首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lowland savannas are a rare variant of Midwestern United States savanna occurring on alluvial soils, for which reference information is sparse. To evaluate the appropriateness of using upland savanna as a surrogate source of reference information for lowland savanna, we studied a pre‐Euro‐American lowland savanna using original U.S. Public Land Survey data and other historical records. Historical vegetation was reconstructed and compared among upland savannas, lowland savannas, and lowland forests; we also evaluated potential disturbance dynamics maintaining these systems. We found that all three communities were dominated by members of the genus Quercus but also had extensive representation by many other tree species, especially notable for savannas in this region. There were no clear size–density relationships for species in the genus Quercus, indicating that these historical savannas were not characterized exclusively by large, scattered oak trees but rather by trees of many oak species and nonoak species in a wide range of size classes. Both upland and lowland savannas also contained a substantial shrub component. We found no evidence that lowland savannas were maintained by flooding, although the uneven‐aged canopy structure suggested that periodic disturbance occurred. Restoration of lowland savanna in this region should include provisions for maintaining nonoak species and shrubs, with disturbance timed to maintain an uneven‐aged canopy structure. Although the appropriateness of historical data in the face of climate change may be questionable, in this region, a warmer climate may actually help promote the “oak parkland” that was present from 8,000 BP up to Euro‐American settlement.  相似文献   

2.
Throughout the world, numerous tree species are reported to be in decline, either due to increased mortality of established trees or reduced recruitment. The situation appears especially acute for oaks, which are dominant features of many landscapes in the northern hemisphere. Although numerous factors have been hypothesized to explain reductions in tree performance, vertebrate herbivores and granivores may serve as important drivers of these changes. Here, using data from 8‐ and 14‐year‐old exclosure experiments, we evaluated the individual and interactive effects of large and small mammalian herbivores on the performance of three widespread oak species in California—coast live oak (Quercus agrifolia), California black oak (Q. kelloggii), and Oregon white oak (Q. garryana). Although impacts varied somewhat by species and experiment, herbivory by black‐tailed deer (Odocoileus hemionus columbianus) reduced the height and survival of juvenile coast live oaks and altered their architecture, as well as reduced the abundance of black oak seedlings, the richness of woody species and the cover of nonoak woody species. Small mammals (Microtus californicus and Peromyscus maniculatus) had even more widespread effects, reducing the abundance of black oak seedlings and the height and cover of all three oak species. We also detected numerous interactions between small mammals and deer, with one herbivore having positive or negative effects on oak abundance and cover when the other herbivore was either present or absent. For example, deer often had negative effects on seedling abundance only when, or even more so when, small mammals were present. In summary, mammalian consumers play crucial roles in limiting oak recruitment by reducing seedling abundance, maintaining trees in stunted states, and preventing them from reaching sapling stages and becoming reproductive. Interactions between large and small mammals can also alter the intensity and direction of their effects on trees.  相似文献   

3.
Dennstaedtia punctilobula (hay‐scented fern) can act as a native invasive species in forests in eastern North America where prolonged deer browsing occurs in stands with partially open overstory canopies. Ferns dominate the understory with a 60‐cm tall canopy, with little regeneration of native tree species. It has been hypothesized that, once established, ferns may continue to inhibit tree regeneration after deer browsing has been reduced. To test this hypothesis, we documented the pattern of recovery of the tree seedling understory in plantations of Pinus strobus (white pine) and Pinus resinosa (red pine) on the Quabbin Reservation watershed protection forest in central Massachusetts, where after 40 years of intensive deer browsing the deer herd was rapidly reduced through controlled hunting. Dense fern understories occur on nearly 4,000 ha of the predominantly oak–pine forest. Three years after deer herd reduction, stands with the highest density fern cover (77% of plots with>90% cover) had significantly fewer seedlings at least 30 cm in height, compared with stands with lower fern density, and those seedlings consisted almost entirely of Betula lenta (black birch) and white pine. Height growth analysis showed that black birch and white pine grew above the height of the fern canopy in 3 and 6 years, respectively. In contrast, two common species, Fraxinus americana (white ash) and Quercus rubra (red oak), grew beneath the dense fern cover for 5 years with height growth less than 5 cm/yr after the first year. A study of spring phenology indicated that the ability of black birch to grow through the fern canopy might have been due to its early leaf development in spring before the fern canopy was formed, in contrast to oak and ash with delayed leaf development. Thus, the ferns showed differential interference among species with seedling development after reduction of deer browse.  相似文献   

