首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used a long‐term fire experiment in south‐east Queensland, Australia, to determine the effects of frequent prescribed burning and fire exclusion on understorey vegetation (<7.5 m) richness and density in Eucalyptus pilularis forest. Our study provided a point in time assessment of the standing vegetation and soil‐stored vegetation at two experimental sites with treatments of biennial burning, quadrennial burning since 1971–1972 and no burning since 1969. Vegetation composition, density and richness of certain plant groups in the standing and soil‐stored vegetation were influenced by fire treatments. The density of resprouting plants <3 m in height was higher in the biennially burnt treatment than in the unburnt treatment, but resprouters 3–7.5 m in height were absent from the biennial burning treatment. Obligate seeder richness and density in the standing vegetation was not significantly influenced by the fire treatments, but richness of this plant group in the seed bank was higher in the quadrennial treatment at one site and in the long unburnt treatment at the other site. Long unburnt treatments had an understorey of rainforest species, while biennial burning at one site and quadrennial burning at the other site were associated with greater standing grass density relative to the unburnt treatment. This difference in vegetation composition due to fire regime potentially influences the flammability of the standing understorey vegetation. Significant interactions between fire regime and site, apparent in the standing and soil‐stored vegetation, demonstrate the high degree of natural variability in vegetation community responses to fire regimes.  相似文献   

2.
Several components of diversity (ecological, taxonomic, chorological and morphological– functional) were studied in the woody vegetation of the cork oak forests in the northern Straits of Gibraltar Region, and their relationship to the two main environmental gradients (one mainly climatic—precipitation, fog—and another secondary related to the disturbance and hydric stress associated with hillslope orientation). An inventory of the woody species and their cover measure was carried out on 94 plots. The relationship between the components of diversity and the main environmental gradients was analysed by means of regression analysis. Decreases of species richness, Shannon diversity index, Western Mediterranean species cover, percentage of endemism and the share of the Herrera Syndrome I in diversity were related to the increase of the precipitation and the fog. However, the cover and percentage of species of the Circum-Mediterranean and Mediterranean-Eurosiberian chorological groups increase with the precipitation and the fog. Disturbance and hydric stress associated with hillslope orientation, have a negative effect on specific richness of the Mediterranean-Eurosiberian chorological group and taxonomic singularity, but its have a positive effect on the share of the Herrera Syndrome I in diversity. The number of edaphic endemisms is associated mainly with disturbance. In the cork forests does not exist an inverse relationship between the number of endemisms and floristic richness, as it happens in other Mediterranean areas. It has suggested that this pattern is due to effect of competitive exclusion associated with disturbance in vegetation on relatively fertile substrate.  相似文献   

3.
Patch dynamics, tree injury and mortality, and coarse woody detritus were quantified to examine the ecological impacts of Hurricane Fran on an oak-hickory-pine forest near Chapel Hill, NC. Data from long-term vegetation plots (1990–1997) and aerial photographs (1998) indicated that this 1996 storm caused patchy disturbance of intermediate severity (10–50% tree mortality; Woods, J Ecol 92:464–476, 2004). The area in large disturbance patches (>0.1 ha) increased from <1% to approximately 4% of the forested landscape. Of the forty-two 0.1-ha plots that were studied, 23 were damaged by the storm and lost 1–66% of their original live basal area. Although the remaining 19 plots gained basal area (1–15% increase), across all 42 stands basal area decreased by 17% because of storm impacts. Overall mortality of trees >10 cm dbh was 18%. The basal area of standing dead trees after the storm was 0.9 m2/ha, which was not substantially different from the original value of 0.7 m2/ha. In contrast, the volume and mass of fallen dead trees after the storm (129 m3/ha; 55 Mg/ha) were 6.1 and 7.9 times greater than the original levels (21 m3/ha; 7 Mg/ha), respectively. Uprooting was the most frequent type of damage, and it increased with tree size. However, two other forms of injury, severe canopy breakage and toppling by other trees, decreased with increasing tree size. Two dominant oak species of intermediate shade-tolerance suffered the largest losses in basal area (30–41% lost). Before the storm they comprised almost half of the total basal area in a forest of 13% shade-tolerant, 69% intermediate, and 18% shade-intolerant trees. Recovery is expected to differ with respect to vegetation (e.g., species composition and diversity) and ecosystem properties (e.g., biomass, detritus mass, and carbon balance). Vegetation may not revert to its former composition; however, reversion of biomass, detritus mass, and carbon balance to pre-storm conditions is projected to occur within a few decades. For example, the net change in ecosystem carbon balance may initially be negative from losses to decomposition, but it is expected to be positive within a decade after the storm. Repeated intermediate-disturbance events of this nature would likely have cumulative effects, particularly on vegetation properties.  相似文献   

