首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the linkage region of chondroitin sulfate chains attached to the hybrid proteoglycans of the Engelbreth-Holm-Swarm mouse tumor was investigated. The peptidoglycan fraction which contains oversulfated chondroitin sulfate rich in the GlcA beta 1-3GalNAc-4,6-diO-sulfate unit and undersulfated heparan sulfate rich in GlcA beta 1-4GlcNAc and GlcA beta 1-4GlcN-2N-sulfate units was isolated after exhaustive protease digestion of the acetone powder of the tumor tissue, (GlcA, glucuronic acid; GalNAc, 2-deoxy-2-N-acetylamino-D-galactose). Glycosaminoglycans were released by beta-elimination using NaB3H4 and digested with chondroitinase ABC. The linkage region fraction was separated from heparan sulfate by gel filtration and fractionated by HPLC on an amine-bound silica column. Six radiolabeled compounds (L1-L6) were obtained and structurally analyzed by cochromatography with authentic hexasaccharide alditols recently isolated by us from the linkage region, and by digestion using chondroitinase ACII, alkaline phosphatase and beta-galactosidase in conjugation with HPLC. These compounds shared the conventional hexasaccharide backbone structure: delta GlcA beta 1-3GalNAc beta 1-4GlcA beta 1-3Gal beta 1-3Gal beta 1-4Xyl-ol, (delta GlcA, delta 4.5-GlcA or D-gluco-4-enepyranosyluronic acid). L1 was not sulfated or phosphorylated. L2 and L4 were monosulfated at C-6 and C-4 of the GalNAc residue, respectively. Upon alkaline phosphatase digestion, L3, L5 and L6 were converted to L1, L2 and L4, respectively. Analysis of the periodate oxidation products indicated that the phosphate group in L3, L5 and L6 is located at C-2 of Xyl-ol. These results suggest that Xyl-2-O-phosphate is associated with both 4-O-sulfated and 6-O-sulfated GalNAc units and does not directly determine the sulfation pattern of chondroitin sulfate.  相似文献   

2.
Shark cartilage proteoglycans bear predominantly chondroitin 6-sulfate. After exhaustive protease digestion, reductive beta-elimination and subsequent chondroitinase ABC digestion, 13 hexasaccharide alditols were obtained from the carbohydrate-protein linkage region and six of them contain 0 or 1 sulfate and/or 1 phosphate residue (Sugahara, K., Ohi, Y., Harada, T., de Waard, P., and Vliegenthart, J. F. G. (1992) J. Biol. Chem. 267, 6027-6035). The other seven compounds, which represent approximately 60% of the isolated linkage hexasaccharides, were analyzed by chondroitinase ACII digestion in conjunction with high performance liquid chromatography and by 500-MHz one- and two dimensional 1H NMR spectroscopy. All seven compounds have the following conventional structure in common. [formula: see text] Two disulfated compounds have an O-sulfate on C-6 of the Gal-2 residue attached to xylitol in combination with an O-sulfate on C-4 or on C-6 of the GalNAc residue. The third disulfated compound has O-sulfate on C-6 of Gal-2, and also on C-6 of Gal-3. Two of the trisulfated compounds also have O-sulfate on C-6 of both Gal-2 and Gal-3 with in addition sulfate on C-6 or C-4 of GalNAc. The other two trisulfated compounds have O-sulfate on C-6 of Gal-2 and on C-4 of Gal-3 in conjunction with sulfate on C-6 or C-4 of GalNAc.  相似文献   