4.
Abstract Interest in restoring native ecosystems is resulting in conversion of marginal agricultural lands to bottomland hardwood‐dominated forests in the midwestern and midsouthern United States. Growing stock for these efforts typically consists of planted oak (Quercus spp.) and volunteer vegetation. Reports of mixed reforestation success and the lack of post‐establishment tree growth data prompted this evaluation of vegetation characteristics of 5‐ to 7‐year‐old operational restorations in the Lower Cache River Watershed in southernmost Illinois, U.S.A. Fraxinus pennsylvanica (green ash), Acer negundo (box‐elder), and Liquidambar styraciflua (sweetgum) together comprised 77% of all tree stems observed. Full stocking of overstory tree species can be expected to produce a closed canopy stand within 160 m of a forested edge, due primarily to the abundance of rapidly growing volunteer‐origin trees. Planted oaks contributed minimally to total tree stocking but were present in sufficient numbers to eventually improve wildlife habitat, and therefore satisfied restoration objectives. Oak height was 23% greater when in the presence of a non‐oak tree species. Herbaceous cover was dominated by Solidago gigantea (late goldenrod) and Juncus spp. (rushes). Solidago gigantea was associated with poor growth and low density of non‐oak stems, whereas Juncus dudleyi (Dudley's rush) was associated with taller non‐oak stems. These results suggest that the presence of volunteer‐origin trees is crucial for the creation of full stand stocking that will result in rapid development of a closed canopy forest. Improved success of future reforestation efforts will require more intensive methods to establish adequate stocking beyond 160 m of a forest edge. Methods described here could be adapted for agricultural field to forest restorations in other regions to predict critical distances from volunteer seed sources within which supplemental planting would be unnecessary to meet tree stocking objectives.  相似文献   

5.
Indirect interactions driven by livestock and wild herbivores are increasingly recognized as important aspects of community dynamics in savannas and rangelands. Large ungulate herbivores can both directly and indirectly impact the reproductive structures of plants, which in turn can affect the pollinators of those plants. We examined how wild herbivores and cattle each indirectly affect the abundance of a common pollinator butterfly taxon, Colotis spp., at a set of long‐term, large herbivore exclosure plots in a semiarid savanna in central Kenya. We also examined effects of herbivore exclusion on the main food plant of Colotis spp., which was also the most common flowering species in our plots: the shrub Cadaba farinosa. The study was conducted in four types of experimental plots: cattle‐only, wildlife‐only, cattle and wildlife (all large herbivores), and no large herbivores. Across all plots, Colotis spp. abundances were positively correlated with both Cadaba flower numbers (adult food resources) and total Cadaba canopy area (larval food resources). Structural equation modeling (SEM) revealed that floral resources drove the abundance of Colotis butterflies. Excluding browsing wildlife increased the abundances of both Cadaba flowers and Colotis butterflies. However, flower numbers and Colotis spp. abundances were greater in plots with cattle herbivory than in plots that excluded all large herbivores. Our results suggest that wild browsing herbivores can suppress pollinator species whereas well‐managed cattle use may benefit important pollinators and the plants that depend on them. This study documents a novel set of ecological interactions that demonstrate how both conservation and livelihood goals can be met in a working landscape with abundant wildlife and livestock.  相似文献   

6.
Douglas C. Daly 《Brittonia》1993,45(3):240-246
Bursera inversa is the first new species of the genus to be described from South America in 90 years. The ecology of this species is remarkable because it is a large (to 25 m × 40 cm or greater) canopy tree of primary moist to wet lowland forest. It is easily distinguished from its congeners by its large, obovoid fruits and bony pyrene. A key to the South American species ofBursera is provided.  相似文献   

7.
Summary

The paper explores whether any of the familar range of current oakwood structures in the west of Scotland can be used as realistic analogues for the prehistoric oakwoods. Even for the early historic oak woodlands we have no detailed knowledge of previous structures and composition.

The structure of today's oak woodlands, and to some extent even the legacy of species within that habitat, are a type of biocultural heritage. The oak woodlands that we see today are the product of a long interaction: between man's use of the woodlands and the ongoing natural processes within the oakwood ecosystem.

Grazing animals, especially domestic cattle and red deer, have played a key part in determining oak woodland structure in historic times, and perhaps have a future role too. Are there lessons to be drawn from knowledge of past management and regeneration of oak which are relevant to the present day, when most managers are finding it difficult to regenerate oak woodlands on any scale?

