首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A reproducible Romanowsky-Giemsa staining (RGS) can be carried out with standardized staining solutions containing the two dyes azure B (AB) and eosin Y (EY). After staining, cell nuclei have a purple coloration generated by DNA-AB-EY complexes. The microspectra of cell nuclei have a sharp and intense absorption band at 18,100 cm-1 (552 nm), the so called Romanowsky band (RB), which is due to the EY chromophore of the dye complexes. Other absorption bands can be assigned to the DNA-bound AB cations. Artificial DNA-AB-EY complexes can be prepared outside the cell by subsequent staining of DNA with AB and EY. In the first step of our staining experiments we prepared thin films of blue DNA-AB complexes on microslides with 1:1 composition: each anionic phosphodiester residue of the nucleic acid was occupied by one AB cation. Microspectrophotometric investigations of the dye preparations demonstrated that, besides monomers and dimers, mainly higher AB aggregates are bound to DNA by electrostatic and hydrophobic interactions. These DNA-AB complexes are insoluble in water. Therefore it was possible to stain the DNA-AB films with aqueous EY solutions and also to prepare insoluble DNA-AB-EY films in the second step of the staining experiments. After the reaction with EY, thin sites within the dye preparations were purple. The microspectra of the purple spots show a strong Romanowsky band at 18,100 cm-1. Using a special technique it was possible to estimate the composition of the purple dye complexes. The ratio of the two dyes was approximately EY:AB approximately 1:3. The EY anions are mainly bound by hydrophobic interaction to the AB framework of the electrical neutral DNA-AB complexes. The EY absorption is red shifted by the interaction of EY with the AB framework of DNA-AB-EY. We suppose that this red shift is caused by a dielectric polarization of the bound EY dianions. The DNA chains in the DNA-AB complexes can mechanically be aligned in a preferred direction k. Highly oriented dye complexes prepared on microslides were birefringent and dichroic. The orientation is maintained during subsequent staining with aqueous EY solutions. In this way we also prepared highly orientated purple DNA-AB-EY complexes on microslides. The light absorption of both types of dye complexes was studied by means of a microspectrophotometer equipped with a polarizer and an analyser. The sites of best orientation within the dye preparations were selected under crossed nicols according to the quality of birefringence.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Simple Giemsa staining techniques for revealing banding patterns in somatic chromosomes of plants are described. The value of the methods in the recognition of heterochromatin was demonstrated using five monocotyledonous and two dicotyledonous species. In Trillium grandiflorum the stronger Giemsa stained chromosome segments were shown to be identical with the heterochromatic regions (H-segments) revealed by cold treatment. Preferential staining of H-segments was also observed in chromosomes from three species of Fritillaria and in Scilla sibirica. Under suitable conditions the chromosomes of Vicia faba displayed a characteristic banding pattern and the bands were identified as heterochromatin. The Giemsa techniques proved to be more sensitive than Quinacrine fluorescence in revealing a longitudinal differentiation of the chromosomes of Crepis capillaris, where plants with and without B-chromosomes were examined. Again all chromosome types had their characteristic bands but there was no difference in Giemsa staining properties between the B-chromosomes and those of the standard complement.  相似文献   

3.
Summary The staining properties of unifilarly bromodeoxyuridine (BrdU)-substituted chromatids were compared using fluorescent-plus-Giemsa (FPG) staining methods. It was found that the staining intensity of chromatids which had incorporated BrdU in the next to last S-phase is less than that of chromatids whose BrdU-containing strand came from the last cell cycle. Thus, FPG-staining is not a function of the number of BrdU-substituted DNA strands alone. These findings lead to the conclusion that the primary point of action of PFG staining leading to sister chromatid differentiation (SCD) are chromosomal proteins which have been altered in the replication of BrdU-substituted DNA and that the demonstration of the SCD and replication patterns with the same staining procedure is based on different mechanisms.  相似文献   

4.
The binding of azur B to chondroitin sulfate (CHS) was investigated using absorption spectroscopy. In aqueous solutions it is possible to distinguish three different dye species with absorption bands at 646, 597, and 555 nm. They are assigned to monomers, dimers, and higher aggregates of azure B, which become bound to CHS as the dye concentration (CD) increases. The short-wavelength band (555 nm) causes metachromasia in stained histological materials. When saturation occurs, the metachromatic azure B-CHS complex has a 1:1 composition, i.e., each anionic SO-4 and COO(-)-binding site of CHS binds one dye cation. The composition of the saturated metachromatic complex was determined by spectrophotometric and conductometric titration of CHS with azure B, while the SO-4 and COO- content of CHS was determined by conductometric titration of CHS-acid with NaOH. The binding isotherm of azure B to CHS was determined using gelpermeation chromatography. The isotherm can be described by the model of cooperative binding of ligands to linear biopolymers. We found good agreement between theoretical predictions and experimental findings in the range of 0 less than r less than 0.8 (r = the fraction of occupied binding sites). Using a Schwarz plot, we determined the binding constants of nucleation (Kn = 2.5 X 10(3) M-1) and aggregation (Kq = 1.2 X 10(5) M-1), as well as the cooperativity parameter (q = 50), T = 295 K. With increasing CD, the strong cooperativity of the dye binding favors the formation of metachromatic aggregates rather than monomers and dimers. From the temperature dependence of Kq we evaluated the standard binding enthalpy (delta Hoq = -20.0 kJ mol-1) and entropy (delta Soq = 29.7 JK-1 mol-1) of the cooperative dye binding. The binding was found to be strongly exothermic and accompanied by a thermodynamically favorable entropy increase, this being typical of hydrophobic interactions. Solid azure B-CHS complexes were prepared according to a special dialytic technique and were studied using a microspectrophotometer equipped with a polarizer and an analyzer. The metachromatic 1:1 complex has a broad, intense absorption band whose main peak occurs at 560 nm. This corresponds with the maximum of the metachromatic dye complex in aqueous solution, i.e. 555 nm. The CHS chains of the azure B-CHS complex can be mechanically aligned in a preferred direction (k). We were able to prepare excellently orientated and very fine dye-CHS films which were birefringent and dichroic - the more birefringent, the better the mechanical orientation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
6.
Summary Experiments were performed to find out whether different mechanisms are involved in FPG-(fluorescent plus Giemsa) staining for the demonstration of replication patterns and sister chromatid differentiation (SCD) after bromodeoxyuridine (BrdU)-substitution of V79 Chinese hamster chromosomes. The influence of variations of the staining procedure on the quality of both SCD and replication patterns was comparatively investigated and differences in the demonstration of these two phenomena within the same chromosome were studied using various BrdU-labeling protocols. The results show that at least graduated differences exist. For a good differentiation of replication patterns a stronger FPG-treatment is necessary than it is for SCD. Partial BrdU substitution only leads to replication patterns in the next mitosis. A further round of replication either in the presence or absence of BrdU causes a reduced staining of the complete chromatid and three-way differentiation is seen in third generation mitoses. These results support the view that alterations of chromosomal proteins during BrdU-incorporation and replication of BrdU-substituted DNA are decisive for differential staining.  相似文献   

