首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
During apoptosis, endonucleases cleave DNA into 50-300-kb fragments and subsequently into internucleosomal fragments. DNA fragmentation factor (DFF) is implicated in apoptotic DNA cleavage; this factor comprises DFF45 and DFF40 subunits, the former of which acts as a chaperone and inhibitor of the catalytic subunit and whose cleavage by caspase-3 results in DFF activation. Disruption of the DFF45 gene blocks internucleosomal DNA fragmentation and confers resistance to apoptosis in primary thymocytes. The role of DFF-mediated DNA fragmentation in apoptosis was investigated in primary fibroblasts from DFF45(-/-) and control (DFF45(+/+)) mice. DFF45 deficiency rendered fibroblasts resistant to apoptosis induced by tumor necrosis factor (TNF). TNF induced rapid cleavage of DNA into approximately 50-kb fragments in DFF45(+/+) fibroblasts but not in DFF45(-/-) cells, indicating that DFF mediates this initial step in DNA processing. The TNF-induced activation of poly(ADP-ribose) polymerase (PARP), which requires PARP binding to DNA strand breaks, and the consequent depletion of the PARP substrate NAD were markedly delayed in DFF45(-/-) cells, suggesting a role for DFF in PARP activation. The activation of caspase-3 and mitochondrial events important in apoptotic signaling, including the loss of mitochondrial membrane potential and the release of cytochrome c, induced by TNF were similarly delayed in DFF45(-/-) fibroblasts. DFF45(-/-) and DFF45(+/+) cells were equally sensitive to the DNA-damaging agent and PARP activator N-methyl-N'-nitro-N-nitrosoguanidine. Inhibition of PARP by 3-aminobenzamide partially protected DFF45(+/+) cells against TNF-induced death and inhibited the associated release of cytochrome c and activation of caspase-3. These results suggest that the generation of 50-kb DNA fragments by DFF, together with the activation of PARP, mitochondrial dysfunction, and caspase-3 activation, contributes to an amplification loop in the death process.  相似文献   

2.
beta-Cell apoptosis is a key event contributing to the pathogenesis of type 1 diabetes mellitus. In addition to apoptosis being the main mechanism by which beta cells are destroyed, beta-cell apoptosis has been implicated in the initiation of type 1 diabetes mellitus through antigen cross-presentation mechanisms that lead to beta-cell-specific T-cell activation. Caspase-3 is the major effector caspase involved in apoptotic pathways. Despite evidence supporting the importance of beta-cell apoptosis in the pathogenesis of type 1 diabetes, the specific role of caspase-3 in this process is unknown. Here, we show that Caspase-3 knockout (Casp3(-/-) mice were protected from developing diabetes in a multiple-low-dose streptozotocin autoimmune diabetes model. Lymphocyte infiltration of the pancreatic islets was completely absent in Casp3(-/-) mice. To determine the role of caspase-3-dependent apoptosis in disease initiation, a defined antigen-T-cell receptor transgenic system, RIP-GP/P14 double-transgenic mice with Casp3 null mutation, was examined. beta-cell antigen-specific T-cell activation and proliferation were observed only in the pancreatic draining lymph node of RIP-GP/P14/Casp3(+/-) mice, but not in mice lacking caspase-3. Together, our findings demonstrate that caspase-3-mediated beta-cell apoptosis is a requisite step for T-cell priming, a key initiating event in type 1 diabetes.  相似文献   