Understanding past utilisation and structure of oak woodlands is valuable mainly as a guide to future management. Indeed one might ask which models and structures are relevant for managing an oak woodland resource now regarded mainly as a wildlife habitat?  相似文献   

8.
Gap dynamics theory proposes that treefall gaps provide high light levels needed for regeneration in the understory, and by increasing heterogeneity in the light environment allow light‐demanding tree species to persist in the community. Recent studies have demonstrated age‐related declines in leaf area index of individual temperate trees, highlighting a mechanism for gradual changes in the forest canopy that may also be an important, but less obvious, driver of forest dynamics. We assessed the prevalence of age‐related crown thinning among 12 tropical canopy tree species sampled in lowland forests in Panama and Puerto Rico (total = 881). Canopy gap fraction of individual canopy tree crowns was positively related to stem diameter at 1.3 m (diameter at breast height) in a pooled analysis, with 10 of 12 species showing a positive trend. Considered individually, a positive correlation between stem diameter and canopy gap fraction was statistically significant in 4 of 12 species, all of which were large‐statured canopy to emergent species: Beilschmiedia pendula, Ceiba pentandra, Jacaranda copaia, and Prioria copaifera. Pooled analyses also showed a negative relationship between liana abundance and canopy gap fraction, suggesting that lianas could be partially obscuring age‐related crown thinning. We conclude that age‐related crown thinning occurs in tropical forests, and could thus influence patterns of tree regeneration and tropical forest community dynamics.  相似文献   

9.
Polar and Gaussian ordination applied to data collected from 37 forest sites in central Illinois resulted in a continuous and gradual change in species composition along a moisture gradient. A series of overlapping species success curves formed by plotting Importance Values over stands ordered along the gradient varied continuously in modal location and habitat width. Blackjack oak and black oak dominated upland sandy sites. Black oak, white oak, and shagbark hickory were the most important species on exposed, upper slope positions or ridge tops with silt-loam soils. Red oak, sugar maple, American elm, and bur oak dominated sheltered locations on lower slope positions and stream terraces. Sycamore, silver maple, and cottonwood were leading tree species in floodplain forests. Conversion of black, white, and red oak forests on silt-loam sites to sugar maple, white ash, and red elm dominance is evident by high densities of these shade tolerant species in the understory. Composition of forests at the extreme ends of the moisture gradient is more stable than the mesic sites. Maximum tree diversity occurred on mesic sites and decreased toward the extreme ends of the moisture gradient. However, competitive exclusion of shade intolerant species by sugar maple and other species has caused a decrease in understory diversity on mesic sites. Diversity decreased from canopy to understory strata in lowland forests and increased on xeric sites.  相似文献   

10.
Expansion of the nature conservation estate in northeastern New South Wales, Australia, has captured weed‐infested timber plantations amid a mosaic of high conservation value lands. We adopted a state‐and‐transition approach to test the hypothesis that restoration barriers restrict the natural regeneration of native species in Eucalyptus grandis plantations infested by Lantana camara in Bongil Bongil National Park, New South Wales. Plantation tree thinning and weed control were applied in factorial combination at three sites (totaling to 4.5 ha). Topsoil chemistry responses to these interventions were attributable to the “ash bed” effect, with temporary increases in topsoil pHW and nitrate, particularly where canopy reduction was greatest. Other soil changes were minor, indicating that thinning and burning did not risk soil degradation. Plant species richness and functional group representation in the regenerating understorey were improved by the interventions. Regeneration of native potential canopy trees, understorey trees, shrubs and woody climbers, and perennial forbs all increased with canopy retention. Grass cover dominated the regeneration where canopy cover was less than 50%. In the absence of weed control, the cover of introduced shrubs increased with reduction in canopy cover, as did the rate of understorey regeneration generally. These responses indicate that thinning and weed control can reinstate succession, leading to structurally and compositionally diverse forest. Given the abundance of native woody regeneration under retained canopy, the lantana understorey was more important in inhibiting native regeneration. The experimental approach will promote efficient use of resources across the remaining 200 ha of low conservation value plantations in this national park.  相似文献   