3.
From the carbohydrate-protein linkage region of whale cartilage proteoglycans, which bear predominantly chondroitin 4-sulfate, one nonsulfated, two monosulfated and one disulfated hexasaccharide alditols were isolated after exhaustive digestions with Actinase E and chondroitinase ABC, and subsequent beta-elimination. Their structures were analyzed by chondroitinase ACII digestion in conjunction with HPLC and by 500-MHz 1H-NMR spectroscopy. The nonsulfated compound (A) had the following conventional structure: delta GlcA(beta 1-3)-GalNAc(beta 1-4)GlcA(beta 1-3)Gal(beta 1-4)Xylol, where GlcA, delta GlcA and GalNAc are glucuronic acid; 4,5-unsaturated glucuronic acid and 2-deoxy-2-N-acetylamino-D-galactose, respectively. The other compounds were sulfated derivatives of compound A. Two monosulfated compounds (B and C) had an ester sulfate on C4 or C6 of the GalNAc residue, respectively and the disulfated compound (D) had two ester sulfate groups, namely, one on C4 of the GalNAc and the other on C4 of the Gal residue substituted by GlcA. The molar ratio of A/B/C/D was 0.21:0.16:0.36:0.27. The compound containing Gal-4-O-sulfate was previously isolated by us in the form of a sulfated glycoserine [delta GlcA(beta 1-3)GalNAc(4-O- sulfate)(beta 1-4)GlcA(beta 1-3)Gal(4-O-sulfate)(beta 1-3)-Gal(beta 1- 4)Xyl beta 1-O-Ser] from the carbohydrate-protein linkage region of rat chondrosarcoma chondroitin-4-sulfate proteoglycans [Sugahara K., Yamashina, I., DeWaard, P., Van Halbeek, H. & Vliegenthart, J.F.G. (1988) J. Biol. Chem. 263, 10,168-10,174]. The discovery of this structure in the carbohydrate-protein linkage region of chondroitin 4-sulfate proteoglycans from nontumorous cartilage indicates that it is not a tumor-associated product but rather a physiological biosynthetic product since it represents a significant proportion. The biological significance of this structure is discussed in relation to glycosaminoglycan biosynthesis.  相似文献   

4.
Nonsulfated, monosulfated, and disulfated glycopeptides containing the entire carbohydrate sequence of the glycosaminoglycan-specific linkage region were isolated after exhaustive enzymatic digestions of Swarm rat chondrosarcoma proteoglycans with chondroitinase ABC, papain, and Pronase. Their structures were examined by 500 MHz 1H NMR spectroscopy. The nonsulfated compound has the following structure with trace amounts of a few additional amino acids: delta 4,5-GlcA beta 1-3GalNAc beta 1-4GlcA beta 1-3Gal beta 1-3Gal beta 1-4Xyl beta 1-O-Ser. The monosulfated compound has an ester sulfate on C-4 of the GalNAc residue and the disulfated compound has an additional hitherto unrecognized ester sulfate on C-4 of the second galactose residue which is remote from the innermost xylose. This new structure was confirmed by two-dimensional homonuclear Hartmann-Hahn spectroscopy. The molar ratio of the isolated nonsulfated, monosulfated, and disulfated compounds was 53:37:10 based on the serine contents. Biological significance of the newly found sulfated linkage structure is discussed.  相似文献   

5.
A large Mr chondroitin sulfate proteoglycan was extracted from the media of human aorta under dissociative conditions and purified by density-gradient centrifugation, ion-exchange chromatography, and gel filtration chromatography. Removal of a contaminating dermatan sulfate proteoglycan was accomplished by reduction, alkylation and rechromatography on the gel filtration column. After chondroitinase ABC treatment, the proteoglycan core was separated from a residual heparan sulfate proteoglycan by a third gel filtration chromatography step. As assessed by radioimmunoassay, the isolated proteoglycan core was free of link protein, but possessed epitopes that were recognized by antisera against the hyaluronic acid binding region of bovine cartilage proteoglycan as well as those that were weakly recognized by anti-keratan sulfate antisera. Following beta-elimination of the protein core, the liberated low Mr oligosaccharides were partially resolved by Sephadex G-50 chromatography, and their primary structure was determined by 500-MHz1H NMR spectroscopy in combination with compositional sugar analysis. The N-glycosidic carbohydrate chains, which were obtained as glycopeptides, were all biantennary glycans containing NeuAc and Fuc; microheterogeneity in the NeuAc----Gal linkage was detected in one of the branches. The N-glycosidic glycans have the following overall structure: (Formula: see text). The majority of the O-glycosidic carbohydrate chains bound to the protein core were found to be of the mucin type. They were obtained as glycopeptides and oligosaccharide alditols, and possessed the following structures: NeuAc alpha(2----3)Gal beta(1----3)GalNAc-ol, [NeuAc alpha(2----3)Gal beta(1----3)[NeuAc alpha(2----6)]GalNAc-ol, and NeuAc alpha-(2----3) Gal beta(1----3)[NeuAc alpha(2----3)Gal beta(1----4)GlcNAc beta(1----6)] GalNAc-ol. The remainder of the O-glycosidic carbohydrate chains bound to the isolated proteoglycan were the hexasaccharide link regions of the chondroitin sulfate chains that remained after chondroitinase ABC treatment of the native molecule. These latter glycans, which were obtained as oligosaccharide alditols, had the following structure (with GalNAc free of sulfate or containing sulfate bound at either C-4 or C-6): delta 4,5GlcUA beta(1----3)GalNAc beta(1----4)GlcUA beta(1----3)Gal beta(1----3)Gal beta(1----4)Xyl-ol.  相似文献   

