-adenosine monophosphate (cyclic AMP) resistant to phosphodiesterase inactivation, has been reported to stimulate serotonin and melatonin synthesis in the pineal gland in vitro1–3. In brain adenyl cyclase and phosphodiesterase, which catalyse the formation and the inactivation of cyclic AMP, are found chiefly in the synaptosomal fraction of the tissue homogenates4, where vesicles containing monoamine are also present5. These factors prompted us to study the effects of cyclic AMP and its dibutyryl derivative on the synthesis of brain monoamines.  相似文献   

5.
Erythrocytes, which show little or no guanylate or adenylate cyclase activity, take up cyclic nucleotides from blood. Studies were done by incubating human erythrocytes in isotonic medium with the dibutyryl derivatives of cAMP and cGMP and in a hypotonic medium in which the cells are partially hemolyzed and, therefore, freely permeable to cAMP and cGMP. At cAMP and cGMP concentrations of 50 microM and above, the amount of 14CO2 generated from 1-14C-glucose was decreased significantly. This effect was suppressed by 4.6 mM theophylline. Inosine and ribose, which are catabolites of cAMP and cGMP also decreased formation of 14CO2 from 1-14C-glucose. Accordingly, it is postulated that in the absence of theophylline, the activity of phosphodiesterase resulted in AMP and GMP formation. These mononucleotides enter into the purine salvage pathways to form ribose phosphate. Additionally, the production of lactate and 2,3-diphosphoglycerate (2,3-DPG) was measured in human erythrocytes after incubation with the dibutyryl derivatives of cAMP (bt2-cAMP) and cGMP (bt2-cGMP). At a concentration of 0.1 microM, bta2-cGMP inhibits lactate production at 60 min (p less than 0.01). Slight increases in 2,3-DPG were not statistically significant. Catabolism of cyclic nucleotides may prevent diffusion equilibria allowing for the erythrocyte's continuous uptake of cyclic nucleotides and providing a detoxification mechanism that could compensate for conditions in which elevations of these substances are observed.  相似文献   

6.
—Preliminary experiments had shown that acetylcholine, the putative mediator of trans-synaptic induction of tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DBH) in vivo, did not lead to an increase in these enzyme activities in mouse superior cervical ganglia kept in organ culture. It was the aim of the present study to evaluate whether increases in tyrosine hydroxylase and dopamine β-hydroxylase evoked by other stimuli such as potassium or dibutyryl cyclic AMP in such an in vitro system are representative for in vivo trans-synaptic induction where changes in the levels of enzymes involved in norepinephrine synthesis or degradation are strictly confined to TH and DBH. In the presence of elevated concentrations of potassium or 5 mm dibutyryl cyclic AMP under organ culture conditions TH and DBH as well as DOPA decarboxylase and monoamine oxidase were significantly (P < 0.025) increased. The increase in total activities of TH and DBH were completely, those of DOPA decarboxylase and monoamine oxidase partially, inhibited by cycloheximide. In the presence of high concentrations of potassium, the total protein content of the ganglia was 28 per cent higher than in culture controls while dibutyryl cyclic AMP had no significant effect. Cycloheximide alone caused the protein content to fall to 70 per cent of that in control cultures. The loss of protein in the presence of cycloheximide was not accompanied by a simultaneous loss of TH, DOPA decarboxylase or monoamine oxidase, but DBH was decreased. Potassium was shown to increase the incorporation of [3H]leucine into TCA-insoluble protein during an early culture period but dibutyryl cyclic AMP showed no such effect. An increase in the rate of incorporation of [3H]leucine into protein was seen in both the control and elevated potassium cultures after 48 h. This increase did not occur in the presence of dbcAMP. The difference in enzyme patterns under conditions of elevated potassium and dibutyryl cyclic AMP and the fact that no changes in the levels of endogenous cyclic AMP were observed during exposure to 54 mm -potassium for a time period sufficient to initiate changes ultimately leading to elevated TH levels argues against the mediation of the potassium-induced enzyme increases by cAMP. Since changes in enzyme patterns caused by potassium and dbcAMP were not similar to patterns seen in vivo under conditions of trans-synaptic induction we conclude that use of this system as an in vitro model for in vivo trans-synaptic induction necessitates great caution.  相似文献   