11.
Interspecific hybridization in plants is known to have ecological effects on associated organisms. We examined the differences in insect herbivore community structure and grazing pressure on tree canopy leaves among natural hybrids and their parental oak species. We measured leaf traits, herbivore community structure, and grazing pressure on leaves of two oak species, Quercus crispula and Q. dentata, and their hybrids. The concentration of nitrogen in canopy leaves was greater in hybrids and in Q. dentata than in Q. crispula. The concentration of total phenolics was lower in hybrids than in Q. crispula. The concentration of condensed tannin was greater in hybrids than in Q. crispula. Relative herbivore abundance and species richness were greater on oak hybrids than on either parental species; herbivore species diversity and composition on hybrids were close to those on Q. crispula. Herbivore grazing pressure was lower on hybrids and Q. dentata than on Q. crispula. There was a negative correlation between herbivore grazing pressure and leaf nitrogen, suggesting that interspecific variation among oak taxa in herbivore pressure may be explained by leaf nitrogen; variation in herbivore community structure among oak taxa is likely to be controlled by polygenic leaf traits. Differing responses of (1) herbivore community structure and (2) herbivore grazing pressure to host plant hybridization may play important roles in regulating herbivore biodiversity in cool‐temperate forest canopies.  相似文献   

12.
Plant–soil interactions are increasingly recognized to play a major role in terrestrial ecosystems functioning. However, few studies to date have focused on slow dynamic ecosystems such as forests. As they are vertically stratified by multiple vegetation strata, canopy tree removal by thinning operations could alter forest plant community through tree canopy opening. Very little is known about cascading effects on soil biodiversity. We conducted a large‐scale, multi‐site assessment of collembolan assemblage response to long‐term canopy tree removal in sessile oak Quercus petraea temperate forests. A total of 33 experimental plots were studied covering a large gradient of canopy tree basal area, stand age and local abiotic contexts. Collembolan abundance strongly declined with canopy tree removal in early forest successional stage and this was mediated by negative effect of understory plant community composition changes, i.e. shift from moss and forb to tree seedling, fern, shrub and grass species. Negative effect of this composition shift on collembolan species richness was largely offset by positive effect of the increase in understory plant species richness. This gives support to both the plant mass‐ratio and functional diversity hypotheses. Collembolan functional groups had contrasting response patterns, which were mediated by different ecological factors. Epedaphic (r‐strategist) abundance and species richness increased with canopy tree removal in relation with the increase in understory plant species richness. In contrast, euedaphic (K‐strategist) abundance and species richness declined with canopy tree removal in early forest successional stage in relation with changes in understory plant community composition and species richness, as well as microclimatic conditions. Overall, our study provides experimental evidence that forest plant community can be a strong driver of collembolan assemblages. It also emphasizes the role of trees as foundation species of forest ecosystems that can shape soil biodiversity through their regulation of understory plant community and ecosystem abiotic conditions.  相似文献   

13.
The macrofungal communities of Irish native tree species (ash and oak) and exotic tree species (Scots pine and Sitka spruce) forests were examined through the collection of sporocarps over 3 yr. Sampling of 27 plots revealed 186 species of macrofungi, including 10 species new to Ireland. The species richness of non-native Sitka spruce and Scots pine forests was similar to that of native oak forests. However, specific communities of macrofungi existed in each of the forest types as confirmed by non-metric multidimensional scaling and multi-response permutation procedure. Indicator species analysis was used to identify macrofungi which are indicative of the four forest types. The oak community lacked certain species/genera known to be distinctive of oak woods in Britain, possibly due to low inoculum availability as a result of historic removal of Ireland’s oak forests. Our results indicate that, while being similar to native forests in species richness, non-native forests of Sitka spruce and Scots pine in Ireland harbour many fungal species which are not typical of native forests, particularly members of the genus Cortinarius.  相似文献   

14.
The Mississippi Alluvial Valley (MAV) is an internationally important migration and wintering region for Nearctic waterfowl. Most of the MAV is a lowland forested floodplain that contains vast stands of red oaks (Quercus spp.). These trees produce acorns and, when forests flood, diverse communities of aquatic invertebrates emerge, providing diverse nutritious foods for wintering ducks. The MAV is within the Lower Mississippi Valley Joint Venture (LMV JV) region of the North American Waterfowl Management Plan, but no combined MAV-wide estimates of acorn and invertebrate biomass exist to determine foraging carrying capacity for conservation planning or actions by the LMV JV or other partners in regions containing southern red oaks. We sampled acorns that fell to the ground or were submersed under shallow water deemed accessible to foraging ducks and aquatic invertebrates in the MAV of Louisiana, Mississippi, Missouri, and Tennessee, USA, during fall-winter 2009–2011. In good and poor masting years, acorn abundance was non-linearly related to the percentage of the forest canopy made up of red oaks and peaked in late autumn or winter when most other waterfowl resources are depleted or decomposed. This finding is novel and represents a deviation from how the LMV JV has traditionally assumed food resources exist for waterfowl in hardwood bottomlands. We used a daily ration model to estimate energy use days (EUDs) from combined acorn and invertebrate biomasses relative to red oak canopy coverage. For good and poor acorn masting years at the mean MAV-wide red oak canopy coverage of 45%, EUD = 2,273.1 days/ha and 161.2 days/ha, respectively. The LMV JV currently uses EUD = 385–502 days/ha for forests with 40–50% red oak canopy coverage. Because acorns and aquatic macro-invertebrates are a food resource that persists through winter and reaches peak abundance later in winter, we contend conservation planners have undervalued the potential of bottomland hardwoods to provide energy for wintering ducks.  相似文献   

