首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A soluble protein kinase that phosphorylates the last serine residue (Ser-833) in the cytoplasmic domain of the low density lipoprotein (LDL) receptor was purified about 1300-fold from the cytosol of bovine adrenal cortex. The LDL receptor kinase shared several properties with casein kinase II: use of either GTP or ATP; phosphorylation of a typical casein kinase II recognition sequence in the LDL receptor (a serine followed by a cluster of three negatively charged amino acids); and inhibition by heparin. The LDL receptor kinase differed from classic casein kinase II in the following respects: its apparent molecular weight on gel filtration was approximately 500,000 as opposed to the usual molecular weight of 130,000 for casein kinase II; its affinity for the LDL receptor (apparent Km approximately 5 nM) was much greater than its affinity for casein (approximately 10 microM); and its activity was inhibited by polylysine, an agent that stimulates casein kinase II. The physiologic role of this unusual kinase, if any, is unknown.  相似文献   

2.
A cyclic-AMP-independent nuclear protein kinase has been purified from Dictyostelium discoideum amoebae. The purification procedure involves chromatography of DEAE-Sephadex, phosphocellulose and heparin-Sepharose. The purified enzyme phosphorylates threonine and serine of acidic proteins as casein and phosvitin. Phosphorylation of casein is stimulated by spermine. The kinase requires Mg2+ and can utilize both ATP and GTP as phosphoryl donors. Heparin is a potent inhibitor of the enzyme, being the protein kinase activity fully inhibited at concentrations of 0.5 micrograms/ml. One polypeptide of molecular mass 38 kDa was the major protein band present in the purified kinase preparation as estimated by NaDodSO4 denaturing polyacrylamide gel electrophoresis. This band belongs to the protein kinase because it is the only one that is observed associated with the protein kinase activity when the enzyme preparation is centrifuged in glycerol gradients. The 38-kDa polypeptide is also the major product of autophosphorylation of the enzyme preparation. The enzymatic properties allow to classify the enzyme as a type-II casein kinase. However, its structural properties are different from the mammalian type-II casein kinases and make the D. discoideum enzyme more similar to the plants type-II casein kinases.  相似文献   

3.
Bovine adrenal cortex contains a high molecular weight casein kinase II-like enzyme (Mr 500,000) that phosphorylates a specific serine residue in the cytoplasmic domain of the low density lipoprotein (LDL) receptor (Kishimoto, A., Brown, M. S., Slaughter, C. A., and Goldstein, J. L. (1987) J Biol. Chem. 262, 1344-1351). In the current paper, we provide evidence to suggest that this 500-kDa kinase can be dissociated into two subunits, a catalytic subunit and an activator subunit, by treatment with 1 M NaCl. The catalytic subunit was purified to homogeneity (greater than 100,000-fold) using affinity chromatography on GTP-agarose plus several other chromatography steps. It had an Mr of 50,000 by gel filtration and 35,000 by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The catalytic subunit phosphorylated casein actively, but it phosphorylated the LDL receptor with only low affinity. The affinity for the LDL receptor was increased 10-fold (saturation at 10 nM LDL receptor) by addition of a second protein that was released from a high molecular weight 500-kDa complex by 1 M NaCl. This activator protein (Mr 120,000 by gel filtration) was extremely heat stable but was destroyed by trypsin. It appeared to be required in stoichiometric amounts with relation to the LDL receptor. It did not increase the ability of the 50-kDa subunit to phosphorylate casein nor did it activate phosphorylation of the LDL receptor or casein by classic casein kinase II. The current data raise the possibility that the specificity of the 500-kDa LDL receptor kinase is attributable to a heat-stable activator subunit that binds to the LDL receptor and thereby renders it a better substrate for the catalytic subunit of the kinase.  相似文献   

