首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GPRC5B is an orphan receptor belonging to the group C family of G protein-coupled receptors (GPCRs). GPRC5B is abundantly expressed in both human and mouse pancreatic islets, and both GPRC5B mRNA and protein are up-regulated 2.5-fold in islets from organ donors with type 2 diabetes. Expression of Gprc5b is 50% lower in islets isolated from newborn (<3 weeks) than in adult (>36 weeks) mice. Lentiviral shRNA-mediated down-regulation of Gprc5b in intact islets from 12 to 16 week-old mice strongly (2.5-fold) increased basal (1 mmol/l) and moderately (40%) potentiated glucose (20 mmol/l) stimulated insulin secretion and also enhanced the potentiating effect of glutamate on insulin secretion. Down-regulation of Gprc5b protected murine insulin-secreting clonal MIN6 cells against cytokine-induced apoptosis. We propose that increased expression of GPRC5B contributes to the reduced insulin secretion and β-cell viability observed in type-2 diabetes. Thus, pharmacological targeting of GPRC5B might provide a novel means therapy for the treatment and prevention of type-2 diabetes.  相似文献   

2.
The similarities between the effects of acetylcholine and glucose on phospholipid metabolism in pancreatic islet cells prompted the comparison of their effects on ionic fluxes. Acetylcholine (1 μM) consistently increased 45Ca2+ efflux from mouse islets, whereas glucose increased it in the presence, but decreased it in the absence of extracellular Ca2+. Acetylcholine consistently accelerated 86Rb+ efflux, and this effect was augmented by Ca2+ omission. On the other hand, glucose markedly inhibited 86Rb+ efflux, except when its concentration was raised from 10 to 15 mM in the presence of Ca2+. Unlike their effects on phospholipid metabolism, the ionic effects of the two insulin-secretagogues are thus very different.  相似文献   

3.
Leptin suppresses basal insulin secretion from rat pancreatic islets   总被引:2,自引:0,他引:2  
The effects of leptin on insulin secretion from pancreatic islets of Sprague–Dawley rats were examined in vitro. In a basal glucose medium (5.5 mM), insulin secretion from isolated islets was significantly decreased after addition of a recombinant leptin (80 nM) (3.20±0.14 nmol/10 islets/h) compared with that before the addition (4.41±0.30 nmol/10 islets/h). Although significant leptin suppression of insulin secretion was not observed under a glucose-stimulated (11.1 mM) condition, these results suggest that a negative feedback system may exist between leptin and insulin, which increases the production of leptin from adipose tissues.  相似文献   

4.
There is no consensus on the role of insulin secreted from pancreatic β-cells in regulating its own secretion, either in rodent islets or in human islets. We have now investigated whether there is an autocrine signalling role for insulin in human islets by determining insulin receptor expression and assessing the effects of insulin receptor activation using a non-peptidyl insulin mimetic termed L-783,281. Human insulin receptor mRNA was detected by PCR amplification of human islet cDNA, and translation of the message in human islets was confirmed by Western blotting. Perifusion experiments revealed that both glucose-stimulated and basal insulin secretion were significantly inhibited following human islet insulin receptor activation with L-783,281, and that signalling through phosphatidylinositol 3-kinase (PI 3-kinase) was responsible, at least in part, for this inhibitory effect. These studies indicate that human islets express insulin receptors and that they are functionally coupled to a PI 3-kinase-dependent inhibition of insulin secretion.  相似文献   

5.
Astragalin is a flavonol glycoside with several biological activities, including antidiabetic properties. The objective of this study was to investigate the effects of astragalin on glycaemia and insulin secretion, in vivo, and on calcium influx and insulin secretion in isolated rat pancreatic islets, ex vivo. Astragalin (1 and 10 mg / kg) was administered by oral gavage to fasted Wistar rats and serum glucose and plasma insulin were measured. Isolated pancreatic islets were used to measure basal insulin secretion and calcium influx. Astragalin (10 mg/ kg) decreased glycaemia and increased insulin secretion significantly at 15–180 min, respectively, in the glucose tolerance test. In isolated pancreatic cells, astragalin (100 μM) stimulated calcium influx through a mechanism involving ATP-dependent potassium channels, L-type voltage-dependent calcium channels, the sarcoendoplasmic reticulum calcium transport ATPase (SERCA), PKC and PKA. These findings highlight the dietary coadjuvant, astragalin, as a potential insulin secretagogue that may contribute to glucose homeostasis.  相似文献   