6.
6-O-Sulfated galactose residues have been demonstrated in the glycosaminoglycan-protein linkage region GlcUAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser isolated from shark cartilage chondroitin 6-sulfate (Sugahara, K., Ohi, Y., Harada, T., de Waard, P., and Vliegenthart, J. F. G. (1992) J. Biol. Chem. 267, 6027-6035). In this study, we investigated whether a recombinant human chondroitin 6-sulfotransferase-1 (C6ST-1) catalyzes the sulfation of C6 on both galactose residues in the linkage region using structurally defined acceptor substrates. The C6ST-1 was expressed as a soluble protein A chimeric form in COS-1 cells and purified using IgG-Sepharose. The purified C6ST-1 utilized the linkage tri-, tetra-, penta-, and hexasaccharide-serines and hexasaccharide alditols, including GlcUAbeta1-3GalNAc(4-O-sulfate)beta1-4GlcUAbeta1-3Gal(4-O-sulfate)beta1-3Galbeta1-4Xylbeta1-O-Ser and DeltaGlcUAbeta1-3GalNAc(6-O-sulfate)beta1-4GlcUAbeta1-3Galbeta1-3Gal(6-O-sulfate)beta1-4Xyl-ol. Identification of the reaction products obtained with the linkage tetra-, penta-, and hexasaccharide-serines revealed that the C6ST-1 catalyzed the sulfation of C6 on both galactose residues in the linkage region. Notably, the linkage tetrasaccharide-peptide GlcUAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-(Gly)Ser-(Gly-Glu) was a good acceptor substrate for the C6ST-1, suggesting that the sulfation of the galactose residues can occur before the transfer of the first N-acetylhexosamine residue to the linkage tetrasaccharide. In contrast, no incorporation was observed into DeltaGlcUAbeta1-3GalNAc(4-O-sulfate)beta1-4GlcUAbeta1-3Gal(4-O-sulfate)beta1-3Galbeta1-4Xyl-ol, indicating that an intact xylose is necessary for the transfer of a sulfate to the second sugar residue Gal from the reducing end. These findings clearly demonstrated that the recombinant C6ST-1 catalyzes the sulfation of C6 on both galactose residues in the linkage region in vitro. This is the first identification of the sulfotransferase responsible for the sulfation of galactose residues in the glycosaminoglycan-protein linkage region.  相似文献   

7.
Oversulfated chondroitin sulfate H (CS-H) isolated from hagfish notochord is a unique dermatan sulfate consisting mainly of IdoAalpha1-3GalNAc(4S,6S), where IdoA, GalNAc, 4S and 6S represent L-iduronic acid, Nacetyl-D-galactosamine, 4-O-sulfate and 6-O-sulfate, respectively. Several tetra- and hexasccharide fractions were isolated from CS-H after partial digestion with bacterial chondroitinase B to investigate the sequential arrangement of the IdoAalpha1-3GalNAc(4S,6S) unit in the CS-H polysaccharide. A structural analysis of the isolated oligosaccharides by enzymatic digestions, mass spectrometry and 1H NMR spectroscopy demonstrated that the major tetrasaccharides shared the common disulfated core structure delta4,5HexAalpha1-3GalNAc(4S)beta1-4IdoAalpha1-3 GalNAc (4S) with 0 approximately 3 additional O-sulfate groups, where delta4,5HexA represents 4-deoxy-alpha-L-threo-hex-4-enepyranosyluronic acid. The major hexasaccharides shared the common trisulfated core structure delta4,5HexAalpha1-3 GalNAc(4S)beta1-4 IdoAalpha1-3 GalNAc(4S)beta1-4IdoAalpha1-3 GalNAc(4S) with 1 approximately 4 additional O-sulfate groups. Some extra sulfate groups in both tetra- and hexasaccharides were located at the C-2 position of a delta4,5HexA or an internal IdoA residue, or C-6 position of 4-O-sulfated GalNAc residues, forming the unique disulfated or trisulfated disaccharide units, IdoA (2S)-GalNAc(4S), IdoA-GalNAc(4S,6S) and IdoA (2S)-GalNAc(4S,6S), where 2S represents 2-O-sulfate. Of the demonstrated sequences, five tetra- and four hexasaccharide sequences containing these units were novel.  相似文献   

