首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Treatment of the wild-type strain HY 0 of Streptomyces hydrogenans with estradiol, a specific inducer of 3β,17β-hydroxysteroid dehydrogenase (17β-HSD) formation, caused several soluble proteins to bind to DNA-cellulose with altered affinity. Hydrocortisone which induces biosynthesis of 3α,20β-hydroxysteroid dehydrogenase (20β-HSD), and progesterone which induces production of both 17β- and 20β-HSD, had no effect on DNA-binding properties of the proteins. In mutants with altered activity/inducibility of 17β- and 20β-HSD only one DNA-binding protein (protein 23) still showed an altered DNA affinity in response to estradiol-treatment and this in only one strain. In other mutants the DNA affinity was not altered during induction with estradiol but the DNA affinity of protein 23 varied between low, low-and-high, and high affinity, depending on the strain. In the mutant where DNA affinity was altered by estradiol treatment the change was opposite to that found in the wild type.  相似文献   

2.
In the mature testes of the guppy, Poecilia reticulata , some groups of cells, distributed sparsely in the interspace between the peripheral germ cell layer and the hilar duct system, show evident histochemical response for Δ5-3β-hydroxysteroid dehydrogenase (3β-HSD). In the testis of newly delivered guppies, somatic cells are present in the testicular hilus as a compact mass without revealing any structural differentiation. In the testis of juvenile fish of the 8mm stage about 7 days after birth, interstitial cells resembling histologically those of adult testes become differentiated from the somatic cell mass and, though only in some specimens, coincidentally begin to display weak but obvious histochemical response for 3β-HSD. Thereafter the occurrence of enzyme activity becomes increasingly regular in the developing testes, and attains the adult pattern of distribution in testes of all specimens after the 11 13mm stage or 17 ∽ 20 days of age.
The appearance and enhancement of 3β-HSD activity in the testis is concurrent with the differentiation and development of the testicular duct system. Treatments of newly delivered fish with methyltestosterone (30 ∽ 50 μg/g diet) distinctly stimulate the development of the duct system, which suggests a possible role of androgen secretion occurring in the early phase of the testicular development in the control of testicular organogenesis in the guppy.  相似文献   

3.
The process of sex change in the gobiid fish Trimma okinawae was investigated by gonad histology and immunohistochemistry of two steroidogenic enzymes, P450 cholesterol-side-chain-cleavage (P450scc) and 3-hydroxysteroid dehydrogenase (3-HSD). Irrespective of sexual phase, gonads comprised both ovarian and testicular tissues. Females changed sex to male within 7 days, reverting again to female over an 11-day period. In each sexual phase of the females, the 2nd (2DF-M) and 4th (4DF-M) day after the initiation of sex change to male, the males, and 2nd (2DM-F), 4th (4DM-F), and 6th (6DM-F) days after the initiation of reversion from male to female, histological observations were made. In the ovary during the female, 2DF-M, 4DF-M, and 6DM-F phases, both vitellogenic and previtellogenic oocytes were present, but only previtellogenic oocytes were found in the other phases. The testis contained sperm in all phases, but sperm ducts were not visible in the female phase. In the ovary, P450scc immunoreactivity of interstitial cells was strongly or moderately detected, although weak in the male phase. In contrast, P450scc immunoreactivity in thecal cells was found in all but the male and 2DM-F phases. 3-HSD immunoreactive interstitial cells were detected in all phases, but only weakly so in the male and 2DM-F phases. 3-HSD immunoreactive thecal cells were observed in all stages without the male and 2DM-F and 4DM-F phases. In the testis, moderate P450scc and 3-HSD immunoreactivity was regularly found in the Leydig cells in all the phases. These results suggest that functional steroids including testosterone are produced in any sexual phases.  相似文献   

4.
Summary The ultrastructural and biosynthetic characteristics of the steroid cells in the gonad of Monopterus albus have been studied. Ultrastructural features related to steroidogenesis have been identified in the interstitial Leydig cells, Sertoli cells, granulosa cells and thecal cells, and are especially abundant in the Leydig cells during the mid-intersexual phase. Steroidogenic ultrastructures in the Sertoli cells develop only during the maturation of the spermatogenic cysts, whereas in the granulosa and thecal cells, these features become obvious only during the maturation of the large oocytes. EM evidence also suggests a nutritive function for the Sertoli cells and the granulosa cells. Results of in vitro steroidogenic studies, using either testosterone or progesterone as a precursor, show a predominant conversion to androstenedione and 5-reduced compounds, and suggest a change in biosynthesis from 5-reduced products to androstenedione during sex reversal. 11-Ketotestosterone (11KT) has been identified, but not 11 -hydroxytestosterone. Production of 11 KT is high in the late intersexual and the male phases, but a lack of a marked variation in 11KT production between the early and the mid-intersexual phase suggests that this steroid is not a trigger for natural sex reversal in Monopterus.  相似文献   