6.
Influx of calcium is an essential but insufficient signal in sustained nutrient-stimulated insulin secretion, and increased metabolic rate of the beta cell is also required. The aim of the study was to test the hypothesis that the reduced state of cytochrome c is a metabolic co-factor necessary for insulin secretion, over and above its participation in the ATP-generating function of electron transport/oxidative phosphorylation. We found that nutrient stimulation of insulin secretion by isolated rat islets was strongly correlated with reduced cytochrome c, and agents that acutely and specifically reduced cytochrome c led to increased insulin secretion, even in the face of decreased oxygen consumption and calcium influx. In contrast, neither sites 1 nor 4 of the electron transport chain were both necessary and essential for the stimulation of insulin secretion to occur. Importantly, stimulation of islets with glucose, α-ketoisocaproate, or glyceraldehyde resulted in the appearance of cytochrome c in the cytosol, suggesting a pathway for the regulation of exocytotic machinery by reduction of cytochrome c. The data suggest that the metabolic factor essential for sustained calcium-stimulated insulin secretion to occur is linked to reduction and translocation of cytochrome c.  相似文献   

7.
AMP-activated protein kinase (AMPK) is an important signaling effector that couples cellular metabolism and function. The effects of AMPK activation on pancreatic beta-cell function remain unresolved. We used 5-amino-imidazole carboxamide riboside (AICAR), an activator of AMPK, to define the signaling mechanisms linking the activation of AMPK with insulin secretion. Application of 300 microM AICAR to mouse islets incubated in 5-14 mM glucose significantly increased AMPK activity and potentiated insulin secretion. AICAR inhibited ATP-sensitive K(+) (K(ATP)) channels and increased the frequency of glucose-induced calcium oscillations in islets incubated in 8-14 mM glucose. At lower glucose concentration (5mM) AICAR did not affect K(ATP) activity or intracellular ([Ca(2+)](i)). AICAR also did not inhibit (86)Rb(+) efflux from islets isolated from Sur1(-/-) mice that lack K(ATP) channels yet significantly potentiated glucose stimulated insulin secretion. Our data suggest that AICAR stimulates insulin secretion by both K(ATP) channel-dependent and -independent pathways.  相似文献   

8.
It has long been a matter of debate whether the hormone-sensitive lipase (HSL)-mediated lipolysis in pancreatic β-cells can affect insulin secretion through the alteration of lipotoxicity. We generated mice lacking both leptin and HSL (Lepob/ob/HSL/) and explored the role of HSL in pancreatic β-cells in the setting of obesity. Lepob/ob/HSL/ developed elevated blood glucose levels and reduced plasma insulin levels compared with Lepob/ob/HSL+/+ in a fed state, while the deficiency of HSL did not affect glucose homeostasis in Lep+/+ background. The deficiency of HSL exacerbated the accumulation of triglycerides in Lepob/ob islets, leading to reduced glucose-stimulated insulin secretion. The deficiency of HSL also diminished the islet mass in Lepob/ob mice due to decreased cell proliferation. In conclusion, HSL affects insulin secretary capacity especially in the setting of obesity.  相似文献   

9.
Previous studies showed that biotin enhanced glucose-induced insulin secretion. Changes in the cytosolic ATP/ADP ratio in the pancreatic islets participate in the regulation of insulin secretion by glucose. In the present study we investigated whether biotin regulates the cytosolic ATP/ADP ratio in glucose-stimulated islets. When islets were stimulated with glucose plus biotin, the ATP/ADP ratio increased to approximately 160% of the ATP/ADP ratio in islets stimulated with glucose alone. The rate of glucose oxidation, assessed by CO(2) production, was also about 2-fold higher in islets treated with biotin. These increasing effects of biotin were proportional to the effects seen in insulin secretion. There are no previous reports of vitamins, such as biotin, directly affecting ATP synthesis. Our data indicate that biotin enhances ATP synthesis in islets following the increased rate of substrate oxidation in mitochondria and that, as a consequence of these events, glucose-induced insulin release is reinforced by biotin.  相似文献   