8.
Decorin is a small flbroblast proteoglycan consisting of a coreprotein and a single chondroitin/dermatan sulfate chain. Thestructure of the carbohydrate-protein linkage region of therecombinant decorin expressed in Chinese hamster ovary cellswas investigated. The decorin was secreted in the culture mediumand isolated by anion-exchange chromatography. The glycosaminoglycanchain was released from the decorin by β-elimination usingalkaline NaBH4, and then digested with chondroitinase ABC. Thesetreatments resulted in a major and a few minor hexasaccharidealditols derived from the carbohydrate-protein linkage region.Their structures were analyzed by enzymatic digestion in conjunctionwith high-performance liquid chromatography. Two of these compoundshave the conventional hexasaccharide core, HexA1-3GalNAcβ1-4GlcAβ1-3Galβ1-3Galβ1-4Xyl-ol.One is nonsulfated, and the other is monosulfated on C4 of theGalNAc residue. They represent 12% and 60% of the total linkageregion, respectively. The other compound has the hexasaccharidealditol with an internal iduronic acid residue HexA1-3GalNAc(4-sulfate)β1-4IdoA1-3GaIβ1-3Galβ1-4Xyl-ol,which was previously demonstrated in one of the five linkagehexasaccharide alditols isolated from dennatan sulfate proteoglycansof bovine aorta (Sugahara et al, J. Biol Chem., 270, 7204–7212,1995).The compound accounts for 11% of the total linkage region. Thesestructural variations in the linkage hexasaccharide region ofthe decorin strikingly contrast to the uniformity demonstratedin the linkage hexasaccharide structure of human inter--trypsininhibitor (Yamada et al, Glycobiology, 5, 335–341,1995)and urinary trypsin inhibitor (Yamada et al, Eur. J. Biochem.,233, 687–693, 1995), both of which have a single chondroi-tinsulfate chain with a uniform linkage hexasaccharide structure,HexA1-3GalNAc(4-sulfate)β1-4GlcAβ1-3Gal(4-sulfate)β1-3Galβ1-4Xyl,containing a 4-O-sulfated Gal residue. chondroitin sulfate decorin dermatan sulfate glycosaminoglycan proteoglycan  相似文献   

9.
Bacterial chondroitinases and heparitinases are potentially useful tools for structural studies of chondroitin sulfate and heparin/heparan sulfate. Substrate specificities of Flavobacterium chondroitinase C, as well as heparitinases I and II, towards the glycosaminoglycan-protein linkage region -HexA-HexNAc-GlcA-Gal-Gal-Xyl-Ser (where HexA represents glucuronic acid or iduronic acid and HexNAc represents N-acetylgalactosamine or N-acetylglucosamine) were investigated using various structurally defined oligosaccharides or oligosaccharide-serines derived from the linkage region. In the case of oligosaccharide-serines, they were labeled with a chromophore dimethylaminoazobenzenesulfonyl chloride (DABS-Cl), which stably reacted with the amino group of the serine residue and rendered high absorbance for microanalysis. Chondroitinase C cleaved the GalNAc bond of the pentasaccharides or hexasaccharides derived from the linkage region of chondroitin sulfate chains and tolerated sulfation of the C-4 or C-6 of the GalNAc residue and C-6 of the Gal residues, as well as 2-O-phosphorylation of the Xyl residue. In contrast, it did not act on the GalNAc-GlcA linkage when attached to a 4-O-sulfated Gal residue. Heparitinase I cleaved the innermost glucosaminidic bond of the linkage region oligosaccharide-serines of heparin/heparan sulfate irrespective of substitution by uronic acid, whereas heparitinase II acted only on the glucosaminidic linkages of the repeating disaccharide region, but not on the innermost glucosaminidic linkage. These defined specificities of chondroitinase C, as well as heparitinases I and II, will be useful for preparation and structural analysis of the linkage oligosaccharides.  相似文献   