5.
Abstract A procedure is described for the production of monoclonal antibodies (mAbs) against 3α,20β-hydroxysteroid dehydrogenase (3α,20β-HSD) from the actinomycete Streptomyces hydrogenans ATCC 19631. Clones which were obtained after fusion of immune cells were screened by solid-phase ELISA and immunoblotting. About 5.2% of the clones secreted immunoglobulins with specificity for 3α,20β-HSD. The purified mAbs were found to belong to subclass IgG1 and to recognize both the native enzyme as well as its identical subunits which were obtained by SDS denaturation. However, the activity of the tetrameric holoenzyme was only weakly diminished in the presence of these mAbs.  相似文献   

6.
为探讨产卵是否为雌性黄鳝(Monopterus albus Zuiew)性转变的必经过程,研究分析了实验室内从受精卵或幼苗开始养殖至不同时间段的黄鳝性腺组织学状况,采用性腺活检技术跟踪了34月龄雌性黄鳝性腺发育变化,并以免疫组织化学方法探讨了黄鳝不同发育状态性腺中增殖细胞核抗原(PCNA)的分布.在养殖过程中,实验黄鳝...  相似文献   

7.
The localization of cytochrome P450 cholesterol side-chain cleavage (P450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD) and aromatase (P450arom) was investigated using polyclonal antibodies during gonad development in wild European eels, Anguilla anguilla (L.), from the River Po Delta (Ferrara, Italy). The first steroidogenic cells, observed in undifferentiated gonads of 14–16 cm yellow eels, showed no P450scc, 3β-HSD or P450arom activity, but positive regions appeared in head kidney insulae from this stage until the silver eel stage. In undifferentiated gonads of 16–20 cm yellow eels the steroidogenic cells were positive to all enzymes. Pre-Leydig steroidogenic cells, identified in Syrski organs of yellow eels of 22–26 cm evolving into testes, were positive to 3β-HSD and P450scc, but negative to P450arom. However, steroidogenic cells in Syrski organs evolving towards ovaries and in small but fully differentiated ovaries were positive to all enzymes. Immature testes of yellow and silver eels had Leydig cells positive to P450scc and 3β-HSD; the same reactions were also observed in some Sertoli cells of silver eel testes containing meiotic cells. Sex differentiation in A. anguilla apparently occurs through an initial female stage controlled by P450arom activity. Leydig and Sertoli cells appear involved in different steps of hormonal control of spermatogenesis: Leydig cells begin their steroidogenic activity before meiosis, while Sertoli cells begin their activity during meiosis.  相似文献   

8.
Summary The gonads of 3-day- to 7-month-old male and female platyfish (Xiphophorus maculatus) were examined for the presence of 5-3-hydroxysteroid dehydrogenase (3-HSD) and glucose-6-phosphate dehydrogenase (G6PD) by histochemical means. In 3-day-old males a positive response for both enzymes is localized in the Leydig cells. With subsequent testicular development, these cells increase in number and display greater activity at the periphery of the testis and around the efferent ducts. In 3-day-old females 3-HSD and G6PD are localized in the stromal cells of the ovary. These cells increase in number and activity as the animals become sexually mature. Sertoli cells, efferent duct epithelium, and ovarian granulosa cells are negative at all stages of development examined. Our findings suggest that the gonads of neonatal fish possess the potential for steroidogenesis. The role played by sexsteroid hormones in the maturation of the brain-pituitary-gonad axis is discussed.  相似文献   

9.
We investigated the sites of Δ5-3β-hydroxysteroid dehydrogenase (3 β-HSD) and glucose-6-phosphate dehydrogenase (G-6-PD) synthesis in the testes of goldfish, Carassius auratus, during the annual reproductive cycle. The histochemistry of fish gonads has been investigated previously in many species other than goldfish. The reproductive cycle of goldfish, is divided into five stages and the steroid synthesizing cells of the testes were studied during these stages, using histochemical techniques. We found that interstitial cells and seminiferous tubules are the main steroid synthesizing sites in testes of goldfish, and that enzyme activity was more intense in the interstitial cells than in the seminiferous tubules. During the pre-spawning months, 3 β-HSD and G-6-PD activities were weak compared to the spawning months.  相似文献   