4.
Insulin receptor was co-purified from human placenta together with insulin-stimulated kinase activity that phosphorylates the insulin receptor on serine residues. By using this 'in vitro' system, the mechanism of activation of the serine kinase by insulin was explored. Peptide 1150, histone, poly(Glu-Tyr), eliminating Mn2+ (Mg2+ only), treatment at 37 degrees C (1 h), N-ethylmaleimide, phosphate, beta-glycerol phosphate and anti-phosphotyrosine antibody all inhibited insulin-receptor tyrosine kinase activity and the ability of insulin to stimulate phosphorylation of the insulin receptor on serine. Additionally, direct stimulation of the receptor tyrosine kinase by vanadate increased serine phosphorylation of the insulin receptor. Insulin-stimulated tyrosine phosphorylation preceded insulin-stimulated serine phosphorylation of the insulin receptor. The activity of the insulin-sensitive receptor serine kinase was not augmented by cyclic AMP, cyclic GMP, Ca2+, Ca2+ + calmodulin, Ca2+ + phosphatidylserine + diolein or spermine, or inhibited appreciably by heparin. Additionally, the serine kinase phosphorylated casein or phosvitin poorly and was active with Mn2+. This indicates that it is distinct from Ca2+, Ca2+/phospholipid, Ca2+/calmodulin, cyclic AMP- and cyclic GMP-dependent protein kinases, casein kinases I and II and insulin-activated ribosomal S6 kinase. Taken together, these data indicate that a novel species of serine kinase catalyses the insulin-dependent phosphorylation of the insulin receptor and that activation of this receptor serine kinase by insulin requires an active insulin-receptor tyrosine kinase.  相似文献   

5.
A new eukaryotic initiation factor 2 kinase has been purified for the first time from calf brain cytosol. The purification of a nonabundant novel protein kinase activity, designated as PKI, that phosphorylates the alpha subunit of eukaryotic initiation factor 2 is described. The protein kinase activity was assayed using purified initiation factor 2 as a substrate and was purified by ammonium sulphate precipitation, conventional chromatography in heparin-Sepharose and phosphocellulose and by high performance size exclusion and anion exchange chromatographies. The protein kinase activity elutes in the region of 140,000 in the size exclusion chromatography and is associated with two different polypeptides a and b, with relative molecular masses of 38,000 and 20,000 and an approximate ratio of 2.5-3.0:1. The protein kinase does not phosphorylate casein or histones and it is independent of cyclic nucleotides. It can be classified as a serine kinase since the phosphorylation of the alpha subunit of eIF-2 is produced in serine residues. Under these conditions none of the kinase subunits are phosphorylated.  相似文献   

6.
Casein kinase I phosphorylates the 25-kDa mRNA cap-binding protein   总被引:3,自引:0,他引:3  
The 25-kDa mRNA cap-binding protein (eIF-4E) exists in both phosphorylated and dephosphorylated forms in eukaryotic cells. Phosphorylated eIF-4E appears to be preferentially associated with 48 S initiation complexes and with the 220-kDa subunit of eIF-4F. In addition, dephosphorylation of eIF-4E has been observed during heat shock and mitosis which are accompanied by decreased protein synthesis. However, the control of eIF-4E phosphorylation and its regulatory role remain poorly understood. Using eIF-4E as a substrate we have identified and purified from rabbit reticulocytes a protein kinase that phosphorylates eIF-4E in vitro. This enzyme phosphorylated eIF-4E on both serine and threonine residues with an apparent Km of 3.7 microM. The molecular mass of the enzyme and specificity for substrates other than eIF-4E suggested that this enzyme was a species of casein kinase I. This was confirmed by comparing the phosphopeptide map of the purified reticulocyte enzyme with that of rabbit skeletal muscle casein kinase I and by comparing phosphopeptide maps of eIF-4E phosphorylated in vitro by each enzyme. We conclude that casein kinase I phosphorylates eIF-4E in vitro and suggest that eIF-4E may be phosphorylated by casein kinase I in intact cells under some physiologic conditions.  相似文献   

7.
Insulin resistance is a key pathophysiologic feature of obesity and type 2 diabetes and is associated with other human diseases, including atherosclerosis, hypertension, hyperlipidemia, and polycystic ovarian disease. Yet, the specific cellular defects that cause insulin resistance are not precisely known. Insulin receptor substrate (IRS) proteins are important signaling molecules that mediate insulin action in insulin-sensitive cells. Recently, serine phosphorylation of IRS proteins has been implicated in attenuating insulin signaling and is thought to be a potential mechanism for insulin resistance. However, in vivo increased serine phosphorylation of IRS proteins in insulin-resistant animal models has not been reported before. In the present study, we have confirmed previous findings in both JCR:LA-cp and Zucker fatty rats, two genetically unrelated insulin-resistant rodent models, that an enhanced serine kinase activity in liver is associated with insulin resistance. The enhanced serine kinase specifically phosphorylates the conserved Ser(789) residue in IRS-1, which is in a sequence motif separate from the ones for MAPK, c-Jun N-terminal kinase, glycogen-synthase kinase 3 (GSK-3), Akt, phosphatidylinositol 3'-kinase, or casein kinase. It is similar to the phosphorylation motif for AMP-activated protein kinase, but the serine kinase in the insulin-resistant animals was shown not to be an AMP-activated protein kinase, suggesting a potential novel serine kinase. Using a specific antibody against Ser(P)(789) peptide of IRS-1, we then demonstrated for the first time a striking increase of Ser(789)-phosphorylated IRS-1 in livers of insulin-resistant rodent models, indicating enhanced serine kinase activity in vivo. Taken together, these data strongly suggest that unknown serine kinase activity and Ser(789) phosphorylation of IRS-1 may play an important role in attenuating insulin signaling in insulin-resistant animal models.  相似文献   