4.
Aim: Vegetation plots collected since the early 20th century and stored in large vegetation databases are an important source of ecological information. These databases are used for analyses of vegetation diversity and estimation of vegetation parameters, however such analyses can be biased due to preferential sampling of the original data. In contrast, modern vegetation survey increasingly uses stratified‐random instead of preferential sampling. To explore how these two sampling schemes affect vegetation analyses, we compare parameters of vegetation diversity based on preferentially sampled plots from a large vegetation database with those based on stratified‐random sampling. Location: Moravian Karst and Silesia, Czech Republic. Methods: We compared two parallel analyses of forest vegetation, one based on preferentially sampled plots taken from a national vegetation database and the other on plots sampled in the field according to a stratified‐random design. We repeated this comparison for two different regions in the Czech Republic. We focussed on vegetation properties commonly analysed using data from large vegetation databases, including alpha (within‐plot) diversity, cover and participation of different species groups, such as endangered and alien species within plots, total species richness of data sets, beta diversity and ordination patterns. Results: The preferentially sampled data sets obtained from the database contained more endangered species and had higher beta diversity, whereas estimates of alpha diversity and representation of alien species were not consistently different between preferentially and stratified‐randomly sampled data sets. In ordinations, plots from the preferential samples tended to be more common at margins of plot scatters. Conclusions: Vegetation data stored in large databases are influenced by researcher subjectivity in plot positioning, but we demonstrated that not all of their properties necessarily differ from data sets obtained by stratified‐random sampling. This indicates the value of vegetation databases for use in biodiversity studies; however, some analyses based on these databases are clearly biased and their results must be interpreted with caution.  相似文献   

5.
Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2–3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests (“control plots”). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.  相似文献   

6.
Questions: What influence does mechanical mastication and other fuel treatments have on: (1) canopy and forest floor response variables that influence understory plant development; (2) initial understory vegetation cover, diversity, and composition; and (3) shrub and non‐native species density in a second‐growth ponderosa pine forest. Location: Challenge Experimental Forest, northern Sierra Nevada, California, USA. Methods: We compared the effects of mastication only, mastication with supplemental treatments (tilling and prescribed fire), hand removal, and a control on initial understory vegetation response using a randomized complete block experimental design. Each block (n=4) contained all five treatments and understory vegetation was surveyed within 0.04‐ha plots for each treatment. Results: While mastication alone and hand removal dramatically reduced the midstory vegetation, these treatments had little effect on understory richness compared with control. Prescribed fire after mastication increased native species richness by 150% (+6.0 species m2) compared with control. However, this also increased non‐native species richness (+0.8 species m2) and shrub seedling density (+24.7 stems m2). Mastication followed by tilling resulted in increased non‐native forb density (+0.7 stems m2). Conclusions: Mechanical mastication and hand removal treatments aided in reducing midstory fuels but did not increase understory plant diversity. The subsequent treatment of prescribed burning not only further reduced fire hazard, but also exposed mineral soil, which likely promoted native plant diversity. Some potential drawbacks to this treatment include an increase of non‐native species and stimulation of shrub seed germination, which could alter ecosystem functions and compromise fire hazard reduction in the long‐term.  相似文献   