10.
The mouse enzyme type 5 17-hydroxysteroid dehydrogenase (17-HSD) catalyzes the conversion of androstenedione to testosterone and, to a lesser degree, the conversion of estrone to estradiol. In order to determine the exact sites of action of type 5 17-HSD, we studied the cellular localization of the mRNA of the enzyme in mouse tissues by using in situ hybridization. Specific hybridization signal was found in the liver, ovary, adrenal cortex, and kidney. In the liver of mice of both sexes, a strong signal was observed in all hepatocytes. In the ovary, specific labeling was detected in the granulosa and theca interna cells in growing follicles and in luteal cells. In the female adrenal cortex, intense labeling was restricted to the zona reticularis, whereas no type 5 17-HSD mRNA expression could be found in the male adrenal cortex. In the kidney of mice of both sexes, type 5 17-HSD mRNA was expressed in epithelial cells in both the proximal and distal convoluted tubules. The data indicate that androgens and estrogens are formed via the action of type 5 17-HSD in specific cell types in the liver, ovary, adrenal cortex, and kidney.This work was supported by Genome Canada and Genome Québec.  相似文献   

11.
In the songbird brain, dehydroepiandrosterone (DHEA) is metabolized to the active and aromatizable androgen androstenedione (AE) by 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD). Thus, brain 3β-HSD plays a key role in regulating the steroidal milieu of the nervous system. Previous studies have shown that stress rapidly regulates brain 3β-HSD activity in a sex-specific manner. To elucidate endocrine regulation of brain 3β-HSD, we asked whether 17β-estradiol (E2) regulates DHEA metabolism in adult zebra finch ( Taeniopygia guttata ) and whether there are sex-specific effects. Brain tissue was homogenized and centrifuged to obtain supernatant lacking whole cells and cell nuclei. Supernatant was incubated with [3H]DHEA and radioinert E2 in vitro . Within only 10 min, E2 significantly reduced 3β-HSD activity in both male and female brain. Interestingly, the rapid effects of E2 were more pronounced in females than males. These are the first data to show a rapid effect of estrogens on the songbird brain and suggest that rapid estrogen effects differ between male and female brains.  相似文献   

12.
Previous studies demonstrated that estradiol interferes with pituitary-induced progesterone production and oocyte maturation in cultured amphibian ( Rana pipiens ) ovarian follicles. To elucidate the mode of action of estradiol in modulating follicular progesterone accumulation we have examined its effects on cAMP-induced progesterone production and enzymatic conversion of pregnenolone to progesterone by 3β-hydroxysteroid dehydrogenase (3β-HSD). Follicular cAMP levels were manipulated with forskolin (an adenylate cyclase activator), isobutyl methyl xanthine (IBMX-phosphodiesterase inhibitor) and exogenously added cAMP. Progesterone production induced by forskolin alone or forskolin in combination with frog pituitary homogenate (FPH) was inhibited by estrogen. Addition of estradiol to culture medium markedly inhibited follicular progesterone accumulation following treatment of follicles with cAMP and IBMX. In the presence of exogenous pregnenolone, non-FPH stimulated ovarian follicles effectively converted the 3β-HSD substrate to progesterone. Treatment of follicles with estradiol inhibited conversion of pregnenolone to progesterone. The results indicate that estradiol acts, following FPH stimulation, at one or more steps subsequent to elevation of cAMP levels to regulate intrafollicular progesterone accumulation and oocyte maturation. Estrogen appears to directly influence the enzymatic (3β-HSD) conversion of pregnenolone to progesterone.  相似文献   

13.
Summary The effects of carp pituitary suspension (CPS) and 11-desoxycorticosterone-acetate (DOCA) on 3-hydroxysteroid dehydrogenase (3-HSD) and glucose-6-phosphate dehydrogenase (G6PD) activity in the ovary of Clarias lazera are described. Strong 3-HSD and G6PD activities are localized in the stroma, of both control and treated fish. A single CPS injection stimulates 3-HSD activity in the granulosa of postvitellogenic, maturing and postovulatory follicles, but DOCA has no such effect on the postvitellogenic and maturing follicles, and only stimulates a weak response in the postovulatory ones.  相似文献   