15.
落叶栎林是桂西地区南亚热带的典型次生林,也是该区域落叶阔叶林的重要群系组。该研究采用典型样方法对桂西地区落叶栎林群落进行调查,分析了该区域落叶栎林群落的物种组成、区系成分、物种多样性特征及其与地形因子的关系,为桂西地区南亚热带植物多样性保护与恢复提供依据。结果显示:(1)研究区落叶栎林群落维管束植物共计269种,隶属80科178属。(2)种子植物区系以热带成分为主,同时表现出一定程度的温带过渡性质。(3)聚类分析表明,调查的落叶栎林群落可分为云南波罗栎林、栓皮栎林、白栎林、麻栎林4种林分类型,其中以白栎林群落的物种多样性最高,且灌木层的物种多样性显著高于乔木层和草本层。(4)RDA分析显示,落叶栎林群落不同层次物种多样性的差异受地形因子的影响,多样性指标与经度、纬度、海拔之间具有明显的相关性(P<0.05),其中乔木层物种多样性主要与经度、纬度呈显著的相关性,灌木层物种多样性与纬度、海拔相关,草本层物种多样性与经度、纬度、海拔之间均有相关性。  相似文献   

16.
HUW LLOYD 《Ibis》2008,150(4):735-745
Habitat restoration strategies for fragmented high Andean forest landscapes must consider the influence of within‐patch habitat quality on bird abundance. I examined vegetation and bird abundance at three locations within a highly fragmented Polylepis forest landscape in the Cordillera Vilcanota, southern Peru. Across the landscape, there was significant variation in the vegetation structure of Polylepis forest patches of different size categories, especially in terms of tree girth, tree height, tree density, and canopy vegetation structure. Principal Component Analysis extracted five factors of habitat quality, which together accounted for 74.2% of the variability within 15 habitat variables. Polylepis bird species differed in their responses to habitat quality but, overall, variation in Polylepis bird abundance was not fully captured by the range of habitat quality variables. Tall, dense vegetation cover was clearly important for 11 conservation‐important species, a high density of large trees was important for 10 species and primary forest ground cover was important for eight species. Habitat quality exhibited no significant influence on the abundance of only one species –Asthenes urubambensis. The abundance of seven species was associated with lower elevation forest, but only one species was associated with higher elevation forest. Management of habitat quality in large and medium remnant forest patches throughout the Cordillera Vilcanota, particularly in the 3800–4200 m elevation range, will be a cornerstone in ensuring the persistence of the majority of conservation‐important bird species populations.  相似文献   

17.
We compared the functional type composition of trees ≥10 cm dbh in eight secondary forest monitoring plots with logged and unlogged mature forest plots in lowland wet forests of Northeastern Costa Rica. Five plant functional types were delimited based on diameter growth rates and canopy height of 293 tree species. Mature forests had significantly higher relative abundance of understory trees and slow-growing canopy/emergent trees, but lower relative abundance of fast-growing canopy/emergent trees than secondary forests. Fast-growing subcanopy and canopy trees reached peak densities early in succession. Density of fast-growing canopy/emergent trees increased during the first 20 yr of succession, whereas basal area continued to increase beyond 40 yr. We also assigned canopy tree species to one of three colonization groups, based on the presence of seedlings, saplings, and trees in four secondary forest plots. Among 93 species evaluated, 68 percent were classified as regenerating pioneers (both trees and regeneration present), whereas only 6 percent were classified as nonregenerating pioneers (trees only) and 26 percent as forest colonizers (regeneration only). Slow-growing trees composed 72 percent of the seedling and sapling regeneration for forest colonizers, whereas fast-growing trees composed 63 percent of the seedlings and saplings of regenerating pioneers. Tree stature and growth rates capture much of the functional variation that appears to drive successional dynamics. Results further suggest strong linkages between functional types defined based on adult height and growth rates of large trees and abundance of seedling and sapling regeneration during secondary succession.
Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp  相似文献   