7.
Monitoring of ecological restoration treatments often focuses on changes in community structure and function. We suggest that long-term changes in community composition also need to be explicitly considered when evaluating the success of restoration treatments. In 1992, we initiated an experiment in a ponderosa pine-bunchgrass ecosystem to evaluate responses to restoration treatments: (a) thinning the overstory vegetation (‘thinning’), (b) thinning plus forest floor manipulation with periodic prescribed burning (‘composite’), and (c) untreated ‘control.’ Treatments were further stratified by forest patch type: presettlement tree clumps (trees that established prior to the onset of fire exclusion in 1876), patches of retained postsettlement trees, patches where all postsettlement trees were removed, and remnant grass openings. Species richness did not differ among treatments for 10 years, but was highest in the composite treatment in 11th and 12th year after initial treatment. Community composition diverged among treatments 5 years after initial treatment, and compositional changes were greatest in the composite treatment. Species richness and composition differed among patch types prior to treatment. Remnant grass patches were the most diverse and presettlement patches were the least diverse. Following treatment, species richness in the postsettlement removed and retained patches, gradually approached levels found in remnant grass patches. Compositional differences among patch types changed a little by 2005. Species richness at the 2 m2 scale increased only where the overstory was thinned and the understory was burned. However, these changes may not be detectable for many years, and can vary temporally in response to events such as severe droughts. Nonnative species establishment may be reduced by scheduling longer burn intervals or by refraining from burning where fuel loads are not hazardous, though these options may hinder goals of increasing diversity. Restoring species diversity and community composition continues to be more difficult than restoring ecosystem structure and function.  相似文献   

8.
李伟  张翠萍  魏润鹏 《生态学报》2014,34(17):4957-4965
以位于广东省中西部的高要市桉树人工林林下植被群落为研究对象,对不同龄级林分物种多样性进行比较分析,采用典范对应分析(CCA)方法进行排序并通过相关分析,对物种分布和多样性与土壤因子的关系进行了研究。结果表明,每龄级24块样地充足,从第9块样地开始不同龄级的物种数目出现一定程度的差异。桉树林分样地中共有136种植物,隶属54科107属,灌木层的种类最多,但以草本层物种为优势种。不同龄级林分之间物种多样性差异不显著,但1—2年生林分低于2—4年生和5—6年生两个龄级;3—4年生的Shannon指数、Simpson指数和丰富度最高。对植被物种的分布,土壤中有机质、全磷、全钾和容重的影响明显,pH值也有一定程度作用,而对物种多样性,pH值和全氮是最为稳定的影响因子。  相似文献   

9.
The value of a monitoring programme for the management of ecological resources, and interpretation of the role of environmental drivers, relies on its ability to detect change. Semboli et al. 2014 (Applied Vegetation Science 17: 737–743, this issue) show that the simple act of repeated measuring significantly affects species composition in permanent tropical forest plots, but not species richness, species evenness or tree demography.  相似文献   

10.
Question: What is the relationship between plant diversity and species turnover in coastal dune vegetation plots? How is the long‐term change in species composition of vegetation plots related to shifts in functional traits, and what does it tell us about the dominant processes? Location: Coastal dunes, the Netherlands. Methods: Our data set comprised 52 years of vegetation data from 35 permanent plots in grassland/scrub/woodland vegetation. Vegetation dynamics were described in terms of changes in species composition and abundance, and shifts in 13 functional traits related to resources capture and forage quality, regeneration and dispersal. Results: Species turnover in the plots was high, because of local extinction and colonization. Species‐rich plots were more stable in terms of species abundance and composition compared with species‐poor plots. Over time, the plots converged with respect to their abiotic conditions, as reflected by Ellenberg indicator values – indicating that the prevailing process was succession. The high species turnover reflected high invasibility: accordingly, the relative importance of annuals increased. Most newcomer annuals, however, were competitive generalists of little conservation value. The functional trait analysis allowed us to unravel the complexity of effects of disturbances and succession, and yielded information on the processes driving the observed vegetation dynamics. Conclusions: In this study, small‐scale species turnover was negatively related to species diversity, indicating more stability in species‐rich communities. Regarding shifts in trait diversity, unifying filters appeared to be more dominant than diversifying filters. Counteracting this homogenization process poses a challenge for nature management.  相似文献   