7.
Total phosphodiesterase activity was measured in Sertoli cell culture after exposure to isobutyl-methyl-xanthine, dibutyryl cyclic AMP and FSH. After 24 hr of incubation both FSH and dibutyryl cAMP caused a significant increase in total phosphodiesterase activity of Sertoli cell homogenates (control: 66 ± 16 pmoles/min/mg protein; FSH: 291 ± 25 pmoles/min/mg protein; dibutyryl cAMP: 630 ± 70 pmoles/min/mg protein). FSH stimulation was potentiated by isobutyl-methyl-xanthine. Both in the presence and absence of xanthine, the induction of phosphodiesterase was dependent on the FSH concentration, with maximal stimulation achieved with 0.5–1.0 μg FSH/ml. The induction of phosphodiesterase activity by hormone was abolished by cycloheximide treatment. The data suggest that FSH regulates phosphodiesterase activity via changes of cAMP levels in Sertoli cell in culture.  相似文献   

8.
1. The effect of cyclic nucleotides on aggregates of dispersed embryonic neural retina cells was examined in order to study their influence upon macromolecular synthesis, i.e. protein and DNA. 2. Cyclic AMP, dibutyryl cAMP, cyclic GMP and dibutyryl cGMP were used at various concentrations (5 x 10(-4) -5 mM). 3. The incorporation of labeled precursors into DNA and protein were used to monitor the effect of cyclic nucleotides on cultured aggregates. 4. All nucleotides exhibited a stimulatory effect at 5 x 10(-4) and 5 x 10(-3) mM on macromolecular synthesis, with resulting growth and proliferation of chick neural retina cells. 5. High concentrations (5 x 10(-1) and 5 mM) of cyclic nucleotides exhibited an inhibitory effect upon macromolecular synthesis and a marked cytotoxic effect.  相似文献   

9.
Addition of dibutyryl cyclic AMP or parathyroid hormone to bone organ cultures markedly increased the incorporation of 3H-glucosamine into non-dialyzable macromolecules. Other cyclic nucleotides or their dibutyryl derivatives did not stimulate glucosamine incorporation. DEAE-cellulose chromatography of the papain-digested calvaria and culture medium resolved the labeled material into four peaks. A four-fold increase in radioactivity was observed in peak III. Previous studies of peak III have identified the labeled material as hyaluronic acid. The results suggest that the parathyroid hormone stimulated increase in glucosamine incorporation is mediated via the adenylate cyclase-cyclic AMP system, and that the increased amount of radioactivity is due to an increased amount of hyaluronic acid. Turnover studied of the labeled material suggest that the release of proteoglycans into the culture medium is not inhibited in the cultures treated with dibutyryl cyclic AMP. The role of hyaluronate in this experimental system remains to be elucidated.  相似文献   

10.
Certain epithelial cell lines have morphologic, physiologic, biochemical and pharmacologic characteristics of transporting epithelia from intact organs. In this paper we show that dibutyryl cyclic AMP, 5' AMP, adenosine and cyclic AMP phosphodiesterase inhibitors stimulate hemicyst formation by the dog kidney cell line MDCK. It is suggested that this effect is explained by elevation of intracellular cyclic AMP levels by means of an exogenous non-metabolizable source of cyclic AMP, phosphodiesterase inhibition or adenyl cyclase stimulation. Since hemicyst formation is in part due to transepithelial fluid transport, these findings raise the possibility that this fraction might be modulated by cAMP in an established cell line. We believe that cultured epithelial cells may provide an exploitable model system to investigate at the cellular and subcellular levels, the mechanism by which cyclic AMP modifies water and solute movements across epithelia.  相似文献   

11.
A normal human diploid fibroblast cell strain, Lederle 130 (Led 130), and its virus-transformed progeny line, transformed Led 130, were subjected to 0.75 and 1.5 mM concentrations of adenosine-5'-monophosphate (AMP), cyclic AMP (cAMP) and dibutyryl cyclic AMP (Bt2cAMP). While cAMP was markedly inhibitory to neoplastic cells at 1.5 mM, Bt2-cAMP was even more effective at this concentration, producing 85% inhibition by 4 days and 91% inhibition by 6 days. Bt2-cAMP was the only nucleotide to reverse morphological transformation effects in the neoplastic fibroblasts. Normal fibroblasts were inhibited in growth rate to a comparable extent by all nucleotides, and were not altered morphologically.  相似文献   

12.
The abilities of several nucleotides to protect tyrosine aminotransferase (L-tyrosine: 2-oxoglutarate aminotransferase, EC 2.6.1.5) against proteolytic inactivation in vitro have been examined as part of an ongoing investigation of the role of cyclic GMP in the intracellular degradation of the hepatic enzyme. Although neither cyclic GMP nor cyclic AMP was found to exert such a protective effect, certain nucleotide analogs were observed to inhibit the inactivation of tyrosine aminotransferase by trypsin and chymotrypsin. The nucleotides which conferred the strongest protection were the dibutyryl derivatives of cyclic GMP and cyclic AMP. This phenomenon appears to require a purine nucleotide with hydrophobic substituent(s), while the cyclic phosphate is not essential. The nucleotides probably act by direct interaction with tyrosine aminotransferase as indicated by changes in kinetic properties and heat stability of the enzyme and by their failure to inhibit trypsin when other protein substrates, including another aminotransferase, were used. Dibutyryl cyclic AMP was shown to block the appearance of a characteristic 43 kDa tryptic cleavage product of tyrosine aminotransferase but not the conversion of the native 54 kDa form to a size of 50 kDa. Arguments are presented against the involvement of the protective effect in the actions of dibutyryl cyclic nucleotides on tyrosine aminotransferase in cells.  相似文献   