18.
Weed control and overstory reduction are important silvicultural treatments for improving survival and growth of under‐planted oak and hickory seedlings. Mast‐producing trees in the bottomland forests of the blackland prairie and Post Oak Savannah ecoregions of Texas have declined in abundance. Oaks and hickories have been replaced by more shade‐tolerant species, including green ash (Fraxinus pennsylvanica Marshall) and sugarberry (Celtis laevigata Willd.), which do not produce significant hard mast for priority wildlife species. A split‐plot experiment design was installed on three sites at Richland Creek Wildlife Management Area in Freestone County, Texas, studying the effects of canopy coverage and competition control on survival and growth of bur oak (Quercus macrocarpa Michx.), Shumard oak (Quercus shumardii Buckl.), and pecan (Carya illinoinensis (Wagenh.) K. Koch) seedlings. Uprooting by hogs shortly after planting resulted in greater than 90% mortality of pecan on the two lower elevation sites. Year one survival of Shumard oak was significantly higher than bur oak. However, bur oak was more preferred by hogs than Shumard oak. Year one growth of bur oak was significantly greater than Shumard oak. Severe flooding during the second growing season caused complete mortality on the lower two sites. None of the species were well suited to such prolonged (3–4 months) inundation as seedlings. On the remaining site, density reduction and weed‐barrier mats improved growth and survival while herbaceous weed control with herbicides actually reduced both growth and survival.  相似文献   

19.
The extant and potential (seed bank) vegetation of a rare maritime holly forest on Fire Island, New York was described to assess whether treefall gaps act as a mechanism for the persistence of the species composition of this plant community over time. The Sunken Forest overstory is dominated by Ilex opaca, Amelanchier canadensis and Sassafras albidum. A survey of canopy gaps indicated canopy openings compose 11.3% of the land within the Sunken Forest (16 ha). The composition and density of the seed bank were described using the emergence method. Germination from soil samples placed in the greenhouse was monitored over 2 years. Sixteen species germinated with an average propagule density of 215±41 germinants per square metre. An early successional species (Rhus copallinum) dominated the seed bank, but the late-successional, shade-tolerant I. opaca was also present. Though only one species in the seed bank did not appear in the current vegetation, species abundance differed between vegetation strata. The mean cover and density of the ground-layer flora were higher beneath treefall gaps than closed canopy. Sapling density did not differ between the two canopy conditions, but the dominant species differed with A. canadensis occupying several closed canopy plots and P. serotina saplings appearing more often in gap plots. Most of the dominant canopy species are present in the seed bank and ground layer but are not present in the shrub and sapling layer, with the exception of A. canadensis. Current (2002) sapling density is lower than three decades ago for all species except P. serotina, which is now the dominant woody species in the Sunken Forest understory. The results of this study indicate that if the cause of the sapling reduction is lessened or removed, the characteristic species of the overstory of this unusual plant community may rebound and redevelop a sapling and shrub layer akin to that present before the increase in Odocoileus virginianus on the island.  相似文献   

20.
Questions: What is the current distribution of pine and oak species along environmental gradients in southern Spain? Do pine and oak regeneration niches differ from the environmental niches of adults? Is oak species regeneration favoured under the canopy of pine forests? Location: Forest areas of Andalusia (~87 600 km2, southern Spain). Methods: We compiled extensive forest inventory data to explore differences in abundance (basal area, m2 ha?1) patterns of adults (dbh >7.4 cm) and regeneration (dbh ≤7.4 cm) of five pine and five oak species. Canonical correspondence analysis (CCA) and generalized linear models were applied to explore species–environment relationships along climatic, edaphic, topographic and fire‐frequency gradients. Results: Both pines and oaks segregated along complex environmental gradients, with pines generally dominating in more severe (colder and drier) environments, while oaks dominated in milder, wetter winter areas. In 40‐55% of mature pine stands there was a lack of regeneration in the understorey, while in two oak species (Q. suber and Q. canariensis) 70% of stands did not show regeneration. Pine recruits were found at a higher frequency and abundance under the canopy of their congeners, whereas some oaks (Q. ilex) had greater regeneration under mixed pine–oak canopies. Conclusions: Climatic limitations and soil properties partly explained the regional distribution of pines and oaks. We found evidence for an upward shift of Q. ilex recruits towards areas with colder conditions in pine forests, which could be explained by a possible facilitative effect of the pine canopy on seedling establishment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号