首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Helicobacter pylori (H pylori) is the main risk factor for gastric cancer (GC). In recent years, many studies have addressed the effects of H pylori itself and of H pylori‐induced chronic inflammation on DNA damage. Unrepaired or inappropriately repaired DNA damage is one possible carcinogenic mechanism. We may conclude that H pylori‐induced DNA damage is one of the carcinogenic mechanisms of GC. In this review, we summarize the interactions between H pylori and DNA damage and the effects of H pylori‐induced DNA damage on GC. Then, focusing on oxidative stress, we introduce the application of antioxidants in GC. At the end of this review, we discuss the outlook for further research on H pylori‐induced DNA damage.  相似文献   

3.
Helicobacter pylori has high global infection rates and can cause other undesirable clinical manifestations such as duodenal ulcer (DU) and gastric cancer (GC). Frequencies of re-infection after therapeutic clearance and rates of DU versus GC vary geographically and differ markedly between developed and developing countries, which suggests additional factors may be involved. The possibility that, in vivo, lactoferrin (Lf) may play a subtle role in modulating micronutrient availability or bacterial internalisation with implications for disease etiology is considered. Lf is an iron binding protein produced in mammals that has antimicrobial and immunomodulatory properties. Some bacteria that regularly colonise mammalian hosts have adapted to living in high Lf environments and we investigated if this included the gastric pathogen H. pylori. We found that H. pylori was able to use iron from fully iron-saturated human Lf (hLf) whereas partially iron-saturated hLf (apo) did not increase H. pylori growth. Instead, apo-hLf increased adherence to and internalisation of bacteria into cultured epithelial cells. By increasing internalisation, we speculate that apo-human lactoferrin may contribute to H. pylori’s ability to persistence in the human stomach, an observation that potentially has implications for the risk of H. pylori-associated disease.  相似文献   

4.
5.
Helicobacter pylori (H. pylori) is a common pathogenic bacterium in the stomach that infects almost half of the population worldwide and is closely related to gastric diseases and some extragastric diseases, including iron‐deficiency anemia and idiopathic thrombocytopenic purpura. Both the Maastricht IV/Florence consensus report and the Kyoto global consensus report have proposed the eradication of H. pylori to prevent gastric cancer as H.pylori has been shown to be a major cause of gastric carcinogenesis. The interactions between H. pylori and host receptors induce the release of the proinflammatory cytokines by activating proinflammatory signaling pathways such as nuclear factor kappa B (NF‐κB), which plays a central role in inflammation, immune response, and carcinogenesis. Among these receptors, Toll‐like receptors (TLRs) are classical pattern recognition receptors in the recognition of H. pylori and the mediation of the host inflammatory and immune responses to H. pylori. TLR polymorphisms also contribute to the clinical consequences of H. pylori infection. In this review, we focus on the functions of TLRs in the NF‐κB signaling pathway activated by H. pylori, the regulators modulating this response, and the functions of TLR polymorphisms in H.pylori‐related diseases.  相似文献   

6.
Epitope vaccine based on urease of Helicobacter pylori is a promising option for prophylactic and therapeutic vaccination against H. pylori infection. In this study, we constructed an epitope vaccine with mucosal adjuvant cholera toxin B subunit (CTB) and an epitope (UreA183-203) of H. pylori urease A subunit named CTB-UA. The CTB-UA fusion protein was expressed in Escherichia coli, and the purified protein was used for intraperitoneal immunization experiments in BALB/c mice. The experimental results indicated that anti-CTB-UA antibody could recognize both H. pylori urease A subunit (UreA) and urease B subunit (UreB). Besides, the CTB-UA epitope vaccine had good immunogenicity and immunoreactivity and could induce specific neutralizing antibodies which showed effectively inhibitory effect on the enzymatic activity of H. pylori urease. CTB-UA is a promising molecule to be investigated as H. pylori vaccine antigen candidate.  相似文献   

7.