8.
Purification of a hepatic S6 kinase from cycloheximide-treated Rats   总被引:14,自引:0,他引:14  
Cycloheximide injection of rats results in the activation of a protein kinase that phosphorylates 40 S ribosomal protein S6. This Ca2+/cyclic nucleotide-independent kinase exhibits chromatographic properties that are indistinguishable from the S6 kinase in H4 hepatoma cells whose activity is stimulated by insulin and growth factors and the S6 kinase that is activated during liver regeneration. The enzyme has been purified 50,000-fold to near homogeneity: a critical step in purification employs a peptide affinity column using a synthetic peptide corresponding to the carboxyl-terminal 32-amino acid residues of mouse liver S6, which encompasses all S6 phosphorylation sites. The purified enzyme is a 70,000-dalton polypeptide that is reactive with azido-ATP. In addition to 40 S ribosomal S6 and the synthetic peptide, the S6 kinase catalyzes rapid phosphorylation of a number of other protein substrates including histone H2b, glycogen synthase, and ATP citrate lyase; this last protein is phosphorylated by S6 kinase in vitro on the same serine residue that is phosphorylated in response to insulin and epidermal growth factor in intact hepatocytes. Moreover, the S6 kinase catalyzes the phosphorylation of a number of hepatic nonhistone nuclear proteins. This S6 kinase probably underlies the increased hepatic S6 phosphorylation observed after cycloheximide treatment, which in turn corresponds to the mitogen-activated S6 kinase.  相似文献   

9.
ATP-citrate lyase in vivo contains three phosphorylation sites on two tryptic peptides (peptides A and B). These phosphorylation sites are under hormonal control. Multifunctional protein kinase (MFPK) from rat liver phosphorylates peptide B on serine and threonine residues whereas cAMP-dependent protein kinase phosphorylates peptide A on a serine residue (Ramakrishna, S., and Benjamin, W. B. (1985) J. Biol. Chem. 260, 12280-12286). We now report that rat adipose tissue MFPK also phosphorylates serine and threonine residues of peptide B of ATP-citrate lyase. When the activity of MFPK was assayed using partially purified (by chromatography on phosphocellulose) cytosol fractions from insulin-treated adipose tissue, it was found that MFPK activity was decreased by over 55%. This decrease in MFPK activity occurs at physiological concentrations of insulin (EC50 = 1 x 10(-10) M). Its onset is rapid and almost maximal at 5 min after the addition of insulin. Even when new protein synthesis is inhibited by cycloheximide, extracts from insulin-treated fat pads have less MFPK activity compared to the control. The insulin effect is maintained after further chromatography on a gel filtration column suggesting that the decrease in MFPK activity is not due to a low molecular weight inhibitor. The insulin-induced decrease in MFPK activity is due to a decrease in Vmax whereas the affinity of this enzyme toward ATP-citrate lyase or ATP is unchanged.  相似文献   