10.
Presence of an O-glycosidically linked hexasaccharide in fetuin   总被引:4,自引:0,他引:4  
Examination by gel filtration, thin layer and anion exchange chromatography of the O-linked carbohydrate units released from fetuin by alkaline borohydride treatment indicated the presence in this glycoprotein of an acidic glucosamine-containing hexasaccharide in addition to the previously described tetra- and trisaccharides. The structure of the hexasaccharide was determined to be NeuAc alpha 2----3Gal beta 1----3[NeuAc alpha 2----3Gal beta 1----4GlNAc beta 1----6]GalNAc, on the basis of exoglycosidase digestion, periodate oxidation, and methylation analysis as well as hydrazine-nitrous acid fragmentation. The latter procedure when carried out on the reduced asialohexasaccharide yielded Gal----2-deoxygalactitol and Gal----anhydromannose which were shown to be derived, respectively, from Gal----N-acetylgalactosaminitol and Gal----GlcNAc sequences. Reductive amination of the Gal----anhydromannose disaccharide with [14C] methylamine permitted identification of its linkage as 1----4. While Diplococcus pneumoniae endo-alpha-DN-acetylgalactosaminidase acting on asialofetuin released the sialic acid-free tetra- and trisaccharides (Gal beta 1----3GalNAc), this enzyme did not cleave the peptide attachment of the asialohexasaccharide (Gal beta 1----3 [Gal beta 1----4GlcNAc beta 1----6] GalNAc). The number of O-linked hexa-, tetra-, and trisaccharides per fetuin molecule was determined to be 0.2, 0.7, and 2.1, respectively, on the basis of galactosaminitol analyses. The absence of O-linked N-acetylglucosamine-containing tetra- or pentasaccharides in fetuin suggest that the attachment of this sugar is a rate-limiting step; furthermore, the limited occurrence of the hexasaccharide may indicate that the addition of sialic acid to Gal beta 1----3GalNAc to form the NeuAc alpha 2----3Gal linkage precludes action of the GlcNAc transferase to form the branch point on the GalNAc residue.  相似文献   

11.
Swarm rat chondrosarcoma cell cultures were metabolically labeled with [35S]sulfate, [3H]glucose, or [3H]glucosamine. Chondroitin sulfate chains were isolated from purified aggrecan using alkaline borohydride treatment and Superose 6 chromatography. Various linkage region oligosaccharide alditols were derived from these chains using sequential chondroitinase digestions (ABC lyase followed by ACII lyase). They were then further processed by mercuric acetate treatment, which removed the 4,5-unsaturated uronosyl residue from the nonreducing end of the linkage, and then beta-galactosidase digestion which liberated the 2 galactose residues from the xylitol reducing terminus. Alkaline phosphatase digestions were performed to verify the presence of phosphate esters. All linkage region structures were isolated and identified using a combination of Progel-TSK G2500 and CarboPac PA1 chromatography steps in conjunction with monosaccharide analyses. This study revealed that chondroitin sulfate chains from aggrecan synthesized by rat chondrosarcoma cells in vitro have the following properties: 1) three out of every four of their linkage regions carry a phosphate ester on xylose, 2) nearly three out of every five chains begin the repeating disaccharide region with an unsulfated first disaccharide unit, 3) nearly twice as many nonphosphorylated chains have a sulfated first disaccharide than their phosphorylated counterparts, and 4) the vast majority of these chains do not contain sulfated galactose in their linkage regions. This report also describes a borohydride reduction procedure to confer alkali stability to the 3-substituted, unsaturated disaccharides derived from chondroitinase digests of chondroitin sulfate. Furthermore, a CarboPac PA1 method is demonstrated that separates these reduced disaccharides with exceptional resolution.  相似文献   

12.
K Yamashita  K Umetsu  T Suzuki  T Ohkura 《Biochemistry》1992,31(46):11647-11650
Two lectins were purified from tuberous roots of Trichosanthes japonica. The major lectin, which was named TJA-II, interacted with Fuc alpha 1-->2Gal beta/GalNAc beta 1-->groups, and the other one, which passed through a porcine stomach mucin-Sepharose 4B column, was purified by sequential chromatography on a human alpha 1-antitrypsin-Sepharose 4B column and named TJA-I. The molecular mass of TJA-I was determined to be 70 kDa by sodium dodecyl sulfate gel electrophoresis. TJA-I is a heterodimer of 38-kDa (36-kDa) and 32-kDa (30-kDa) subunits with disulfide linkage(s), and the difference between 38 and 36 kDa, and between 32 and 30 kDa, is due to secondary degradation of the carboxyl-terminal side. It was determined by equilibrium dialysis that TJA-I has four equal binding sites per molecule, and the association constant toward tritium-labeled Neu5Ac alpha 2-->6Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4GlcOT is Ka = 8.0 x 10(5) M-1. The precise carbohydrate binding specificity was studied using hemagglutinating inhibition assay and immobilized TJA-I. A series of oligosaccharides possessing a Neu5Ac alpha 2-->6Gal beta 1-->4GlcNAc or HSO3(-)-->6Gal beta 1-->4GlcNAc group showed tremendously stronger binding ability than oligosaccharides with a Gal beta 1-->4GlcNAc group, indicating that TJA-I basically recognizes an N-acetyllactosamine residue and that the binding strength increases on substitution of the beta-galactosyl residue at the C-6 position with a sialic acid or sulfate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
O-Linked oligosaccharides were isolated from human skim milk mucins and from mucin-derived glycopeptides by reductive beta-elimination. The released alditols were fractionated by DEAE-Sephadex chromatography and purified by high performance liquid chromatography on primary amine bonded phase. The structures of the major neutral oligosaccharide alditols could be established by fast atom bombardment and electron impact mass spectrometry, combined with methylation analysis, 500-MHz 1H nuclear magnetic resonance spectroscopy, and endo-beta-galactosidase (from Bacteroides fragilis, EC 3.2.1.103) digestion (where n = 0-3): (formula; see text) Major O-glycosidically linked oligosaccharides on skim milk mucins are of the Gal beta(1-3)[GlcNAc beta(1-6)] GalNAc core type 2 and exhibit linearly extended backbone chains of the poly N-acetyllactosamine type comprizing up to at least four repeating units, which are linked by the hitherto unknown sequence GlcNAc-beta(1-6) Gal rather than GlcNAc beta(1-3)Gal. A considerable portion of neutral alditols is represented by branched isomers of the linear species, which are distinguished by their content of 3,6-disubstituted galactose and their partial resistance to endo-beta-galactosidase digestion.  相似文献   