10.
Dietary fibers, probably by generating short chain fatty acids (SCFA) through enterobacterial fermentation, have a beneficial effect on the control of glycemia in patients with peripheral insulin resistance. We studied the effect of propionate on glucose-induced insulin secretion in isolated rat pancreatic islets. Evidence is presented that propionate, one of the major SCFA produced in the gut, inhibits insulin secretion induced by high glucose concentrations (11.1 and 16.7 mM) in incubated and perfused pancreatic islets. This short chain fatty acid reduces [U-(14)C]-glucose decarboxylation and raises the conversion of glucose to lactate. Propionate causes a significant decrease of both [1-(14)C]- (84%) and [2-(14)C]-pyruvate (49%) decarboxylation. These findings indicate pyruvate dehydrogenase as the major site for the propionate effect. These observations led us to postulate that the reduction in glucose oxidation and the consequent decrease in the ATP/ADP ratio may be the major mechanism for the lower insulin secretion to glucose stimulus induced by propionate.  相似文献   

11.
Insulin regulates blood glucose by promoting uptake by fat and muscle, and inhibiting production by liver. Insulin-stimulated glucose uptake is mediated by GLUT4, which translocates from an intracellular compartment to the plasma membrane. GLUT4 traffic and insulin secretion both rely on calcium-dependent, regulated exocytosis. Deletion of the voltage-gated potassium channel Kv1.3 results in constitutive expression of GLUT4 at the plasma membrane. Inhibition of channel activity stimulated GLUT4 translocation through a calcium dependent mechanism. The synaptotagmins (Syt) are calcium sensors for vesicular traffic, and Syt VII mediates lysosomal and secretory granule exocytosis. We asked if Syt VII regulates insulin secretion by pancreatic beta cells, and GLUT4 translocation in insulin-sensitive tissues mouse model. Syt VII deletion (Syt VII -/-) results in glucose intolerance and a marked decrease in glucose-stimulated insulin secretion in vivo. Pancreatic islet cells isolated from Syt VII -/- cells secreted significantly less insulin than islets of littermate controls. Syt VII deletion disrupted GLUT4 traffic as evidenced by constitutive expression of GLUT4 present at the plasma membrane of fat and skeletal muscle cells and unresponsiveness to insulin. These data document a key role for Syt VII in peripheral glucose homeostasis through its action on both insulin secretion and GLUT4 traffic.  相似文献   

12.
Summary Morphological changes in the adrenergic innervation of pancreatic islets after chemical sympathectomy by use of 6-hydroxydopamine and the influence of the sympatho-adrenal system on insulin secretion were investigated in the mouse and rat.Fluorescence histochemistry revealed a clear-cut reduction in the number of adrenergic nerve fibers in the pancreatic islets 2 days after administration of 6-hydroxydopamine; the reduction was more pronounced in the rat than in the mouse. In the rat, a partial regeneration was seen after 6 weeks. In the pancreas of the mouse, after administration of 6-hydroxydopamine, a severe damage of unmyelinated nerve fibers was revealed electron microscopically. However, no ultrastructural or immunohistochemical alterations could be demonstrated in the endocrine cells of the islets.6-Hydroxydopamine induced a depression of basal plasma insulin concentrations in mice and an elevation in rats. Adrenalectomy depressed basal plasma insulin levels in mice.The -adrenoceptor antagonist phentolamine enhanced insulin secretion in normal mice. The secretory response of insulin to phentolamine was diminished by chemical sympathectomy and almost abolished by adrenalectomy or the combination of chemical sympathectomy and adrenalectomy. Thus, the effect of phentolamine is probably mediated by liberated catecholamines.It is concluded that basal insulin secretion is partially regulated by the sympatho-adrenal system and that species differences exist in this respect. In addition, the results suggest that endogenous catecholamines have the ability to promote insulin secretion.  相似文献   

13.
We investigated the effect of oleanolic acid, a plant-derived triterpenoid, on insulin secretion and content in pancreatic beta-cells and rat islets. Oleanolic acid significantly enhanced insulin secretion at basal and stimulatory glucose concentrations in INS-1 832/13 cells and enhanced acute glucose-stimulated insulin secretion in isolated rat islets. In the cell line the effects of oleanolic acid on insulin secretion were comparable to that of the sulfonylurea tolbutamide at basal glucose levels and with the incretin mimetic Exendin-4 under glucose-stimulated conditions, yet neither Ca(2+) nor cAMP rose in response to oleanolic acid. Chronic treatment with oleanolic acid increased total cellular insulin protein and mRNA levels. These effects may contribute to the anti-diabetic properties of this natural product.  相似文献   