Background  

Helicobacter pylori is a gram-negative bacterium that colonizes the human stomach and contributes to the development of gastric cancer and peptic ulcer disease. VacA, a toxin secreted by H. pylori, is comprised of two domains, designated p33 and p55. Analysis of the crystal structure of the p55 domain indicated that its structure is predominantly a right-handed parallel β-helix, which is a characteristic of autotransporter passenger domains. Substitution mutations of specific amino acids within the p33 domain abrogate VacA activity, but thus far, it has been difficult to identify small inactivating mutations within the p55 domain. Therefore, we hypothesized that large portions of the p55 domain might be non-essential for vacuolating toxin activity. To test this hypothesis, we introduced eight deletion mutations (each corresponding to a single coil within a β-helical segment spanning VacA amino acids 433-628) into the H. pylori chromosomal vacA gene.  相似文献   

8.
The development of new nucleotide sequencing techniques and advanced bioinformatics tools has opened the field for studying the diversity and complexity of the gastrointestinal microbiome independent of traditional cultural methods. Owing largely to the gastric acid barrier, the human stomach was long thought to be sterile. The discovery of Helicobacter pylori, the gram‐negative bacterium that infects upwards of 50% of the global population, has started a major paradigm shift in our understanding of the stomach as an ecologic niche for bacteria. Recent sequencing analysis of gastric microbiota showed that H. pylori was not alone and the interaction of H. pylori with those microorganisms might play a part in H. pylori‐associated diseases such as gastric cancer. In this review, we summarize the available literature about the changes of gastrointestinal microbiota after H. pylori infection in humans and animal models, and discuss the possible underlying mechanisms including the alterations of the gastric environment, the secretion of hormones and the degree of inflammatory response. In general, information regarding the composition and function of gastrointestinal microbiome is still in its infancy, future studies are needed to elucidate whether and to what extent H. pylori infection perturbs the established microbiota. It is assumed that clarifying the role of gastrointestinal communities in H. pylori‐associated diseases will provide an opportunity for translational application as a biomarker for the risk of serious H. pylori diseases and perhaps identify specific organisms for therapeutic eradication.  相似文献   

9.
Gastric cancer causes a large social and economic burden to humans. Helicobacter pylori (H pylori) infection is a major risk factor for distal gastric cancer. Detailed elucidation of H pylori pathogenesis is significant for the prevention and treatment of gastric cancer. Animal models of H pylori‐induced gastric cancer have provided an invaluable resource to help elucidate the mechanisms of H pylori‐induced carcinogenesis as well as the interaction between host and the bacterium. Rodent models are commonly used to study H pylori infection because H pylori‐induced pathological processes in the stomachs of rodents are similar to those in the stomachs of humans. The risk of gastric cancer in H pylori‐infected animal models is greatly dependent on host factors, bacterial determinants, environmental factors, and microbiota. However, the related mechanisms and the effects of the interactions among these impact factors on gastric carcinogenesis remain unclear. In this review, we summarize the impact factors mediating gastric cancer risk when establishing H pylori‐infected animal models. Clarifying these factors and their potential interactions will provide insights to construct animal models of gastric cancer and investigate the in‐depth mechanisms of H pylori pathogenesis, which might contribute to the management of H pylori‐associated gastric diseases.  相似文献   

10.
The human gastric pathogen Helicobacter pylori is extremely well adapted to the highly acidic conditions encountered in the stomach. The pronounced acid resistance of H. pylori relies mainly on the ammonia-producing enzyme urease. However, urease-independent mechanisms are likely to contribute to acid adaptation. pH-responsive gene regulation in this organism is mediated by a two-component system (HP0166-HP0165) designated ArsRS and the metal-dependent regulators NikR and Fur. Recently, it was reported that another two-component system termed CrdRS (HP1365-HP1364) is required for pH-responsive regulation of the major acid-resistance systems in the H. pylori strain J99. By the analysis of crdRS null mutants of the H. pylori strains 26695 and G27, we show that low pH induction of both the urease and the amidase genes occurs in the absence of crdRS in these strains, suggesting substantial strain-specific differences in the regulation of a major virulence determinant.  相似文献   