14.
A UDP-GlcNAc:R1-beta 1-3Gal(NAc)-R2 [GlcNAc to Gal(NAc)] beta 6-N-acetylglucosaminyltransferase activity from pig gastric mucosa microsomes catalyzes the formation of GlcNAc beta 1-3(GlcNAc beta 1-6)Gal-R from GlcNAc beta 1-3Gal-R where -R is -beta 1-3GalNAc-alpha-benzyl or -beta 1-3(GlcNAc beta 1-6)GalNAc-alpha-benzyl. This enzyme is therefore involved in the synthesis of the I antigenic determinant in mucin-type oligosaccharides. The enzyme also converts Gal beta 1-3Gal beta 1-4Glc to Gal beta 1-3(GlcNAc beta 1-6)Gal beta 1-4Glc. The enzyme was stimulated by Triton X-100 at concentrations between 0 and 0.2% and was inhibited by Triton X-100 at 0.5%. There is no requirement for Mn2+ and the enzyme activity is reduced to 65% in the presence of 10 mM EDTA. Enzyme products were purified and identified by proton NMR, methylation analysis and beta-galactosidase digestion. Competition studies suggest that this pig gastric mucosal beta 6-GlcNAc-transferase activity is due to the same enzyme that converts Gal beta 1-3GalNAc-R to mucin core 2, Gal beta 1-3(GlcNAc beta 1-6)GalNAc-R, and GlcNAc beta 1-3GalNAc-R to mucin core 4, GlcNAc beta 1-3(GlcNAc beta 1-6)GalNAc-R. Substrate specificity studies indicate that the enzyme attaches GlcNAc to either Gal or GalNAc in beta (1-6) linkage, provided these residues are substituted in beta (1-3) linkage by either GlcNAc or Gal. The insertion of a GlcNAc beta 1-3 residue into Gal beta 1-3GalNAc-R to form GlcNAc beta 1-3Gal beta 1-3GalNAc-R prevents insertion of GlcNAc into GalNAc. These studies establish several novel pathways in mucin-type oligosaccharide biosynthesis.  相似文献   

15.
Coaggregation between Actinomyces viscosus T14V and Streptococcus sanguis 34 depends on interaction of a lectin on A. viscosus T14V with a cell surface carbohydrate on S. sanguis 34. This carbohydrate was isolated, and its chemical makeup was established. The carbohydrate remained attached to S. sanguis 34 cells through extraction with Triton X-100 and treatment with pronase. It was cleaved from the cell residue by autoclaving and purified by differential centrifugation and column chromatography on DEAE-Sephacel and Sephadex G-75. The polysaccharide contained phosphate which was neither inorganic nor monoester. Treatment with NaOH-NaBH4, followed by Escherichia coli alkaline phosphatase, or with 48% HF at 4 degrees C, followed by NaBH4, yielded inorganic phosphate and oligosaccharide alditols. Therefore, the polysaccharide is composed of oligosaccharide units joined together by phosphodiester bridges. The structure and stereochemistry of the main oligosaccharide alditol was established previously (F. C. McIntire, C. A. Bush, S.-S. Wu, S.-C. Li, Y.-T. Li, M. McNeil, S. Tjoa, and P. V. Fennessey, Carbohydr. Res. 166:133-143). Permethylation analysis, 1H and 31P nuclear magnetic resonance studies on the whole polysaccharide revealed the position of the phosphodiester linkages. The polysaccharide is mainly a polymer of (6) GalNAc(alpha 1-3)Rha(beta 1-4)Glc(beta 1-6)Galf(beta 1-6)GalNAc(beta 1- 3)Gal(alpha 1)-OPO3. It reacted as a single antigen with antiserum to S. sanguis 34 cells and was a potent inhibitor of coaggregation between A. viscosus T14V and S. sanguis 34. Quantitative inhibition of precipitation assays with oligosaccharides, O-allyl N-acetylgalactosaminides, and simple sugars indicated that specific antibodies were directed to the GalNAc end of the hexasaccharide unit. In contrast, coaggregation was inhibited much more effectively by saccharides containing betaGalNAc. Thus, the specificity of the A. viscosus T14V lectin is strikingly different from that of antibodies directed against the S. sanguis 34 polysaccharide.  相似文献   