14.
The effect of somatostatin on glucose-induced insulin secretion and cyclic AMP accumation in isolated islets from obese, hyperglycemic ob/ob mice was studied in a microperifusion system. The normal biphasic pattern of insulin release as well as the inhibitory pattern of insulin release produced by somatostatin (0.5–1 μg/ml) was matched by similar changes in the intracellular concentration of cyclic AMP. When islets were stimulated by glucose (3 mg/ml) plus 3-isobutyl-1-methylxanthine (0.1 mM), somatostatin (0.5 μg/ml) failed to inhibit insulin secretion or cyclic AMP formation in the second phase whereas in the first phase both parameters were significantly reduced by somatostatin (0.5 μg/ml). In batch-type incubations it was shown that addition of excess calcium (to 6 mM) reversed this inhibition. In the second phase calcium potentiated the (glucose + 3-isobutyl-1-methylxanthine)-stimulated insulin secretion without affecting the cyclic AMP production. This potentiation was inhibited by somatostatin (0.1 μg/ml). Somatostatin (1 μg/ml) inhibited adenylate cyclase activity in islet homogenates. No effect of somatostatin on islet glucose utilization could be demonstrated.The results indicate a dual action of somatostatin in the inhibition of insulin release, one involving the islet adenylate cyclase and one affecting the islet uptake of calcium.  相似文献   

15.
Chronic hyperglycemia has been shown to induce either a lack of response or an increased sensitivity to glucose in pancreatic beta-cells. We reinvestigated this controversial issue in a single experimental model by culturing rat islets for 1 wk in 10 or 30 mmol/l glucose (G10, Controls; or G30, High-glucose islets) before testing the effect of stepwise glucose stimulation from G0.5 to G20 on key beta-cell stimulus-secretion coupling events. Compared with Controls, the glucose sensitivity of High-glucose islets was markedly increased, leading to maximal stimulation of oxidative metabolism and both triggering and amplifying pathways of insulin secretion in G6 rather than G20, hence to loss of glucose effect above G6. This enhanced glucose sensitivity occurred despite an approximately twofold increase in islet uncoupling protein 2 mRNA expression. Besides this increased glucose sensitivity, the maximal glucose stimulation of insulin secretion in High-glucose islets was reduced by approximately 50%, proportionally to the reduction of insulin content. In High-glucose islets, changes in (45)Ca(2+) influx induced by glucose and diazoxide were qualitatively similar but quantitatively smaller than in Control islets and, paradoxically, did not lead to detectable changes in the intracellular Ca(2+) concentration measured by microspectrofluorimetry (fura PE 3). In conclusion, after 1 wk of culture in G30, the loss of glucose stimulation of insulin secretion in the physiological range of glucose concentrations (G5-G10) results from the combination of an increased sensitivity to glucose of both triggering and amplifying pathways of insulin secretion and an approximately 50% reduction in the maximal glucose stimulation of insulin secretion.  相似文献   

16.
Syntaxin1A and Munc18-1 play essential roles in exocytosis. However, the molecular mechanism and the functional roles of their interaction in insulin secretion remain to be explored. Using membrane capacitance measurement, we examine effect of overexpressing Munc18-1 on exocytosis in pancreatic beta cells. The results show that Munc18-1 negatively regulates vesicle fusion. To probe the interaction between Munc18-1 and Syntaxin1A, Munc18-1-Tdimer2 and EGFP-Syntaxin1A were co-transfected into INS-1 cells. FRET measurement confirmed that Munc18-1 interacted with wild type Syntaxin 1A, but not the constitutively open form (DM) of Syntaxin1A. Overexpressing DM in primary pancreatic beta cells augmented insulin secretion, and this effect can overcome the inhibitory effect of Munc18-1 overexpression. We propose that Munc18-1 inhibitis the SNARE complex assembly by stabilizing Syntaxin1A in a closed conformation in vesicle priming process, therefore negatively regulates insulin secretion.  相似文献   