3.
Poly(ADP-ribose) polymerase (PARP), a nuclear enzyme involved in DNA repair, is a target of caspases during apoptosis: its cleavage onto 89- and 24-kDa fragments is considered to be a hallmark of the apoptotic mode of cell death. Another hallmark is the activation of endonuclease which targets internucleosomal DNA. The aim of the present study was to reveal cell cycle phase specificity as well as the temporal and sequence relationships of PARP cleavage vis-à-vis DNA fragmentation in two model systems of apoptosis, one induced by DNA damage via cell treatment with camptothecin (CPT) (mitochondria-induced pathway) and another by the cytotoxic ligand tumor necrosis factor alpha (TNF-alpha) (cell surface death receptor pathway). PARP cleavage was detected immunocytochemically using antibody which recognizes its 89-kDa fragment (PARP p89) while DNA fragmentation was assayed by in situ labeling of DNA strand breaks. The frequency and extent of PARP cleavage as well as DNA fragmentation were measured by mutiparameter flow and laser scanning cytometry. PARP cleavage, selective to S phase cells, was detected 90 min after administration of CPT. PARP cleavage in the cells treated with TNF-alpha was not selective to any cell cycle phase and was seen already after 30 min. DNA fragmentation trailed PARP cleavage by about 30 min and showed a similar pattern of cell cycle specificity. PARP p89 was present in nuclear chromatin but at least in the early phase of apoptosis it did not colocalize with DNA strand breaks. The rate of cleavage of PARP molecules in individual cells whether induced by CPT or TNF-alpha was rapid as reflected by the paucity of cells with a mixture of cleaved and noncleaved PARP molecules. In contrast, DNA fragmentation proceeded stepwise before reaching the maximal number of DNA strand breaks. Although time windows for PARP cleavage vs DNA fragmentation were different at early stages of apoptosis, a good overall correlation between the cytometric assays of apoptotic cells identification based on these events was observed in both CPT- and TNF-alpha-treated cultures.  相似文献   

4.
Despite treatment with agents that enhance beta-cell function and insulin action, reduction in beta-cell mass is relentless in patients with insulin resistance and type 2 diabetes mellitus. Insulin resistance is characterized by impaired signaling through the insulin/insulin receptor/insulin receptor substrate/PI-3K/Akt pathway, leading to elevation of negatively regulated substrates such as glycogen synthase kinase-3beta (Gsk-3beta). When elevated, this enzyme has antiproliferative and proapoptotic properties. In these studies, we designed experiments to determine the contribution of Gsk-3beta to regulation of beta-cell mass in two mouse models of insulin resistance. Mice lacking one allele of the insulin receptor (Ir+/-) exhibit insulin resistance and a doubling of beta-cell mass. Crossing these mice with those having haploinsufficiency for Gsk-3beta (Gsk-3beta+/-) reduced insulin resistance by augmenting whole-body glucose disposal, and significantly reduced beta-cell mass. In the second model, mice missing two alleles of the insulin receptor substrate 2 (Irs2-/-), like the Ir+/- mice, are insulin resistant, but develop profound beta-cell loss, resulting in early diabetes. We found that islets from these mice had a 4-fold elevation of Gsk-3beta activity associated with a marked reduction of beta-cell proliferation and increased apoptosis. Irs2-/- mice crossed with Gsk-3beta+/- mice preserved beta-cell mass by reversing the negative effects on proliferation and apoptosis, preventing onset of diabetes. Previous studies had shown that islets of Irs2-/- mice had increased cyclin-dependent kinase inhibitor p27(kip1) that was limiting for beta-cell replication, and reduced Pdx1 levels associated with increased cell death. Preservation of beta-cell mass in Gsk-3beta+/- Irs2-/- mice was accompanied by suppressed p27(kip1) levels and increased Pdx1 levels. To separate peripheral versus beta-cell-specific effects of reduction of Gsk3beta activity on preservation of beta-cell mass, mice homozygous for a floxed Gsk-3beta allele (Gsk-3(F/F)) were then crossed with rat insulin promoter-Cre (RIP-Cre) mice to produce beta-cell-specific knockout of Gsk-3beta (betaGsk-3beta-/-). Like Gsk-3beta+/- mice, betaGsk-3beta-/- mice also prevented the diabetes of the Irs2-/- mice. The results of these studies now define a new, negatively regulated substrate of the insulin signaling pathway specifically within beta-cells that when elevated, can impair replication and increase apoptosis, resulting in loss of beta-cells and diabetes. These results thus form the rationale for developing agents to inhibit this enzyme in obese insulin-resistant individuals to preserve beta-cells and prevent diabetes onset.  相似文献   