14.
The capability of granulosa and theca interna cells, from preovulatory follicles of the domestic hen, to metabolize steroid precursors was evaluated. Granulosa and theca interna cells were isolated from ovarian preovulatory follicles at three different developmental stages: F1, F3 and F5. Tritiated pregnenolone (P5), progesterone (P4), dehydroepiandrosterone (DHEA), androstenedione (A4) and testosterone (T) were employed as precursors and their metabolic products were evaluated. The major metabolite of P5 by granulosa cells was P4, but we also observed low amounts of 5β-pregnandione. DHEA metabolism by granulosa cells yielded mainly A4, and minute quantities of 5β-androstan-3,17-dione (5β-dione) were detected. The only significant metabolite obtained in granulosa cells from A4 was 5β-dione, whereas T was only transformed into A4. On the other hand, P5 metabolism by theca interna cells yielded A4 as the main product, also P4, 17α-OHP4, 17α-OHP5, 5β-pregnandione, and DHEA, were found. When DHEA was the precursor A4 was produced in higher amounts than 5β-dione. A4 was mainly transformed into 5β-dione. In similar conditions, T was transformed into A4. These results show that granulosa cells have enzymatic activities of 3β-hydroxysteroid dehydrogenase/5-4 isomerase (3β-HSD from P5 and DHEA), 17β-hydroxysteroid dehydrogenase (17β-HSD from T) and 5β-reductase (from P5, DHEA and A4). Whereas theca interna cells have enzymatic activities of cytochrome P450c17 (from P5 and P4), 3β-HSD (from P5 and DHEA), 17β-HSD (from T) and 5β-reductase (from P4, DHEA and A4). These data support the concept that theca interna cells have the ability to synthesize androgens from progestins produced in granulosa cells. In addition, since theca interna cells did not show the capacity to aromatize androgens suggests that interaction between theca interna and theca externa cells occurs in vivo, thus confirming the three cell model for estrogen production. Furthermore, the fact that other metabolites were produced both in granulosa and theca interna cells, but in a different extent, suggests that complex mechanisms are participating in the regulation of steroid synthesis in avian ovary follicles.  相似文献   

15.
Steroidogenic Acute Regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD), 5α-Reductase (5α-Red), P450 aromatase are key enzymes involved in steroidogenesis. Recently, we showed the expression and the localization of P450 aromatase in Podarcis sicula testis during the different phases of the reproductive cycle, showing its involvement in the control of steroidogenesis, particularly in 17β-estradiol synthesis. Now, we have investigated the presence and distribution of the other enzymes involved in steroidogenesis, i.e. StAR, 3β-HSD, 17β-HSD and 5α-Red, during three significant periods of the reproductive cycle: summer stasis (July–August), autumnal resumption (November) and reproductive period (May–June). We demonstrated for the first time that all these enzymes are always present in somatic cells (Leydig and Sertoli) and germ cells (spermatogonia, spermatocytes I and II, spermatids and spermatozoa) of Podarcis testis, mainly in spermatids and spermatozoa. The present results strongly suggest that in Podarcis testis both somatic and germ cells could be involved in local sex hormone synthesis and that 5α-Red and P450 could carry out a pivot role.  相似文献   

16.
An overview of the application of kinetic methods to the delineation of 17β-hydroxysteroid dehydrogenase (17β-HSD) heterogeneity in mammalian tissues is presented. Early studies of 17β-HSD activity in animal liver and kidney subcellular fractions were suggestive of multiple forms of the enzyme. Subsequently, detailed characterization of activity in cytosol and subcellular membrane fractions of human placenta, with particular emphasis on inhibition kinetics, yielded evidence of two kinetically-differing forms of 17β-HSD in that organ. Gene cloning and transfection experiments have confirmed the identity of these two proteins as products of separate genes. 17β-HSD type 1 is a cytosolic enzyme highly specific for C18 steroids such as 17β-estradiol (E2) and estrone (E1). 17β-HSD type 2 is a membrane bound enzyme reactive with testosterone (T) and androstenedione (A), as well as E2 and E1. Useful parameters for the detection of multiple forms of 17β-HSD appear to be the E2/T activity ratio, NAD/NADP activity ratios, steroid inhibitor specificity and inhibition patterns over a wide range of putative inhibitor concentrations. Evaluation of these parameters for microsomes from samples of human breast tissue suggests the presence of 17β-HSD type 2. The 17β-HSD enzymology of human testis microsomes appears to differ from placenta. Analysis of human ovary indicates granulosa cells are particularly enriched in the type 1 enzyme with type 2-like activity in stroma/theca. Mouse ovary appears to contain forms of 17β-HSD which differ from 17β-HSD type 1 and type 2 in their kinetic properties.  相似文献   