16.
We determined whether the two major structural modifications, i.e. phosphorylation and sulfation of the glycosaminoglycan-protein linkage region (GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1), govern the specificity of the glycosyltransferases responsible for the biosynthesis of the tetrasaccharide primer. We analyzed the influence of C-2 phosphorylation of Xyl residue on human beta1,4-galactosyltransferase 7 (GalT-I), which catalyzes the transfer of Gal onto Xyl, and we evaluated the consequences of C-4/C-6 sulfation of Galbeta1-3Gal (Gal2-Gal1) on the activity and specificity of beta1,3-glucuronosyltransferase I (GlcAT-I) responsible for the completion of the glycosaminoglycan primer sequence. For this purpose, a series of phosphorylated xylosides and sulfated C-4 and C-6 analogs of Galbeta1-3Gal was synthesized and tested as potential substrates for the recombinant enzymes. Our results revealed that the phosphorylation of Xyl on the C-2 position prevents GalT-I activity, suggesting that this modification may occur once Gal is attached to the Xyl residue of the nascent oligosaccharide linkage. On the other hand, we showed that sulfation on C-6 position of Gal1 of the Galbeta1-3Gal analog markedly enhanced GlcAT-I catalytic efficiency and we demonstrated the importance of Trp243 and Lys317 residues of Gal1 binding site for enzyme activity. In contrast, we found that GlcAT-I was unable to use digalactosides as acceptor substrates when Gal1 was sulfated on C-4 position or when Gal2 was sulfated on both C-4 and C-6 positions. Altogether, we demonstrated that oligosaccharide modifications of the linkage region control the specificity of the glycosyltransferases, a process that may regulate maturation and processing of glycosaminoglycan chains.  相似文献   

17.
Cl.16E, a stably differentiated clonal derivative of the human colonic cancer cell line HT29, was used to investigate the structure of oligosaccharide chains of mucins in colonic cancer. Secretory mucins were purified by equilibrium density gradient centrifugation in CsCl. Oligosaccharide side chains were isolated after beta-elimination. Compositional analysis of oligosaccharide-alditols performed after purification by gel filtration on a Bio-gel P-6 column showed 1) that GalNAc residues were located exclusively at the reducing ends of the chains, and 2) that fucose was absent from the preparation. Oligosaccharide-alditols were separated by high performance liquid chromatography (HPLC) on quaternary amine packings into a minor neutral fraction representing about 6.5% by weight of released oligosaccharides and four acidic fractions. Two acidic fractions, namely FI and FII encompassing mono- and disialylated structures, respectively, and containing 78% of total oligosaccharide alditols, were separated by HPLC. Structural determinations were carried out using methylation analysis, 1H NMR spectroscopy, and fast atom bombardment-mass spectrometry. Twelve oligosaccharide structures were determined which ranged in size from 3 to 8 residues. These oligosaccharides were based on core types 1, 2, and 4. Elongation of oligosaccharide chains was terminated by addition of sialic acid in alpha 2-3 linkage to Gal beta 1-3R and to Gal beta 1-4R residues. The predominant structure was a hexasaccharide (fraction FII-4). This contrasts with normal colonic mucins whose oligosaccharides were previously found to be based on core 3 structures and carry sialic acids in alpha (2-6) linkage to Gal beta 1-3R, to Gal beta 1-4R, and to GalNAc alpha-R (Podolsky, D.K. (1985) J. Biol. Chem. 260, 8262-8271; Podolsky, D.K. (1985) J. Biol. Chem. 260, 15510-15515). Collectively our findings suggest that Cl.16E colon cancer cells are able to synthesize mucin oligosaccharides of gastric type whose elongation is truncated by premature sialylation.  相似文献   