10.
Insulin causes rapid phosphorylation of the beta subunit (Mr = 95,000) of its receptor in broken cell preparations. This occurs on tyrosine residues and is due to activation of a protein kinase which is contained in the receptor itself. In the intact cell, insulin also stimulates the phosphorylation of the receptor and other cellular proteins on serine and threonine residues. In an attempt to find a protein that might link the receptor tyrosine kinase to these serine/threonine phosphorylation reactions, we have studied the interaction of a partially purified preparation of insulin receptor with purified preparations of serine/threonine kinases known to phosphorylate glycogen synthase. No insulin-dependent phosphorylation was observed when casein kinases I and II, phosphorylase kinase, or glycogen synthase kinase 3 was incubated in vitro with the insulin receptor. These kinases also failed to phosphorylate the receptor. By contrast, the insulin receptor kinase catalyzed the phosphorylation of the calmodulin-dependent kinase and addition of insulin in vitro resulted in a 40% increase in this phosphorylation. In the presence of calmodulin-dependent kinase and the insulin receptor kinase, insulin also stimulated the phosphorylation of calmodulin. Phosphoamino acid analysis showed an increase of phosphotyrosine content in both calmodulin and calmodulin-dependent protein kinase. These data suggest that the insulin receptor kinase may interact directly and specifically with the calmodulin-dependent kinase and calmodulin. Further studies will be required to determine if these phosphorylations modify the action of these regulatory proteins.  相似文献   

11.
Previous in vivo studies have shown that the rabbit progesterone receptor undergoes two phosphorylation reactions: one basal and a second one which is hormone-dependent. We report here on the presence and characteristics of a kinase activity found in receptor preparations highly purified by immunoaffinity chromatography. 1. This kinase activity is not due to the receptor molecule itself since the two proteins may be separated by several chromatographic and immunological methods. 2. The presence of the kinase in receptor preparations is not an artefact of the purification procedure. The kinase binds to the receptor as shown by coelution in immunoaffinity experiments and during various chromatographies. This interaction probably takes place in vivo and is not artefactually formed during solubilization of the receptor since the kinase also copurifies with receptors isolated from the uterine nuclei of progestin-treated rabbits. 3. This enzyme may be classified as a casein kinase since it readily phosphorylates the latter substrate (Km approximately equal to 0.15 mg/ml) and is not regulated by cyclic nucleotides, Ca2+ and calmodulin or phospholipids. Its classification as a casein kinase I or II is difficult since on the one hand it is inhibited by heparin, activated by polyamines and may use both ATP and GTP, but on the other hand it modifies only serine residues, and is not inhibited by heparin when the receptor itself is employed as a substrate. 4. The kinase which copurifies with the receptor does not mimic in vitro the effects of the hormone-dependent phosphorylation of the receptor observed in vivo: there is no enhancement of kinase activity by the hormone, and the phosphorylated receptor does not exhibit the characteristic "upshift" in its electrophoretic mobility. Thus either this kinase is not the enzyme responsible for the hormone-dependent receptor phosphorylation or, during purification, a factor has been lost which is necessary for retaining the hormone dependency of the reaction.  相似文献   

12.
D M Smith  G J Sale 《FEBS letters》1989,242(2):301-304
Insulin receptor was copurified from human placenta together with insulin-stimulated kinase activity that phosphorylates the insulin receptor on serine residues. Analysis of phosphorylated insulin receptor by two-dimensional tryptic peptide mapping showed that sites of insulin stimulated serine phosphorylation in the insulin receptor were recovered in the same peptides as those known to be phosphorylated on serine in vivo in response to insulin. This indicates that the serine kinase copurified with the insulin receptor represents a physiologically important enzyme involved in the insulin triggered serine phosphorylation of the insulin receptor in vivo.  相似文献   

13.
The phosphorylation of rabbit skeletal muscle glycogen synthase by casein kinase I is markedly enhanced if the enzyme has previously been phosphorylated by cAMP-dependent protein kinase. The presence of phosphate in the primary cAMP-dependent protein kinase sites, sites 1a, 1b, and 2 (serine 7), increases the activity of casein kinase I toward residues in the vicinity of these sites. This synergistic phosphorylation correlates with potent inactivation of the glycogen synthase. Analysis of the NH2 terminus of the enzyme subunit indicated that phosphorylation at serine 7 caused serine 10 to become a preferred casein kinase I site and that phosphoserine can be an important recognition determinant for casein kinase I. This finding can also explain how epinephrine stimulation of skeletal muscle provokes significant increases in the phosphorylation state of serine residues, in particular serine 10, not recognized by cAMP-dependent protein kinase.  相似文献   