5.
Beta-cell apoptosis in an accelerated model of autoimmune diabetes.   总被引:4,自引:0,他引:4       下载免费PDF全文
BACKGROUND: The non-obese diabetic (NOD) mouse is a model of human type 1 diabetes in which autoreactive T cells mediate destruction of pancreatic islet beta cells. Although known to be triggered by cytotoxic T cells, apoptosis has not been unequivocally localized to beta cells in spontaneously diabetic NOD mice. We created a model of accelerated beta-cell destruction mediated by T cells from spontaneously diabetic NOD mice to facilitate the direct detection of apoptosis in beta cells. MATERIALS AND METHODS: NOD.scid (severe combined immunodeficiency) mice were crossed with bm1 mice transgenically expressing the costimulatory molecule B7-1 (CD80) in their beta cells, to generate B7-1 NOD.scid mice. Apoptosis in islet cells was measured as DNA strand breakage by the TdT-mediated-dUTP-nick end labeling (TUNEL) technique. RESULTS: Adoptive transfer of splenocytes from spontaneously diabetic NOD mice into B7-1 NOD.scid mice caused diabetes in recipients within 12-16 days. Mononuclear cell infiltration and apoptosis were significantly greater in the islets of B7-1 NOD.scid mice than in nontransgenic NOD.scid mice. Dual immunolabeling for TUNEL and either B-7 or insulin, or the T cell markers CD4 and CD8, and colocalization by confocal microscopy clearly demonstrated apoptosis in beta cells as well in a relatively larger number of infiltrating T cells. The clearance time of apoptotic beta cells was estimated to be less than 6 min. CONCLUSIONS: B7-1 transgenic beta cells undergo apoptosis during their accelerated destruction in response to NOD mouse effector T cells. Rapid clearance implies that beta cells undergoing apoptosis would be detected only rarely during more protracted disease in spontaneously diabetic NOD mice.  相似文献   

6.
Human type 1 diabetes results from the selective destruction of insulin-producing pancreatic beta cells during islet inflammation. Cytokines and reactive radicals released during this process contribute to beta-cell death. Here we show that mice with a disrupted gene coding for poly (ADP-ribose) polymerase (PARP-/- mice) are completely resistant to the development of diabetes induced by the beta-cell toxin streptozocin. The mice remained normoglycemic and maintained normal levels of total pancreatic insulin content and normal islet ultrastructure. Cultivated PARP-/- islet cells resisted streptozocin-induced lysis and maintained intracellular NAD+ levels. Our results identify NAD+ depletion caused by PARP activation as the dominant metabolic event in islet-cell destruction, and provide information for the development of strategies to prevent the progression or manifestation of the disease in individuals at risk of developing type 1 diabetes.  相似文献   

7.
The DNA binding domain (DBD) of poly(ADP-ribose) polymerase (PARP) has proved to be a novel, highly sensitive probe for detecting DNA breaks in intact cells undergoing apoptosis. A recombinant peptide spanning the DNA binding domain of PARP was expressed, purified and used to detect DNA strand breaks in fixed cells. Fluorescence microscopy with this probe followed by detection with anti-PARP antisera initially revealed an increased binding following treatment of cells with DNA strand-breaking agents (such asN-methyl-N'-nitro-N-nitrosoguanidine) and, subsequently, using biotinylated PARP DBD, during the later stages of apoptosis in several cell systems, when internucleosomal strand breaks became evident. This procedure was found to be at least as sensitive and required fewer steps to detect DNA strand breaks than those utilizing Klenow incorporation of biotinylated nucleotides.  相似文献   

8.
Pro-inflammatory cytokines are implicated as the main mediators of beta-cell death during type 1 diabetes but the exact mechanisms remain unknown. This study examined the effects of interleukin-1beta (IL-1beta), interferon-gamma (IFNgamma) and tumour necrosis factor alpha (TNFalpha) on a rat insulinoma cell line (RIN-r) in order to identify the core mechanism of cytokine-induced beta-cell death. Treatment of cells with a combination of IL-1beta and IFNgamma (IL-1beta/IFNgamma)induced apoptotic cell death. TNFalpha neither induced beta-cell death nor did it potentiate the effects of IL-1beta, IFNgamma or IL-1beta/IFNgamma . The cytotoxic effect of IL-1beta/IFNgamma was associated with the expression of inducible nitric oxide synthase (iNOS) and production of nitric oxide. Adenoviral-mediated expression of iNOS (AdiNOS) alone was sufficient to induce caspase activity and apoptosis. The broad range caspase inhibitor, Boc-D-fmk, blocked IL-1beta/IFNgamma -induced caspase activity, but not nitric oxide production nor cell death. However, pre-treatment with L-NIO, a NOS inhibitor, prevented nitric oxide production, caspase activity and reduced apoptosis. IL-1beta/IFNgamma -induced apoptosis was accompanied by loss of mitochondrial membrane potential, release of cytochrome c and cleavage of pro-caspase-9, -7 and -3. Transduction of cells with Ad-Bcl-X(L) blocked both iNOS and cytokine-mediated mitochondrial changes and subsequent apoptosis, downstream of nitric oxide. We conclude that cytokine-induced nitric oxide production is both essential and sufficient for caspase activation and beta-cell death, and have identified Bcl-X(L) as a potential target to combat beta-cell apoptosis.  相似文献   