11.
Helicobacter pylori (H. pylori) infection is etiologically associated with gastric cancer and peptic ulcer diseases which are both important public health burdens which could be largely eliminated by H. pylori eradication. However, some investigators urge caution based on the hypothesis that eradication of H. pylori may result in an increase in the incidence of gastroesophageal reflux disease, esophageal adenocarcinoma, and childhood asthma. The ethnic Malays of northeastern Peninsular Malaysia have long had a low prevalence of H. pylori infection and, as expected, the incidence of gastric cancer and its precursor lesions is exceptionally low. The availability of a population with a low H. pylori prevalence and generally poor sanitation allows separation of H. pylori from the hygiene hypothesis and direct testing of whether absence of H. pylori is associated with untoward consequence. Contrary to predictions, in Malays, erosive esophagitis, Barrett's esophagus, distal esophageal cancers, and childhood asthma are all of low incidence. This suggests that H. pylori is not protective rather the presence of H. pylori infection is likely a surrogate for poor hygiene and not an important source of antigens involved in the hygiene hypothesis. Helicobacter pylori in Malays is related to transmission from H. pylori‐infected non‐Malay immigrants. The factors responsible for low H. pylori acquisition, transmission, and burden of H. pylori infection in Malays remain unclear and likely involves a combination of environmental, host (gene polymorphisms), and strain virulence factors. Based on evidence from this population, absence of H. pylori infection is more likely to be boon than a bane.  相似文献   

12.
Li N  Xu X  Xiao B  Zhu ED  Li BS  Liu Z  Tang B  Zou QM  Liang HP  Mao XH 《Molecular biology reports》2012,39(4):4655-4661
MicroRNAs have been implicated as a central regulator of the immune system. We have previously reported that Helicobacter pylori (H. pylori) was able to increase the expression of miR-146a, and miR-146a may negatively regulate H. pylori-induced inflammation, but the exact mechanism of how H. pylori contribute the induction of miR-146a is not clear. Here, we attempted to assess the role of H. pylori related proinflammatory cytokines including interleukin (IL)-8, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β, and cytotoxin-associated gene A (CagA) virulence factor on the induction of miR-146a. We found that IL-8, TNF-α, and IL-1β could contribute to the induction of miR-146a in gastric epithelial cell HGC-27 in NF-κB-dependent manner, while the induction of miR-146a upon H. pylori stimulation was independent of above proinflammatory cytokines. Furthermore, overexpression of miR-146a reduced H. pylori—induced IL-8, TNF-α, and IL-1β. However, CagA had no effect on the miR-146a induction. Taken together, our study suggest that proinflammatory cytokines IL-8, TNF-α, and IL-1β could contribute to the induction of miR-146a during H. pylori infection, while CagA is not necessarily required for miR-146a induction. miR-146a may function as novel negative regulators to modulate the inflammation.  相似文献   

13.
14.
Chen S  Zhang R  Duan G  Shi J 《Current microbiology》2011,62(6):1726-1731
Helicobacter pylori is the principal cause of chronic active gastritis, peptic ulcer, and gastric cancer. To develop an oral vaccine against H. pylori infection, we had expressed the H. pylori ureB gene (Genbank accession no. FJ436980) in nisin-controlled expression vectors using Lactococcus lactis NZ3900 as host. The ureB gene was amplified by PCR from a H.pylori strain MEL-Hp27. Then the ureB gene was fused translationally downstream of the nisin-inducible promoter nisA in a L. lactis plasmid pNZ8149. Lactose utilization based on the complementation of the lacF gene was used as a dominant selection marker for the food-grade expression system employing L. lactis NZ3900. The conditions of UreB expression in this system were optimized by orthogonal experiment. The optimized conditions have been determined as follows: induction of expression was carried out at the cells density of OD600 ≈ 0.4 with 25 ng/ml nisin, and harvest after 5 h. The maximum percentage of recombinant UreB was estimated to be 7% of total soluble cellular proteins and the yield was 12.9 μg/ml. Western blot demonstrated that the UreB protein was expressed in the L. lactis transformant and had favorable immunoreactivity. These results indicated that the lactococci-derived vaccines could be promising candidates as alternative vaccine strategies for preventing H. pylori infection.  相似文献   