11.
Plantation forests can make a significant contribution to the conservation of native biodiversity, especially where native forest cover is low. Ireland is used as a case study to explore the contribution to biodiversity made by stands of Pinus sylvestris (Scots pine), a reintroduced species. Despite its disputed native status, P. sylvestris is being widely planted in semi-natural habitats in Ireland. The associated vegetation communities have not previously been described and their conservation value is unknown. Baseline information is needed to inform conservation and forest management strategies. Botanical surveys were carried out at 20 plots of P. sylvestris-dominated woodland and scrub throughout the Republic of Ireland. Vegetation, structural and environmental data were recorded. Data were analysed using non-parametric and multivariate statistical techniques and a synoptic table was prepared. P. sylvestris was found to be a non-specialist in terms of its environmental tolerances. β diversity among plots was high while α diversity within plots was low to moderate. The plots surveyed contained 14.2% of the Irish native flora. There was a low level of constancy of species. Four reasonably well defined vegetation communities were identified. Soil pH, altitude and slope had important roles in partitioning these vegetation types and soil pH was positively correlated with species richness. P. sylvestris is well established, well integrated and naturalising in Irish semi-natural habitats. Some of the associated vegetation communities corresponded to habitats of international conservation importance. This research demonstrates that stands of P. sylvestris represent an important resource for Ireland’s native botanical and habitat diversity.  相似文献   

12.
Question: How does the vegetation of boreal forests respond to harvesting and scarification? Location: 650 m a.s.l., central Sweden (61°38’ N). Methods: The response of boreal forest vegetation to cutting and scarification was studied in a field trial, which consisted of three treatments plus conventional harvesting as a control in a complete block design with four replicates. The cutting was done 14 years prior to vegetation inventory and scarification and planting were conducted the first or second years after cutting. Results: The species most abundant at higher cutting intensities were crustose lichens, Cladonia spp., Cladina arbuscula, Polytrichum spp. and pioneer mosses, the grass Deschampsia flexuosa, and the tree Betula pubescens, A few species had substantially lower abundance in treatments with higher cutting intensity, notably Hylocomium splendens and Vaccinium myrtillus. Scarification had a strong effect that was different from the one created by cutting. In scarification treatments, Polytrichum spp. were the only species with high abundance; most species had low abundance, i.e. Barbilophozia lycopodioides, Vaccinium vitis‐idaea, Pleurozium schreberi, Carex globularis, Empetrum nigrum, Cladina arbuscula, Sphagnum spp. Conclusions: Our results elaborate on the details of the well‐known effect of cutting on ground‐layer flora, and also give support for the profound and long‐lasting effect that soil scarification has on forest vegetation.  相似文献   

13.
Vast areas of forests in North‐eastern Ethiopia have been replaced by cropland, shrub land or grazing areas. Thus, information about how vegetation composition and structure varies with disturbance is fundamental to conservation of such areas. This study aimed to investigate the effects of disturbance on the population structure and regeneration potential of five dominant woody species within forest where local communities harvest wood and graze livestock. Vegetation structure and environmental variables were assessed in 50 quadrats (20 m × 20 m). In most of both disturbed and undisturbed treatments, Juniperus procera was the highest contributor to the basal area of the forest, while that of Olinia rochetiana was the lowest. Analysis of population structure showed high density at lower Diameter at Breast Height (DBH) and low density at higher DBH classes. Undisturbed forest treatments had 84% canopy cover, 22 m mean vegetation height and a density of 1320 trees of dominant species and 1024 seedlings/saplings ha?1. In disturbed habitats, canopy cover (73%), mean vegetation height (18 m) and density of dominant trees and saplings were significantly lower than in undisturbed habitats. Thus, to ensure species, survival and maintain species diversity managed use of the protected area is essential.  相似文献   