7.
8.
9.
10.
11.
12.
By the Giemsa C-banding of six rye (Secale cereale) trisomics and by crossing them to translocation tester stocks it was possible to identify the trisomics and the tester stocks so that their correspondence to the wheat homoeologous groups could be established. The Heines Hellkorn trisomics 1/23, 4/11, 4/9, 1/19, 1/21 and 3/23 were found to correspond to Sears' Chinese Spring/Imperial additions E, G, C, A, F and D respectively. These additions most probably correspond to the wheat homoeologous groups 1, 3, 4, 5, 6 and 7.  相似文献   

13.
Gel electrophoresis of nucleolar isolates from Zajdela ascites hepatoma cells followed by various staining procedures revealed a common set of bands that stained selectively with silver and Giemsa. The gel bands, corresponding to molecular weights of 104, 78, 37, and 29 kilodaltons (kd), appeared to contain phosphoproteins that were at least partly associated with oligo-deoxyribonucleotides. Enzyme digestion studies showed that the Giemsastainability was due to the phosphorylated state of the proteins. The positive selective silver-staining reaction in gels could be most likely attributed to the high content of carboxyl groups present in these phosphoproteins. The significance of these findings in relation to cytological results produced by selective silver staining of nucleolus organizing regions (NORs) and by Giemsa N-banding is discussed.  相似文献   

14.
Abstract

A comparison has been made between the Quinacrine fluorescence bands and the bands obtained with a denaturating-reannealing-Giemsa technique in Vicia faba. The results show that some of the bands, particularly on the M and, proximally, on the S chromosomes are visible with both techniques. A complex pattern of bands on the S chromosomes is revealed with the Giemsa technique. Both the similarities and the differences between the banding patterns obtained with the two methods in Vicia faba may indicate various degrees of DNA repetitiousness and other physico-chemical properties in the chromosome segments involved.  相似文献   

15.
16.
A timetable for the initiation of DNA replication in human lymphocyte chromosomes has been established by a technique which allows detection of areas of chromosomes replicating at a given interval of the S-phase. The resolution of the method, using 33258 Hoechst-Giemsa staining, is more refined than that obtained with 3H-thymidine autoradiography. Early replicating regions coincide with R-bands. The timetable is rather coarse since replication may start asynchronously in the same region of homologous autosomes of the same metaphase and since even the sequence of bands appearing on individual chromosomes sometimes deviates from the rule.  相似文献   

17.
Differential Giemsa staining techniques have been used to stain kinetochores in meiotic chromosomes of two higher plants. Using these techniques it has been possible to follow changes in kinetochore behavior and appearance through meiosis.  相似文献   

18.
19.
20.
Klaus Hägele 《Chromosoma》1977,59(3):207-216
Two Giemsa banding methods (C banding and RB banding) are described which selectively stain the centromere bands of polytene salivary gland chromosomes in a number of Chironomus species. — By the C banding method the polytene chromosome appearance is changed grossly. Chromosome bands, as far as they are identifiable, are stained pale with the exception of the centromere bands and in some cases telomeres, which then are intensely stained reddish blue. — By the RB method the centromere bands are stained bright blue, whereas the remainder of the polytene bands stain red to red-violet. — Contrary to all other species examined, in Chironomus th. thummi numerous interstitial polytene chromosome bands, in addition to the centromere regions, are positively C banded and blue stained by RB banding. In the hybrid of Ch. th. thummi x Ch. th. piger only those interstitial thummi bands which are known to have a greater DNA content than their homologous piger bands are C banding positive and blue stained by the RB method whereas the homologous piger bands are C banding negative and red stained by RB banding. Ch. thummi and piger bands with an equal amount of DNA both show no C banding and stain red by RB banding. — It seems that the Giemsa banding methods used are capable of demonstrating, in addition to centromeric heterochromatin, heterochromatin in those interstitial polytene chromosome bands whose DNA content has been increased during chromosome evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号