15.
This review covers recent publications investigating the relationship between Helicobacter pylori infection and gastroesophageal reflux disease, Barrett's esophagus, eosinophilic esophagitis, peptic ulcer disease (PUD), H pylori gastritis, and functional dyspepsia. In the area of gastroesophageal reflux disease, new data suggest that reflux may have a role in the transmission of H pylori infection. In addition to several observational studies, data on alterations in esophageal physiology in patients with H pylori infection are presented. Further evidence for the inverse relationship between H pylori infection and Barrett's esophagus is available in the form of a meta‐analysis from the North American Barrett's and Esophageal Carcinoma Consortium. The relationship between H pylori infection and eosinophilic esophagitis remains uncertain. Although new data do not indicate a significantly lower prevalence of H pylori among patients with eosinophilic esophagitis, a meta‐analysis showed a 37% reduced risk of eosinophilic esophagitis among H pylori‐infected patients. Novel data are presented on the genetic variability of bacterial virulence factors and their relationship with PUD. We also report data on plasma biomarkers, which may detect progression to gastric cancer in H pylori‐associated PUD. A new meta‐analysis was published, which assessed the risk of PUD in low‐dose aspirin users with H pylori infection. Finally, we report on the ongoing attempts to stratify patients with gastritis using endoscopic methods when compared to standard biopsy examination.  相似文献   

16.
Helicobacter pylori (H. pylori) has been identified as the main pathogenic factors of chronic gastritis and peptic ulcer, and the Class I carcinogen of gastric cancer by WHO. Vaccine has become the most effective measure to prevent and cure H. pylori infection. The UreB is the most effective and common immunogen of all strains of H. pylori and may stimulate the immunoresponse protecting the human body against the challenge of H. pylori. UreB antigen gene was cloned into the binary vector pBI121 which contains a seed-specific promoter Oleosin of peanut and a kanamycin resistance gene, and then UreB gene was transformed into peanut embryo leaflets by Agrobacter-mediated method. The putative transgenic plants were examined for the presence of UreB in the nuclear genome of peanut plants by PCR analysis. Expression of UreB gene in plants was identified by RT-PCR and Western blot analysis. These results suggest that the UreB transgenic peanut can be potentially used as an edible vaccine for controlling H. pylori.  相似文献   

17.
Helicobacter pylori is a human gastric pathogen that colonizes ~ 50% of the world's population. It can cause gastritis, gastric or duodenal ulcers and also gastric cancer. The numerous side effects of available treatments and the emergence of antibiotic resistant strains are severe concerns that justify further research into H. pylori's pathogenic mechanisms. H. pylori produces secreted proteins that may play a role in virulence, including the Helicobacter cysteine‐rich protein HcpE (aka HP0235). We demonstrate herein that HcpE is secreted in the culture supernatant both as a soluble protein and in association with outer membrane vesicles. We show that the structure of HcpE comprises an organized array of disulfide bonds. We identify DsbK (aka HP0231) as a folding factor necessary for HcpE production and secretion in H. pylori and show that recombinant DsbK can interact with and refold unprocessed, reduced HcpE in vitro. These experiments highlight the first biologically relevant substrate for DsbK. Furthermore, we show that DsbK has disulfide bond (Dsb) forming activity on reduced lysozyme and demonstrate a DsbA‐type of activity for DsbK upon expression in E. coli, despite its similarity with DsbG. Finally, we show a role of DsbK in maintaining redox homeostasis in H. pylori.  相似文献   