14.
Agricultural land abandonment is one of the main drivers of land use change, leading to various responses of farmland ecological communities. In an effort to better understand the effect of agricultural land abandonment on passerine bird communities, we sampled 20 randomly selected sites [1 km × 1 km] in remote Greek mountains, reflecting an abandonment gradient, in terms of forest encroachment. We sampled 169 plots using the point count method of fixed distance (47 passerine species), and we investigated bird diversity and community structure turnover along the gradient. We found that grazing intensity has a beneficial effect hampering forest encroachment that follows progressively land abandonment. Habitat composition changes gradually with forests developing at the expense of open meadows and heterogeneous grasslands. Forest encroachment has a significant negative effect on bird diversity and species richness, affecting in particular typical farmland and Mediterranean shrubland species. Birds form five distinct ecological clusters after land abandonment: species mostly found in pinewoods and cavity-dwelling species; species that prefer open forests forest edges or ecotones; species that prefer shrubland or open habitats with scattered woody vegetation; Mediterranean farmland birds that prefer semi-open habitats with hedges and/or woodlots; and, generalist forest-dwelling or shrubland species. We extracted a set of 22 species to represent the above ecological communities, as a new monitoring tool for agricultural land use change and conservation. We suggest that the maintenance of rural mosaics should be included in the priorities of agricultural policy for farmland bird diversity conservation.  相似文献   

15.
Abstract. Vegetation changes in a semi‐natural grassland of wooded meadow type that had been grazed for centuries are described following the introduction of various management regimes: mowing each year, mowing every third year, burning, mechanical removal of woody plants, chemical treatment of woody plants, continuous grazing and abandonment. The experiment was established in southern Sweden in 1972 and has been in progress for 15 years. In 1972, 1980 and 1986 the botanical composition in these plots was investigated in permanent subplots. The study clearly demonstrates that mowing or grazing is necessary to preserve community structure and that mowing is to be preferred in cases where maintaining species richness is of primary concern. Mowing every third year delayed vegetation change and prevented woody species from spreading. Therefore, periodic mowing might be an alternative way to preserve the flora. In contrast, yearly burning does not seem to be a viable management in this type of semi‐natural grassland. To preserve the open landscape regeneration of woody plants has to be prevented. However, in plots where woody plants were removed the typical grassland flora declined. Abandonment resulted in closed forest.  相似文献   

16.
We conducted a field study to determine the relative contributions of aspen (Populus tremuloides), meadow, and conifer communities to local and landscape-level plant species diversity in the Sierra Nevada and southern Cascade Range, northeastern California, USA. We surveyed plant assemblages at 30 sites that included adjacent aspen, conifer, and meadow communities across a 10,000-km2 region. We statistically investigated patterns in local and landscape-scale plant diversity within and among the three vegetation types. Summing across sites, aspen stands supported more plant species overall and more unique plant species than either meadow or conifer communities. Local richness and diversity did not differ between aspen and meadow plots; conifer forest plots were significantly lower in both measures. Heterogeneity in species composition was higher for aspen forest than for meadows or conifer forest, both within sites and between sites. Plant communities in aspen stands shared less than 25% of their species with adjacent vegetation in conifer and meadow plots. Within aspen forest, we found a negative relationship between total canopy cover and plant diversity. Our results strongly support the idea that plant communities of aspen stands are compositionally distinct from adjacent meadows and conifer forest, and that aspen forests are a major contributor to plant species diversity in the study region. Current patterns of aspen stand succession to conifer forest on many sites in the semiarid western US are likely to reduce local and landscape-level plant species diversity, and may also have negative effects on other ecosystem functions and services provided by aspen forest.  相似文献   

17.
This paper compares vegetation composition, light availability, carbon and nutrient pools and Ellenberg indicator values among four old-field successional permanent plots that have received an initial treatment (ploughing, herbicide or sterilisation) prior to being left undisturbed in 1969, a second set of six plots received additional treatments (continued ploughing or mulching until 1982). On all plots species rich pioneer forests developed. Vegetation still varies among plots with different initial treatments: Sterilised plots can be distinguished from the others by dominance of Betula pendula, ploughed plots by Fraxinus excelsior, whereas herbicide-treated plots are intermediate with proportions of both species. By affecting light availability at the ground, tree species in turn influences ground vegetation and soil properties. Light availability turned out to be the dominant factor determining the composition of the vegetation in old-field succession.  相似文献   