9.
Fas ligand (FasL), perforin, TNF-alpha, IL-1, and NO have been considered as effector molecule(s) leading to beta cell death in autoimmune diabetes. However, the real culprit(s) in beta cell destruction have long been elusive, despite intense investigation. We and others have demonstrated that FasL is not a major effector molecule in autoimmune diabetes, and previous inability to transfer diabetes to Fas-deficient nonobese diabetic (NOD)-lpr mice was due to constitutive FasL expression on lymphocytes from these mice. Here, we identified IFN-gamma/TNF-alpha synergism as the final effector molecules in autoimmune diabetes of NOD mice. A combination of IFN-gamma and TNF-alpha, but neither cytokine alone, induced classical caspase-dependent apoptosis in insulinoma and pancreatic islet cells. IFN-gamma treatment conferred susceptibility to TNF-alpha-induced apoptosis on otherwise resistant insulinoma cells by STAT1 activation followed by IFN regulatory factor (IRF)-1 induction. IRF-1 played a central role in IFN-gamma/TNF-alpha-induced cytotoxicity because inhibition of IRF-1 induction by antisense oligonucleotides blocked IFN-gamma/TNF-alpha-induced cytotoxicity, and transfection of IRF-1 rendered insulinoma cells susceptible to TNF-alpha-induced cytotoxicity. STAT1 and IRF-1 were expressed in pancreatic islets of diabetic NOD mice and colocalized with apoptotic cells. Moreover, anti-TNF-alpha Ab inhibited the development of diabetes after adoptive transfer. Taken together, our results indicate that IFN-gamma/TNF-alpha synergism is responsible for autoimmune diabetes in vivo as well as beta cell apoptosis in vitro and suggest a novel signal transduction in IFN-gamma/TNF-alpha synergism that may have relevance in other autoimmune diseases and synergistic anti-tumor effects of the two cytokines.  相似文献   

10.
To study the contribution of beta-cell vulnerability to susceptibility to diabetes, we studied beta-cell vulnerability to a single high dose of streptozotocin (STZ) in an animal model of type 2 diabetes, the NSY mouse, a sister strain of the STZ-sensitive NOD mouse, in comparison with the STZ-resistant C3H mouse. NSY mice were found to be extremely sensitive to STZ. Introgression of a single Chr 11, where STZ-sensitivity was mapped in the NOD mouse, from NSY mice converted STZ-resistant C3H mice to STZ-sensitive. Two nucleotide substitutions were identified in the nucleoredoxin gene, a positional and functional candidate gene for STZ-induced diabetes on Chr 11. These data, together with the co-localization of type 1 (Idd4) and type 2 (Nidd1n) susceptibility genes on Chr 11, suggest that the intrinsic vulnerability of pancreatic beta cells is determined by a gene or genes on Chr 11, which may also contribute to susceptibility to spontaneous diabetes.  相似文献   

11.
Type 1 diabetes is caused by death of insulin-producing pancreatic beta cells. Beta-cell apoptosis induced by FasL may be important in type 1 diabetes in humans and in the non-obese diabetic (NOD) mouse model. Deficiency of the pro-apoptotic BH3-only molecule Bid protects beta cells from FasL-induced apoptosis in vitro. We aimed to test the requirement for Bid, and the significance of Bid-dependent FasL-induced beta-cell apoptosis in type 1 diabetes. We backcrossed Bid-deficient mice, produced by homologous recombination and thus without transgene overexpression, onto a NOD genetic background. Genome-wide single nucleotide polymorphism analysis demonstrated that diabetes-related genetic regions were NOD genotype. Transferred beta cell antigen-specific CD8+ T cells proliferated normally in the pancreatic lymph nodes of Bid-deficient mice. Moreover, Bid-deficient NOD mice developed type 1 diabetes and insulitis similarly to wild-type NOD mice. Our data indicate that beta-cell apoptosis in type 1 diabetes can proceed without Fas-induced killing mediated by the BH3-only protein Bid.  相似文献   