18.
We previously reported that cultured cells incubated with beta-xylosides synthesized alpha-GalNAc-capped GAG-related xylosides, GalNAc alpha GlcA beta Gal beta Gal beta Xyl beta-R and GalNAc alpha GlcA beta GalNAc beta GlcA beta Gal beta Gal beta Xyl beta-R, where R is 4-methylumbelliferyl or p-nitrophenyl (Manzi et al., 1995; Miura and Freeze, 1998). In this study, we characterized an alpha-N-acetylgalactosaminyltransferase (alpha-GalNAc-T) that probably adds the alpha-GalNAc residue to the above xylosides. Microsomes from several animal cells and mouse brain contained the enzyme activity which requires divalent cations, and has a relatively broad pH optimal range around neutral. The apparent K(m) values were in the submillimolar range for the acceptors tested, and 19 microM for UDP-GalNAc. 1H-NMR analysis of the GlcA-beta-MU acceptor product showed the GalNAc residue is transferred in alpha 1,4-linkage to the glucuronide, which is consistent with previous results reported on alpha-GalNAc-capped Xyl-MU (Manzi et al., 1995). Various artificial glucuronides were tested as acceptors to assess the influence of the aglycone. Glucuronides with a bicyclic aromatic ring, such as 4-methylumbelliferyl beta-D-glucuronide (GlcA-beta-MU) and alpha-naphthyl beta-D-glucuronide, were the best acceptors. Interestingly, a synthetic acceptor that resembles the HNK-1 carbohydrate epitope but lacking the sulfate group, GlcA beta 1,3Gal beta 1,4GlcNAc beta-O-octyl (delta SHNK-C8), was a better acceptor for alpha-GalNAc-T than the glycosaminoglycan-protein linkage region tetrasaccharyl xyloside, GlcA beta 1,3Gal beta 1,3Gal beta 1,4Xyl beta-MU. GlcA-beta-MU and delta SHNK-C8 competed for the alpha-GalNAc-T activity, suggesting that the same activity catalyzes the transfer of the GalNAc residue to both acceptors. Taken together, the results show that the alpha-GalNAc-T described here is not restricted to GAG-type oligosaccharide acceptors, but rather is a UDP-GalNAc:glucuronide alpha 1-4-N-acetylgalactosaminyltransferase.  相似文献   

19.
A preparation of porcine stage 14 intestinal heparin, which contains Ser as a predominant amino acid, was used for isolation of the carbohydrate-protein linkage region of heparin. Two glycoserines were isolated in a molar ratio of 96:4 after an exhaustive digestion with a mixture of bacterial heparinase and heparitinases. Their structures were determined by composition analysis, heparitinase digestion, co-chromatography with an authentic glycoserine on high performance liquid chromatography, and by 500-MHz one- and two-dimensional 1H NMR spectroscopy. The structure of the major one is delta GlcA beta 1-3Gal beta 1-3Gal beta 1-4Xyl beta 1-O-Ser and that of the minor is delta GlcA beta 1-4GlcNAc(6-O-sulfate) alpha 1-4GlcA beta 1-3Gal beta 1-3Gal beta 1-4Xyl beta 1-O-Ser. The novel 6-O-sulfated GlcNAc residue was demonstrated to occur in the vicinity of the carbohydrate-protein linkage region. The Gal residues were nonsulfated, in contrast to the sulfated Gal structures recently discovered in the carbohydrate-protein linkage region of chondroitin sulfate proteoglycans. The structural features are discussed in relation to biosynthetic mechanisms of the heparin glycosaminoglycans.  相似文献   

20.
The human chorionic gonadotropin beta-subunit tryptic COOH-terminal peptide (residues 123-145) which contains 3 serine-linked sugar chains was isolated. The sugar chains were cleaved by beta-elimination and then separated by gel filtration. The peaks were pooled and their compositions determined. The products of serial glycosidase digestion and periodate oxidation of the intact glycopeptide were also characterized. Of the serine-linked sugar chains, 13% were the hexasaccharide NeuAc alpha 2,3 Gal beta 1,3 (NeuAc alpha 2,3 Gal beta 1,4 GlcNAc beta 1,6) GalNAc, 34% the tetrasaccharide NeuAc alpha 2,3 Gal beta 1,3 (NeuAc alpha 2,6) GalNAc, 43% the trisaccharide NeuAc alpha 2,3 Gal beta 1,3 GalNAc and 10% the disaccharide NeuAc alpha 2,6 GalNAc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号