18.
The current study was conducted to determine the prevalence of Helicobacter pylori in the oral cavity of a Chinese population. Nested polymerase chain reaction (PCR) was used to investigate whether individuals with oral H. pylori show more possibility of gastric infection and to examine the relationship between gastric H. pylori infection and the presence of the bacteria in the oral cavity. A total of 443 dyspeptic patients participated in the study. Gastric H. pylori infection was detected by the rapid urease test and histology with Giemsa staining, PCR, or smear examination, whereas the presence of the bacteria in the oral cavity was observed by nested PCR from dental plaque. Relevant periodontal and dental parameters were recorded in the process of oral examination. Of the 443 study patients, oral H. pylori was found in the dental plaque of 263 (59.4%) and the stomach of 273 (61.6%). Additionally, in all four age groups, the prevalence of gastric infection was significantly higher among the patients with positive tests for H. pylori in their dental plaque than in the patients with no H. pylori in their dental plaque (P < 0.05). The oral cavity may be a potential reservoir for H. pylori, and the prevalence of oral H. pylori approximated that of gastric H. pylori in the studied population. Furthermore, a close relationship may exist between H. pylori in the oral cavity and bacteria in the stomach or gastric infection, and dyspeptic patients with gastric infection are more likely to harbor H. pylori in their oral cavity. Y. Liu and H. Yue contributed equally to the accomplishment of this study.  相似文献   

19.
Despite the significance of Helicobacter pylori infection for man, its transmission is not clearly known. The human stomach is considered the reservoir of this pathogen, and one of the accepted routes is fecal–oral, in which water acts as a vector. However, although H. pylori epidemiology associates its transmission with water, only molecular and not cultural analysis detects the bacteria in water. This study was carried out to understand these data through studying the survival of H. pylori in a laboratory water model using cultural, morphological, and molecular methods. A mineral water system spiked with H. pylori and stored at 7 ± 1°C in the dark was analyzed by different methods over a period of 3 weeks. The total number of cells observed by DAPI staining and their DNA content remained constant over this study period. In contrast, cells could no longer be cultured after 5 days. Cell viability, which was determined via the LIVE/DEAD BacLight kit, decreased up to day 14, and at day 21 all cell membranes were damaged. In addition, a gradual conversion from spiral to coccal morphology occurred from day 3 onward. However, polymerase chain reaction (PCR) technique detected H. pylori DNA at day 21 and 3 months later. A study of the cell morphology of a young colony demonstrated the coexistence of bacilli and cocci. The results of this study show that H. pylori survives in water but loses its culturability and bacillar morphology rapidly, although it remains viable for longer periods and its DNA is still detectable much later. Thus, interpreting H. pylori‘s behavior in water differs according to the type of analysis. Consequently, we suggest that the presence of H. pylori infective cells is overestimated by PCR, whereas, in contrast, culture techniques underestimate it. Nevertheless, H. pylori should be considered a waterborne pathogen during its viable period, independently of its shape and culturability, as its presence in water may be risky for human health.  相似文献   

20.
Helicobacter pylori establishes a chronic lifelong infection in the human gastric mucosa, which may lead to peptic ulcer disease or gastric adenocarcinoma. The human beta‐defensins (hβDs) are antimicrobial peptides, hβD1 being constitutively expressed in the human stomach. We hypothesized that H. pylori may persist, in part, by downregulating gastric hβD1 expression. We measured hβD1 and hβD2 expression in vivo in relation to the presence, density and severity of H. pylori infection, investigated differential effects of H. pylori virulence factors, and studied underlying signalling mechanisms in vitro. Significantly lower hβD1 and higher hβD2 mRNA and protein concentrations were present in gastric biopsies from infected patients. Those patients with higher‐level bacterial colonization and inflammation had significantly lower hβD1 expression, but there were no differences in hβD2. H. pylori infection of human gastric epithelial cell lines also downregulated hβD1. Using wild‐type strains and isogenic mutants, we showed that a functionalcag pathogenicity island‐encoded type IV secretion system induced this downregulation. Treatment with chemical inhibitors or siRNA revealed that H. pylori usurped NF‐κB signalling to modulate hβD1 expression. These data indicate that H. pylori downregulates hβD1 expression via NF‐κB signalling, and suggest that this may promote bacterial survival and persistence in the gastric niche.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号