12.
Horton JK  Stefanick DF  Wilson SH 《DNA Repair》2005,4(10):1111-1120
The activity of poly(ADP-ribose) polymerase (PARP) is highly stimulated following DNA damage resulting in formation of DNA nicks and strand breaks. This leads to modification of numerous proteins, including itself, using NAD(+) as substrate and to exhaustion of intracellular ATP. A highly cytotoxic concentration of the DNA methylating agent methyl methanesulfonate (MMS) results in cellular ATP depletion and cell death primarily by necrosis in both wild-type and DNA polymerase beta null mouse fibroblasts. The loss of ATP can be prevented by the PARP inhibitor 4-amino-1,8-naphthalimide (4-AN), and now cells die by an energy-dependent apoptotic pathway. We find that inhibition of PARP activity transforms a sub-lethal exposure to MMS into a highly cytotoxic event. Under this condition, ATP is not depleted and cell death is by apoptosis. The caspase inhibitor, Z-VAD, shifts the mechanism of cell death to necrosis indicating a caspase-dependent component of the apoptotic cell death. Co-exposure to the Chk1 inhibitor UCN-01 also produces a decrease in apoptotic cell death, but now there is an increase in viable cells and an enhancement in long-term survival. Taken together, our results suggest that inhibition of PARP activity, induced as a result of low dose MMS exposure, signals via a Chk1-dependent pathway for cell death by apoptosis.  相似文献   

13.
Infection modulates type 1 diabetes, a common autoimmune disease characterized by the destruction of insulin-producing islet beta cells in the pancreas. Childhood rotavirus infections have been associated with exacerbations in islet autoimmunity. Nonobese diabetic (NOD) mice develop lymphocytic islet infiltration (insulitis) and then clinical diabetes, whereas NOD8.3 TCR mice, transgenic for a T-cell receptor (TCR) specific for an important islet autoantigen, show more rapid diabetes onset. Oral infection of infant NOD mice with the monkey rotavirus strain RRV delays diabetes development. Here, the effect of RRV infection on diabetes development once insulitis is established was determined. NOD and NOD8.3 TCR mice were inoculated with RRV aged > or = 12 and 5 weeks, respectively. Diabetes onset was significantly accelerated in both models (P < 0.024), although RRV infection was asymptomatic and confined to the intestine. The degree of diabetes acceleration was related to the serum antibody titer to RRV. RRV-infected NOD mice showed a possible trend toward increased insulitis development. Infected males showed increased CD8(+) T-cell proportions in islets. Levels of beta-cell major histocompatibility complex class I expression and islet tumor necrosis factor alpha mRNA were elevated in at least one model. NOD mouse exposure to mouse rotavirus in a natural experiment also accelerated diabetes. Thus, rotavirus infection after beta-cell autoimmunity is established affects insulitis and exacerbates diabetes. A possible mechanism involves increased exposure of beta cells to immune recognition and activation of autoreactive T cells by proinflammatory cytokines. The timing of infection relative to mouse age and degree of insulitis determines whether diabetes onset is delayed, unaltered, or accelerated.  相似文献   