13.
Bovine pulmonary artery endothelial cells in culture were used to assess the influence of cyclic nucleotides, isoproterenol (beta adrenergic agonist), and theophylline (phosphodiesterase inhibitor) on angiotensin-I-converting enzyme (ACE) activity of the cells and culture medium. Dibutyryl cAMP (10(-3) M) but not cAMP or dibutyryl cGMP stimulated angiotensin-I-converting enzyme (ACE) activity of cells in culture approximately 50-100% but had little influence on ACE activity of the medium. Theophylline at 10(-3) M concentration produced a three- to fourfold stimulation of both cellular and medium ACE activity. Isoproterenol by itself had no effect on cellular ACE activity but produced a stimulatory effect at 10(-7)-10(-5) M concentration after pretreatment of cells for 24 hr with 10(-4) M theophylline. The results support the concept that ACE activity of endothelial cells is influenced by the cyclic AMP system. ACE activity in cells and that released into medium may be under different regulatory controls.  相似文献   

14.
The injection of β-ecdysone into chilled Hyalophora gloveri pupae resulted in the stimulation of adenyl cyclase activity in the wing epidermis as measured by the incorporation of label into cyclic AMP from a prelabeled endogenous pool. Stimulation was also obtained in pupal wings in vitro and in wing epidermal homogenates. Although the sequence of responses to β-ecdysone in vitro depended on the composition of the incubation medium, the stimulation of cyclic AMP synthesis always preceded increases in the rates of RNA and protein synthesis. The increase in adenyl cyclase activity is the earliest metabolic event thus far discerned as a result of β-ecdysone action. It is suggested that β-ecdysone stimulates adenyl cyclase (and guanyl cyclase) but that the hormone also exerts effects on target cells independent of the cyclic AMP system.  相似文献   

15.
STIMULATION OF BRAIN SEROTONIN SYNTHESIS BY DIBUTYRYL-CYCLIC AMP IN RATS   总被引:3,自引:1,他引:2  
Cyclic AMP and dibutyryl-cyclic AMP, a derivative of cyclic AMP resistant to phosphodiesterase inactivation, were injected into the lateral ventricles of rats. These nucleotides did not change the level of brain 5-HT but increased the brain level of its principal metabolite, 5-hydroxyindoleacetic acid. Cyclic AMP was less potent than dibutyryl-cyclic AMP. Butyrate and 5′-AMP were inactive. The effect of dibutyryl cyclic AMP on 5-HT metabolism was studied both in vivo and in vitro. The rate of synthesis of 5-HT was measured by the rate of accumulation of 5-hydroxyindoleacetic acid after the transport of this acid out of the brain was blocked with probenecid. The rate of synthesis of brain 5-HT increased from 0-38 μg/g/h in control rats to 0-65 μg/g/h after dibutyryl-cyclic AMP. In addition cyclic AMP and dibutyryl-cyclic AMP markedly increased brain tryptophan, while AMP was inactive. Since brain tryptophan hydroxylase has a Km for its substrate that is much higher than the concentrations of tryptophan normally present in the brain, it is likely that the increase in the rate of synthesis of brain 5-HT is secondary to the cyclic AMP induced increase in the levels of brain tryptophan. In vitro studies revealed that dibutyryl-cyclic AMP increased the uptake of radioactive labelled tryptophan into slices of rat brain stem and the formation of 5-HT and 5-hydroxyindoleacetic acid.  相似文献   

16.
Polysphondylium violaceum is shown to produce and excrete cyclic nucleotides and to produce a cell-associated cyclic nucleotide phosphodiesterase(s). The amount of adenosine 3′,5′-cyclic monophosphate (cAMP) excreted by the amebae reaches a maximum during development when aggregation centers are just forming and then falls off rapidly. Measurements of total cAMP show that the amount synthesized increases more than 15-fold throughout development with the majority of the increase coming during the culmination stages. Guanosine 3′,5′-cyclic monophosphate (cGMP) is either not excreted or is excreted at levels below our limits of detection. An increase in the total cGMP synthesized occurs at mid-aggregation when two or three sharp peaks of synthesis are observed. However, development of P. violaceum is not affected by the addition of high concentrations of either cAMP or cGMP (or their dibutyryl derivatives) to the medium despite the fact that the cells produce these nucleotides. Cell-associated cyclic nucleotide phosphodiesterase activity, which hydrolyses both cAMP and cGMP, is greatest at the onset of starvation with a second increase in activity during aggregation.  相似文献   