17.
We studied the effect of insulin resistance (IR) induced by administration of a fructose-rich diet (FRD) to normal Wistar rats for 21 days, upon islet plasma membrane calcium ATPases (PMCAs) and insulin secretion. FRD rats showed significantly higher triglyceride and insulin levels, insulin:glucose ratio and HOMA-IR index than controls. FRD islets released significantly more insulin in response to glucose and showed (a) marked changes in PMCA isoform protein content (decreased PMCA 2 and increased PMCA 3), (b) a decrease in total PMCAs activity, and (c) higher levels of cytosolic calcium [Ca2+]i. The lower PMCAs activity with the resultant increase in [Ca2+]i would favor the compensatory greater release of insulin necessary to cope with the IR state present in FRD rats and to maintain normal glucose homeostasis. Thus, changes in PMCAs activity and isoform expression play a modulatory role upon insulin secretion during long-term adaptation to an increased hormone demand.  相似文献   

18.
Nyblom HK  Thorn K  Ahmed M  Bergsten P 《Proteomics》2006,6(19):5193-5198
Extended hyperglycaemia leads to impaired glucose-stimulated insulin secretion (GSIS) and eventually beta-cell apoptosis in individuals with type 2 diabetes mellitus. In an attempt to dissect mechanisms behind the detrimental effects of glucose, we focused on measuring changes in expression patterns of mitochondrial proteins. Impaired GSIS was observed from INS-1E cells cultured for 5 days at 20 or 27 mM glucose compared to cells cultured at 5.5 or 11 mM glucose. After culture, mitochondria were isolated from the INS-1E cells by differential centrifugation. Proteins of the mitochondrial fraction were bound to a strong anionic surface (SAX2) protein array and mass spectra generated by SELDI-TOF-MS. Analysis of the spectra revealed proteins with expression levels that correlated with the glucose concentration of the culture medium. Indeed, such differentially expressed proteins created patterns of protein changes, which correlated with impairment of GSIS. In conclusion, the study reveals the first glucose-induced differentially expressed patterns of beta-cell mitochondrial proteins obtained by SELDI-TOF-MS.  相似文献   

19.
Pancreatic islet transplantation is a promising therapy for Type I Diabetes. For many years the method used worldwide for islet purification in both rodent and human islet isolation has been Ficoll-based density gradients, such as Histopaque. However, it is difficult to purify islets in laboratories with staff limitations when large scale isolations are required. We hypothesized that filtration could be a more simple and fast alternative to obtain good quality islets. Four separate islet isolations were performed per method, comparing filtration and Histopaque purification with handpicking as the gold standard method for islet purity. Different parameters of quality were assessed: yield in number of islets per pancreas, purity by dithizone staining, viability by Fluorescein Diacetate/Propidium Iodide vital staining and in vitro functionality assessed by Glucose Stimulated Insulin Secretion. Time efficiency and cost were also analyzed. The overall quality of the islets obtained both by Histopaque and filtration was good. Filtration saved almost 90 % of the time consumed by Histopaque purification, and was also cheaper. However, one-third of the islets were lost. Since human and rodent islets share similar size but different density, filtration appears as a purification method with potential interest in translation to clinic.  相似文献   

20.
Circulating insulin is dependent on a balance between insulin appearance through secretion and insulin clearance. However, to what extent changes in insulin clearance contribute to the increased insulin levels after glucagon administration is not known. This study therefore assessed and quantified any potential effect of glucagon on insulin kinetics in mice. Prehepatic insulin secretion in mice was first estimated following glucose (0.35 g/kg i.v.) and following glucose plus glucagon (10 μg/kg i.v.) using deconvolution of plasma C-peptide concentrations. Plasma concentrations of glucose, insulin, and glucagon were then measured simultaneously in individual mice following glucose alone or glucose plus glucagon (pre dose and at 1, 5, 10, 20 min post). Using the previously determined insulin secretion profiles and the insulin concentration-time measurements, a population modeling analysis was applied to estimate the one-compartment kinetics of insulin disposition with and without glucagon. Glucagon with glucose significantly enhanced prehepatic insulin secretion (Cmax and AUC0-20) compared to that with glucose alone (p < 0.0001). From the modeling analysis, the population mean and between-animal SD of insulin clearance was 6.4 ± 0.34 mL/min for glucose alone and 5.8 ± 1.5 mL/min for glucagon plus glucose, with no significant effect of glucagon on mean insulin clearance. Therefore, we conclude that the enhancement of circulating insulin after glucagon administration is solely due to stimulated insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号