18.
茂县土地岭植被恢复过程中物种多样性动态特征   总被引:17,自引:3,他引:17  
植被恢复是退化生态系统重建的重要途径,植被恢复过程物种多样性的变化反映了植被的恢复程度.通过群落调查和多样性分析,研究了岷江上游土地岭植被恢复过程中群落物种多样性特征.结果表明: 恢复过程中6类不同类型群落分别表现其对于不同环境特征、干扰及更新方式等的响应;森林是较灌丛更适合当地环境状况的植被类型;人工恢复无干扰和轻度干扰群落的多样性相对较高,是较好的恢复模式.重度干扰使得1年生植物与地下芽植物比例增加,其它口食性较好的多年生草本减少.较强的干扰是群落无法更新、长期处于灌丛阶段且多样性较低的重要原因.本地区人工恢复群落在更新进程和多样性维持上优于自然更新群落,种植华山松加速了本地区植被演替进程.建议以适合恢复区域的多种恢复配置方式进行造林,并避免较强干扰,可以加速群落演替进程并保持恢复群落较高的物种丰富度与多样性.  相似文献   

19.
Concern about forestry practices creating tree-level monoculture plantations exists. Our study investigates tree diversity responses for six early seral boreal forest plantations in Ontario, Canada, representing three conifer species; black spruce (Picea mariana), white spruce (P. glauca), and jack pine (Pinus banksiana), 14 release treatments, and 94 experimental units. Dominance-diversity curves and Simpson’s indices of diversity and evenness indicate tree alpha diversity. We propose a new method for assessing diversity, using percentage of theoretical species maximum (%TSM) which is determined by comparing post-disturbance richness (S) with a theoretical species maximum (TSM). Our results support the hypothesis that alternative vegetation release treatments generally do not reduce tree species diversity levels (%TSM) relative to untreated plots. The only %TSM (P ≤ 0.05) comparison that produced less diversity than in control plots was repeated annual treatments of Vision herbicide at one of the black spruce study sites. Our results generally support the hypothesis that tree monocultures do not develop after vegetation release. Only one out of 94 experimental units developed into a tree layer monoculture (Simpson’s reciprocal diversity index = 1). Again this was one of the repeated annual treatments of Vision herbicide at one of the black spruce study sites—a treatment which is atypical of Canadian forest management.
Jason E. E. DampierEmail:
  相似文献   

20.
Local ecosystem resilience to fire disturbance can be influenced by multiple factors, from topography and climate, to fire history and pre-fire structure of biotic communities. Here we investigated the factors affecting post-fire recovery of scrub vegetation in areas under Mediterranean climate affected by frequent fires. We hypothesized that, under comparable climatic and topographic conditions, geological factors (with bedrock type as a proxy) would be at least as important as fire history in explaining patterns of post-fire recovery. We surveyed scrub vegetation in a mountain study area in Portugal, using a stratified random sampling scheme, with fire frequency, time since last fire, and bedrock type (granite vs. schist) as stratifying layers. Based on vegetation and plant community data from 40 plots, we analyzed total species richness and composition, and the relative abundance of functional groups defined on the basis of general (non fire-specific) life-history traits. We found that, at a local scale, lithology can override fire history in determining post-fire recovery. Vegetation plots on granite exhibited a considerable development of tall scrubs and higher values of total species richness. They also hosted higher numbers of animal-dispersed woody species, of trees and tall scrubs, of woody deciduous species, and of forest, edge and tall scrub species. Differences in the post-fire development of scrub vegetation and in the functional profile of plant communities highlight the need to consider local geological diversity when establishing priorities for post-fire active restoration under scenarios of limited resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号