17.
The effect of cyclic AMP (cAMP) analogs and phosphodiesterase (PDE) inhibitors on neurite outgrowth was studied in explant cultures of olfactory neurons. Nasal pits from 5- or 6-day-old chick embryos were minced, explanted into culture dishes, and grown in a serum-free medium. One of the cyclic AMP analogs, dibutyryl cyclic AMP (dbcAMP) or 8-bromo-cyclic AMP (8-Br-cAMP), or one of the PDE inhibitors, theophylline or isobutylmethylxanthine (IBMX), was added to the culture medium. The explants were examined for neurite outgrowth after 2 days in vitro. Db-cAMP increased the number of explants expressing neurites by 25-35% over control cultures, whereas 8-Br-cAMP had essentially no effect at the same concentrations. Addition of dibutyryl cyclic GMP (dbcGMP) gave no increase in neurite outgrowth, thus indicating that the effect of enhancing neuritic growth is specific to cAMP and not cyclic nucleotides in general. The resulting increase in neurite outgrowth is due to the cyclic nucleotide component of dbcAMP, since both IBMX and theophylline, which elevate intracellular cAMP, also increased neurite outgrowth significantly. When forskolin was added to the culture medium, there was a trend to increased neurite outgrowth; this was significantly enhanced when a subthreshold concentration of theophylline was added in addition to the forskolin.  相似文献   

18.
The dev 1510 mutant of Dictyostelium discoideum differs from the wild type in that unaggregated cells are capable of differentiating into either spores or stalk cells depending on the culture conditions (12). Taking advantage of this fact, the effects of cyclic AMP (cAMP) on differentiation of the mutant cells were examined under conditions that prevent normal morphogenesis. In the presence of low concentrations of exogenous cAMP, the cells differentiated into only stalk cells, whereas in the presence of high concentrations they differentiated into only spores. Untreated cells formed stalk cells, but this was inhibited by addition of phosphodiesterase, indicating that it was induced by a low concentration of cAMP which they produced themselves. Cyclic GMP and dibutyryl cAMP also induced spore formation though less effectively, while 5'AMP, ADP and ATP had no effect. During development, the cells increased in sensitivity to cAMP in that spore formation was induced at lower concentration of cAMP after 4 hr of starvation. Treatment of cells that had been starved for 6hr with 10−4M cAMP for as short a time as 30 min was enough to induce 8% of the cells to form spores.
The effects on cAMP-induced differentiation of chemicals that are known to influence development of the wild type were also examined. Both NH4Cl and KCl inhibited cAMP-induced stalk formation, but had no effect on spore formation. In the presence of arginine, spore formation was induced at a lower concentration of cAMP with higher efficiency. CaCl2, LiCl and KF had no effect on cAMP-induced differentiation.  相似文献   

19.
Chronic treatment of normal mice with either dibutyryl cyclic AMP or erythropoietin produced elevations in the hematocrit, hemoglobin concentration and red cell mass when compared to these same hematological parameters in untreated mice. Dibutyryl cyclic AMP increased red cell mass by 46% while ESF treatment resulted in a 56% increase in red cell mass. These studies confirm earlier reports of the effects of cyclic AMP in increasing radioactive iron incorporation into red cells and further indicate that this change is associated with an absolute increase renal cyclic AMP concentrations probably stimulate erythropoiesis as a consequence of increased kidney production of erythropoietin.  相似文献   

20.
B Hogan  R Shields  D Curtis 《Cell》1974,2(4):229-233
Quiescent baby hamster kidney cells in 0.5% serum synthesize little DNA and have low levels of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis. After adding serum to 5%, ODC activity is increased 30 fold, reaching a maximum at 6 hr, whereas DNA synthesis is reinitiated at 12 hr. Five μg/ml insulin also increases ODC activity 3 fold by 4 hr. In quiescent 3T3 cells and mouse embryo fibroblasts, serum and insulin may trigger many metabolic events by causing a transient drop in intracellular cyclic AMP and a rise in cyclic GMP. To test this hypothesis in BHK cells, cAMP levels were raised by adding dibutyryl cAMP and/or theophylline, or by stimulating adenylate cyclase with Prostaglandin E1. cAMP blocks the serum stimulation of DNA synthesis, but increases ODC activity, both in quiescent cells and in cells treated with serum and insulin. These results suggest that serum and insulin control ODC activity through a mechanism independent of a drop in cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号