14.
Poly(ADP-ribose) polymerase (PARP), which is catalytically activated by DNA strand breaks, has been implicated in apoptosis, or programmed cell death. A protease (CPP32) responsible for the cleavage of PARP and necessary for apoptosis was recently purified and characterized. The coordinated sequence of events related to PARP activation and cleavage in apoptosis has now been examined in individual cells. Apoptosis was studied in a human osteosarcoma cell line that undergoes a slow (8 to 10 days), spontaneous, and reproducible death program in culture. Changes in the abundance of intact PARP, poly(ADP-ribose) (PAR), and a proteolytic cleavage product of PARP that contains the DNA-binding domain were examined during apoptosis in the context of individual, whole cells by immunofluorescence with specific antibodies. The synthesis of PAR from NAD increased early, within 2 days of cell plating for apoptosis, prior to the appearance of internucleosomal DNA cleavage and before the cells become irreversibly committed to apoptosis, since replating yields viable, nonapoptotic cells. Strong expression of full-length PARP was also detected, by immunofluorescence as well as by Western analysis, during this same time period. However, after ∼4 days in culture, the abundance of both full-length PARP and PAR decreased markedly. After 6 days, a proteolytic cleavage product containing the DNA-binding domain of PARP was detected immunocytochemically and confirmed by Western analysis, both in the nuclei and in the cytoplasm of cells. A recombinant peptide spanning the DNA-binding domain of PARP was expressed, purified, and biotinylated, and was then used as a probe for DNA strand breaks. Fluorescence microscopy with this probe revealed extensive DNA fragmentation during the later stages of apoptosis. This is the first report, using individual,intact cells,demonstrating that poly(ADP-ribosyl)ation of nuclear proteins occurs prior to the commitment to apoptosis, that inactivation and cleavage of PARP begin shortly thereafter, and that very little PAR per se is present during the later stages of apoptosis, despite the presence of a very large number of DNA strand breaks. These results suggest a negative regulatory role for PARP during apoptosis, which in turn may reflect the requirement for adequate NAD and ATP during the later stages of programmed cell death.  相似文献   

15.
Islet alpha- and delta-cells are spared autoimmune destruction directed at beta-cells in type 1 diabetes resulting in an apparent increase of non-beta endocrine cells in the islet core. We determined how islet remodeling in autoimmune diabetes compares to streptozotocin (STZ)-induced diabetes. Islet cell mass, proliferation, and immune cell infiltration in pancreas sections from diabetic NOD mice and mice with STZ-induced diabetes was assessed using quantitative image analysis. Serial sections were stained for various beta-cell markers and Ngn3, typically restricted to embryonic tissue, was only upregulated in diabetic NOD mouse islets. Serum levels of insulin, glucagon and GLP-1 were measured to compare hormone levels with respect to disease state. Total pancreatic alpha-cell mass did not change as autoimmune diabetes developed in NOD mice despite the proportion of islet area comprised of alpha- and delta-cells increased. By contrast, alpha- and delta-cell mass was increased in mice with STZ-induced diabetes. Serum levels of glucagon reflected these changes in alpha-cell mass: glucagon levels remained constant in NOD mice over time but increased significantly in STZ-induced diabetes. Increased serum GLP-1 levels were found in both models of diabetes, likely due to alpha-cell expression of prohormone convertase 1/3. Alpha- or delta-cell mass in STZ-diabetic mice did not normalize by replacement of insulin via osmotic mini-pumps or islet transplantation. Hence, the inflammatory milieu in NOD mouse islets may restrict alpha-cell expansion highlighting important differences between these two diabetes models and raising the possibility that increased alpha-cell mass might contribute to the hyperglycemia observed in the STZ model.  相似文献   

16.
There are diverse strategies for gene therapy of diabetes mellitus. Prevention of beta-cell autoimmunity is a specific gene therapy for prevention of type 1 (insulin-dependent) diabetes in a preclinical stage, whereas improvement in insulin sensitivity of peripheral tissues is a specific gene therapy for type 2 (non-insulin-dependent) diabetes. Suppression of beta-cell apoptosis, recovery from insulin deficiency, and relief of diabetic complications are common therapeutic approaches to both types of diabetes. Several approaches to insulin replacement by gene therapy are currently employed: 1) stimulation of beta-cell growth, 2) induction of beta-cell differentiation and regeneration, 3) genetic engineering of non-beta cells to produce insulin, and 4) transplantation of engineered islets or beta cells. In type 1 diabetes, the therapeutic effect of beta-cell proliferation and regeneration is limited as long as the autoimmune destruction of beta cells continues. Therefore, the utilization of engineered non-beta cells free from autoimmunity and islet transplantation with immunological barriers are considered potential therapies for type 1 diabetes. Proliferation of the patients' own beta cells and differentiation of the patients' own non-beta cells to beta cells are desirable strategies for gene therapy of type 2 diabetes because immunological problems can be circumvented. At present, however, these strategies are technically difficult, and transplantation of engineered beta cells or islets with immunological barriers is also a potential gene therapy for type 2 diabetes.  相似文献   