14.
A cyclic nucleotide-independent protein kinase has been isolated from Drosophila melanogaster by chromatography on phosphocellulose and hydroxylapatite followed by gel filtration and glycerol gradient sedimentation. As determined by sodium dodecyl sulfate gel electrophoresis, the purified enzyme is greater than 95% homogeneous and is composed of two distinct subunits, alpha and beta, having Mr = 36,700 and 28,200, respectively. The native form of the enzyme is an alpha 2 beta 2 tetramer having a Stokes radius of 48 A, a sedimentation coefficient of 6.4 S, and Mr approximately 130,000. The purified kinase undergoes an autocatalytic reaction resulting in the specific phosphorylation of the beta subunit, exhibits a low apparent Km for both ATP and GTP as nucleoside triphosphate donor (17 and 66 microM, respectively), phosphorylates both casein and phosvitin but neither histones nor protamine, modifies both serine and threonine residues in casein, and is strongly inhibited by heparin (I50 = 21 ng/ml). These properties are remarkably similar to those of casein kinase II, an enzyme previously described in several mammalian and avian species. The strong similarities among the insect, avian, and mammalian enzymes suggest that casein kinase II has been highly conserved during evolution.  相似文献   

15.
A Mn2(+)-dependent serine/threonine protein kinase from rat liver membranes copurifies with the insulin receptor (IR) on wheat germ agglutinin (WGA)-sepharose. The kinase is present in a nonactivated form in membranes but can be activated 20-fold by phosphorylating the WGA-sepharose fraction with casein kinase-1 (CK-1), casein kinase-2 (CK-2), or casein kinase-3 (CK-3). The activated kinase can use IR beta-subunit, myelin basic protein, and histones as substrates. Activation of the kinase seems to proceed by two or more steps. Sodium vanadate and Mn2+ are required in reaction mixtures for activation to be observed, whereas the tyrosine kinase-specific substrate, poly (glu, tyr), completely inhibits activation. These observations suggest that, in addition to serine/threonine phosphorylation by one of the casein kinases, activation of the Mn2(+)-dependent protein kinase also requires tyrosine phosphorylation. Such phosphorylation may be catalyzed by the IR tyrosine kinase.  相似文献   

16.
A protein kinase, termed microtubule-associated protein (MAP) kinase, which phosphorylates microtubule-associated protein 2 (MAP-2) in vitro and is stimulated 1.5-3-fold in extracts from insulin-treated 3T3-L1 cells has been identified (Ray, L.B., and Sturgill, T.W. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1502-1506). Here, we describe chromatographic properties of MAP kinase and provide biochemical characterization of the partially purified enzyme. Isolation of the enzyme is facilitated by its unusually high affinity for hydrophobic interaction chromatography matrices. The molecular weight of the partially purified enzyme was determined to be 35,000 by gel filtration chromatography and 37,000 by glycerol gradient centrifugation. MAP kinase activity of chromatographic fractions correlated precisely with the presence of a 40-kDa phosphoprotein detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. MAP kinase has a Km of 7 microM for ATP and does not utilize GTP. Acetyl-CoA carboxylase, ATP citrate-lyase, casein, histones, phosvitin, protamine, and ribosomal protein S6 were all poor substrates relative to MAP-2. The enzyme is inhibited by fluoride and beta-glycerol phosphate but not by heparin. These properties of MAP kinase distinguish it from protein kinases previously described in the literature.  相似文献   

17.
Various proteins modulate the kinase activity of the insulin receptor   总被引:2,自引:0,他引:2  
Previous studies of the substrate specificity of the purified insulin receptor tyrosine kinase using synthetic random polymers have demonstrated that the receptor kinase phosphorylates poly (Glu, Tyr) 4:1 but not poly (Glu, Tyr) 1:1. In the present study, insulin treatment of Chinese hamster ovary cells overexpressing the human insulin receptor was found to stimulate the ability of their membrane extracts to phosphorylate poly (Glu, Tyr) 1:1. It was concluded that this activity was due to the receptor itself because: 1) it was precipitated with a monoclonal antibody to the receptor; 2) the addition of various membrane extracts to purified insulin receptor preparations stimulated the ability of these preparations to phosphorylate poly (Glu, Tyr) 1:1; and 3) certain purified proteins, including bovine serum albumin and casein, were also capable of stimulating the purified receptor to phosphorylate poly (Glu, Tyr) 1:1. The effect of albumin was dose-dependent; 0.5 and 10 mg/ml bovine serum albumin stimulated the phosphorylation of poly (Glu, Tyr) 1:1 by 2- and 230-fold, respectively. In contrast, albumin had no effect on the phosphorylation of poly (Glu, Tyr) 4:1. These results indicate that the activity of the insulin receptor kinase on certain substrates can be modulated by the presence of other proteins.  相似文献   