17.
The role of aromatase (Arom) in the process of bi-directional sex change in the gobiid fish Trimma okinawae was investigated by immunohistochemical methods. Irrespective of sexual phase, gonads comprised both ovarian and testicular tissues. In each sexual phase of females, the 2nd (2DF-M) and 4th (4DF-M) days after initiation of sex change to male, males, and the 2nd (2DM-F), 4th (4DM-F) and 6th (6DM-F) days after the initiation of reversion from male to female, ovarian and testicular histological observations were made. During the female, 2DF-M, 4DF-M and 6DM-F phases, the ovary contained vitellogenic and previtellogenic oocytes, compared with previtellogenic oocytes in the other phases. Although sperm was found in the testis in every phase, sperm ducts were apparent in the male phase, but not the female phase. Arom immunoreactivity was detected in the interstitial cells between the oocytes in all phases. On the other hand, it was localized in the thecal and granulosa cells of the follicular layer enclosing the oocytes in the female, 2DF-M, 4DF-M and 6DM-F phases. Activity of Arom in the thecal and granulosa cells is thought to be important for the development of oocytes and subsequent sex change.  相似文献   

18.
Abstract: Neurons and glial cells are capable of synthesizing various steroid hormones, but biosynthesis of testosterone in the CNS has never been reported. The aim of the present study was to demonstrate the synthesis of testosterone in the frog brain. The presence of 17β-hydroxysteroid dehydrogenase (17β-HSD)-like immunoreactivity was detected in a population of glial cells located in the telencephalon. Reversed-phase HPLC analysis of brain tissue extracts combined with radioimmunoassay detection revealed the presence of substantial amounts of testosterone and 5α-dihydrotestosterone (5α-DHT) in the telencephalon where 17β-HSD-positive cells were visualized. In male frogs, castration totally suppressed testosterone and 5α-DHT in the blood and in the rhombencephalon but did not affect the concentration of these two steroids in the telencephalon. Chemical characterization of testosterone in female frog telencephalon extracts was performed by coupling HPLC analysis with gas chromatography-mass spectrometry. Using the pulse-chase technique with [3H]pregnenolone as a precursor, the formation of a series of metabolites was observed, including dehydroepiandrosterone, androstenedione, testosterone, 5α-DHT, and estradiol. These data demonstrate the existence of an active form of 17β-HSD in the frog telencephalon, which is likely involved in testosterone biosynthesis within the brain.  相似文献   

19.
An IHC survey using several monoclonal antibodies against different portions of the rat mineralocorticoid receptor (MR) molecule demonstrated significant specific MR immunoreactivity in the ovary, prompting further study of the localization of MR and of determinants of extrinsic MR ligand specificity, 11β-hydroxysteroid dehydrogenase (11β-HSD) types 1 and 2, and hexose-6-phosphate dehydrogenase (H6PDH). MR expression (real-time RT-PCR and Western blot) did not differ significantly in whole rat ovaries at early diestrus, late diestrus, estrus, and a few hours after ovulation. MR immunostaining was most intense in corporal lutea cells, light to moderate in oocytes and granulosa cells, and least intense in theca cells. Light immunoreactivity for 11β-HSD2 occurred in most cells, with some mural granulosa cells of mature follicles staining more strongly. The distribution of immunoreactivity for 11β-HSD1 and H6PDH required to generate NADPH, the cofactor required for reductase activity of 11β-HSD1, was similar, with the most-intense staining in the cytoplasm of corporal lutea and theca cells and light or no staining in the granulosa and oocytes. MR function in the ovary is as yet unclear, but distinct patterns of distribution of 11β-HSD1 and -2 and H6PDH suggest that the ligand for MR activation in different cells of the ovary may be differentially regulated. (J Histochem Cytochem 57:633–641, 2009)  相似文献   

20.
Activities of key testicular androgenic enzymes [Δ(5), 3β-hydroxysteroid dehydrogenase (Δ(5), 3β-HSD) and 17β-hydroxysteroid dehydrogenase (17β-HSD)], plasma levels of testosterone, and testicular gametogenic activities were studied in heat-exposed adult male toads during hibernating season for two consecutive years. Exposure of toads to an elevated environmental temperature for 14 and 21 days resulted in significant elevation of testicular Δ(5), 3β-HSD and 17β-HSD activities, along with plasma levels of testosterone. Testicular gametogenic activity, by means of quantity of all stages of spermatogenic cycle, were elevated significantly at the same experimental schedule, but 7 days of heat exposure resulted in significant elevation only in stage IV. The results indicated that environmental temperature is an important modulator of breeding activities of male toads. It also demonstrated that testicular activities in seasonally breeding toads are probably not linked to hibernating cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号