17.
Streptozotocin injection in animals destroys pancreatic beta cells, leading to insulinopenic diabetes. Here, we evaluated the toxic effect of streptozotocin (STZ) in GLUT2(-/-) mice reexpressing either GLUT1 or GLUT2 in their beta cells under the rat insulin promoter (RIPG1 x G2(-/-) and RIPG2 x G2(-/-) mice, respectively). We demonstrated that injection of STZ into RIPG2 x G2(-/-) mice induced hyperglycemia (>20 mM) and an approximately 80% reduction in pancreatic insulin content. In vitro, the viability of RIPG2 x G2(-/-) islets was also strongly reduced. In contrast, STZ did not induce hyperglycemia in RIPG1 x G2(-/-) mice and did not reduce pancreatic insulin content. The viability of in vitro cultured RIPG1 x G2(-/-) islets was also unaffected by STZ. As islets from each type of transgenic mice were functionally indistinguishable, these data strongly support the notion that STZ toxicity toward beta cells depends on the expression of GLUT2.  相似文献   

18.
An early transient burst of poly(ADP-ribosyl)ation of nuclear proteins was recently shown to be required for apoptosis to proceed in various cell lines (Simbulan-Rosenthal, C., Rosenthal, D., Iyer, S., Boulares, H., and Smulson, M. (1998) J. Biol. Chem. 273, 13703-13712) followed by cleavage of poly(ADP-ribose) polymerase (PARP), catalyzed by caspase-3. This inactivation of PARP has been proposed to prevent depletion of NAD (a PARP substrate) and ATP, which are thought to be required for later events in apoptosis. The role of PARP cleavage in apoptosis has now been investigated in human osteosarcoma cells and PARP -/- fibroblasts stably transfected with a vector encoding a caspase-3-resistant PARP mutant. Expression of this mutant PARP increased the rate of staurosporine and tumor necrosis factor-alpha-induced apoptosis, at least in part by reducing the time interval required for the onset of caspase-3 activation and internucleosomal DNA fragmentation, as well as the generation of 50-kilobase pair DNA breaks, thought to be associated with early chromatin unfolding. Overexpression of wild-type PARP in osteosarcoma cells also accelerated the apoptotic process, although not to the same extent as that apparent in cells expressing the mutant PARP. These effects of the mutant and wild-type enzymes might be due to the early and transient poly(ADP-ribose) synthesis in response to DNA breaks, and the accompanying depletion of NAD apparent in the transfected cells. The accelerated NAD depletion did not seem to interfere with the later stages of apoptosis. These results indicate that PARP activation and subsequent cleavage have active and complex roles in apoptosis.  相似文献   

19.
20.
Type 1 diabetes (T1D) is a chronic autoimmune disease caused by proinflammatory autoreactive T cells that mediate the selective destruction of insulin-producing β cells via both direct and indirect mechanisms. Many immune cells and proinflammatory cytokines are involved in the pathogenesis of autoimmune diabetes. Immune intervention is effective for the prevention and treatment of T1D by blocking the autoimmune assault to β cells. The non-structural protein 1(NS1) of influenza A viruses is a non-essential virulence factor encoded on segment 8 that has multiple accessory functions, including suppression of innate immunity and adaptive immunity, inhibition of apoptosis and activation of phosphoinositide 3-kinase (PI3K). This research investigated whether the expression of NS1 can prevent and treat diabetes mellitus induced by Streptozotocin (STZ). The NS1 expressing plasmid pEGFP-C2/NS1 was constructed and injected intramuscularly to both thighs of mice. Its effect on mice was observed. Intramuscular delivery of pEGFP-C2/NS1 resulted in reduction in hyperglycemia and diabetes incidence, with an increase in insulin. pEGFP-C2/NS1 could also increase glycogen and regulated serum cytokine levels. In addition, by comparison to the mice treated with empty vector pEGFP-C2, ameliorative insulitis was observed in the mice treated with recombinant plasmid pEGFP-C2/NS1. This result suggests that the expression of NS1 is effective for the prevention and treatment of diabetes mellitus induced by STZ in a mouse model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号