18.
Almost all the Ca2+-dependent protein kinase activity in nuclei purified from etiolated pea (Pisum sativum, L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.3 molar NaCl. This protein kinase can be further purified 80,000-fold by salt fractionation and high performance liquid chromatography, after which it has a high specific activity of about 100 picomoles per minute per microgram in the presence of Ca2+ and reaches half-maximal activation at about 3 ×10−7 molar free Ca2+, without calmodulin. It is a monomer with a molecular weight near 90,000. It can efficiently use histone III-S, ribosomal S6 protein, and casein as artificial substrates, but it phosphorylates phosvitin only weakly. Its Ca2+-dependent kinase activity is half-maximally inhibited by 0.1 millimolar chlorpromazine, by 35 nanomolar K-252a and by 7 nanomolar staurosporine. It is insensitive to sphingosine, an inhibitor of protein kinase C, and to basic polypeptides that block other Ca2+-dependent protein kinases. It is not stimulated by exogenous phospholipids or fatty acids. In intact isolated pea nuclei it preferentially phosphorylates several chromatin-associated proteins, with the most phosphorylated protein band being near the same molecular weight (43,000) as a nuclear protein substrate whose phosphorylation has been reported to be stimulated by phytochrome in a calcium-dependent fashion.  相似文献   

19.
In these studies we demonstrate that insulin stimulates both tyrosine and serine phosphorylation of the insulin receptor after its partial purification on wheat germ-agarose, and after affinity purification on insulin-agarose. Analysis of the serine phosphate incorporated into partially purified or highly purified insulin receptor suggests that an insulin-sensitive serine kinase (IRSK) copurifies with the insulin receptor. Following trypsin digestion, reversed-phase high pressure liquid chromatography (HPLC) analysis of the phosphorylated, affinity-purified insulin receptor preparation reveals phosphopeptide profiles similar to those of trypsin-digested receptors immunoprecipitated from 32P-labeled fibroblasts overexpressing the human insulin receptor. The major insulin-stimulated HPLC phosphopeptide peak from insulin receptors labeled in intact cells contains a hydrophilic phosphoserine-containing peptide which rapidly elutes from a C18 column. HPLC and two-dimensional separation indicate that the same phosphopeptide is obtained when affinity-purified insulin receptors are phosphorylated by IRSK. The serine containing tryptic peptide within the cytoplasmic domain of the human insulin receptor predicted to elute most rapidly upon HPLC had the sequence SSHCQR corresponding to residues 1293-1298. A synthetic peptide containing this sequence is phosphorylated by the insulin receptor/IRSK preparation. After alkylation and trypsin digestion, the synthetic phosphopeptide comigrates with the alkylated, tryptic phosphopeptide derived from insulin receptor phosphorylated in vitro by IRSK. We propose that serine 1293 or 1294 of the human insulin receptor is a major site(s) phosphorylated on the insulin receptor in intact cells and is phosphorylated by IRSK. Furthermore, insulin added directly to affinity-purified insulin receptor/IRSK preparations stimulates the phosphorylation of synthetic peptides corresponding to this receptor phosphorylation site and another containing threonine 1336. Kemptide phosphorylation is not stimulated by insulin under these conditions. No phosphorylation of peptide substrates for Ca2+/calmodulin-dependent protein kinase, protein kinase C, casein kinase II, or cGMP-dependent protein kinase by IRSK is detected. These data indicate that IRSK exhibits specificity for the insulin receptor and may be activated by the insulin receptor tyrosine kinase in an insulin-dependent manner.  相似文献   

20.
A rat liver cAMP-independent protein kinase that phosphorylates peptide b of ATP-citrate lyase (Ramakrishna, S., Pucci, D. L., and Benjamin, W. B. (1983) J. Biol. Chem. 258, 4950-4956) has been purified to apparent homogeneity. The molecular weight, determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, sucrose density gradient, and by gel filtration, was found to be 36,000. This protein kinase phosphorylates in vitro ATP-citrate lyase, acetyl-CoA carboxylase, and glycogen synthase and does not phosphorylate phosphorylase, phosphorylase kinase, histone, phosvitin, and casein. It has Fa (activity factor) activity stimulating the ATP X Mg-dependent phosphatase and is therefore named a multifunctional protein kinase. This kinase differs from glycogen synthase kinase-3 with regard to substrate specificity, kinetic parameters, and physicochemical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号