首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca or EGTA was ionophoretically injected into Paramecium tetraurelia to change [Ca]1. Ca decreased the resting membrane resistance and hyperpolarized the membrane. EGTA had the opposite effect. EGTA following TEA, which suppress GK, had little effect on resistance or resting potential. The I—V relation at steady state was studied before and after EGTA injection while the cell bathed in either K- or TEA-solution. The response to inward test pulses after EGTA injection was similar to that after TEA injection. These results show that [Ca]i controls a steady-state K permeability in Paramecium tetraurelia. A prolonged Ca-spike was recorded after EGTA injection. The plateau potentials in various Ca concentrations in a TEA-solution show the Nernst slope (29 mV for tenfold change in [Ca]0). This result suggests that the prolonged depolarization in this condition is due to a Ca current, after suppression of K-permeability and when [Ca]i is low. The difficulty of obtaining quantitative data an the internal Ca, and the difference between the effects of EGTA injection and TEA injection are discussed.  相似文献   

2.
A correlated electrophysiological and light microscopic evaluation of trichocyst exocytosis was carried out the Paramecium cells which possess extensive cortical Ca stores with footlike links to the plasmalemma. We used not only intra- but also extracellular recordings to account for polar arrangement of ion channels (while trichocysts can be released from all over the cell surface). With three widely different secretagogues, aminoethyldextran (AED), veratridine and caffeine, similar anterior Nain and posterior Kout currents (both known to be Ca(2+)-dependent) were observed. Direct de- or hyperpolarization induced by current injection failed to trigger exocytosis. For both, exocytotic membrane fusion and secretagogue-induced membrane currents, sensitivity to or availability of Ca2+ appears to be different. Current responses to AED were blocked by W7 or trifluoperazine, while exocytosis remained unaffected. Reducing [Ca2+]o to < or = 0.16 microM (i.e., resting [Ca2+]i) suppressed electrical membrane responses triggered with AED, while we had previously documented normal exocytotic membrane fusion. From this we conclude that the primary effect of AED (as of caffeine) is the mobilization of Ca2+ from the subplasmalemmal pools which not only activates exocytosis (abolished by iontophoretic EGTA injection) but secondarily also spatially segregated plasmalemmal Ca(2+)-dependent ion channels (indicative of subplasmalemmal [Ca2+]i increase, but irrelevant for Ca2+ mobilization). The 45Ca2+ influx previously observed during AED triggering may serve to refill depleted stores. Apart from the insensitivity of our system to depolarization, the mode of direct Ca2+ mobilization from stores by mechanical coupling to the cell membrane (without previous Ca(2+)-influx from outside) closely resembles the model currently discussed for skeletal muscle triads.  相似文献   

3.
Cytoplasmic calcium concentration ([Ca]i) rises within minutes of exposure of T lymphocytes to a mitogen. T cells from old mice are defective in this reaction, a defect that could reflect either altered signal transduction or instead a more general age-associated change in intracellular calcium regulation. We therefore tested the ability of T cells from old mice to regulate their [Ca]i concentration after exposure to low concentrations of ionomycin, an agent that raises [Ca]i but bypasses receptor-mediated signal transduction mechanisms. Exposure of T cells to ionomycin leads to an abrupt increase in [Ca]i followed by stabilization at a dose-dependent plateau level that is affected by extracellular EGTA, by calmodulin inhibitors, and by modulators of protein kinase C. Plateau levels of [Ca]i after ionomycin challenge were consistently lower in T cells from old mice than in T cells from young mice. Flow cytometric experiments showed that while essentially all T cells from both old and young mice responded to ionomycin, they did so to an extent that depended on donor age. The age-dependent increase in resistance to ionomycin-induced changes in [Ca]i cannot be attributed to diminished membrane permeability to the ionomycin-calcium complex. The data suggest that aging may lead, in T lymphocytes, to a relative resistance to increases in [Ca]i, a resistance that in turn prevents cell activation.  相似文献   

4.
Ionic regulation of cyclic AMP levels in Paramecium tetraurelia in vivo   总被引:2,自引:0,他引:2  
cAMP levels in Paramecium increased dose dependently after a step increase of [Ca] or [Sr] in the incubation, provided K was present. Two mM Ca or Sr tripled cAMP concentrations within 3 s and induced an increase in forward swimming speed. The increase in cAMP formation was strictly dependent on the Donnan ratio [K]: square root [Ca]. Na, Li, or tetraethylammonium could not replace K. The data provide evidence for regulation of cAMP in Paramecium by the membrane surface charge as determined specifically by the regulation of cAMP in Paramecium by the membrane surface charge as determined specifically by the K: Ca ratio.  相似文献   

5.
Calcium influx in internally dialyzed squid giant axons   总被引:9,自引:4,他引:5       下载免费PDF全文
A method has been developed to measure Ca influx in internally dialyzed squid axons. This was achieved by controlling the dialyzed segment of the axon exposed to the external radioactive medium. The capacity of EGTA to buffer all the Ca entering the fiber was explored by changing the free EGTA at constant [Ca++]i. At a free [EGTA]i greater than 200 microM, the measured resting Ca influx and the expected increment in Ca entry during electrical stimulation were independent of the axoplasmic free [EGTA]. To avoid Ca uptake by the mitochondrial system, cyanide, oligomycin, and FCCP were included in the perfusate. Axons dialyzed with a standard medium containing: [ATP] = 2 mM, [Ca++]i = 0.06 microM, [Ca++]o = 10 mM, [Na+]i = 70 mM, and [Na+]o = 465 mM, gave a mean Ca influx of 0.14 +/- 0.012 pmol.cm-2.s-1 (n = 12. Removal of ATP drops the Ca influx to 0.085 +/- 0.007 pmol.cm-2.s-1 (n = 12). Ca influx increased to 0.35 pmol.cm-2,s-1 when Nao was removed. The increment was completely abolished by removing Nai+ and (or) ATP from the dialysis medium. At nominal zero [Ca++]i, no Nai-dependent Ca influx was observed. In the presence of ATP and Nai [Ca++]i activates the Ca influx along a sigmoid curve without saturation up to 1 microM [Ca++]i. Removal of Nai+ always reduced the Ca influx to a value similar to that observed in the absence of [Ca++]i (0.087 +/- 0.008 pmol.cm-2.s-1; n = 11). Under the above standard conditions, 50-60% of the total Ca influx was found to be insensitive to Nai+, Cai++, and ATP, sensitive to membrane potential, and partially inhibited by external Co++.  相似文献   

6.
Hyperpolarization of Paramecium tetraurelia under conditions where K+ currents are suppressed elicits an inward current that activates rapidly toward a peak at 25-80 ms and decays thereafter. This peak current (Ihyp) is not affected by removing Cl ions from the microelectrodes used to clamp membrane potential, or by changing extracellular Cl- concentration, but is lost upon removing extracellular Ca2+. Ihyp is also lost upon replacing extracellular Ca2+ with equimolar concentrations of Ba2+, Co2+, Mg2+, Mn2+, or Sr2+, suggesting that the permeability mechanism that mediates Ihyp is highly selective for Ca2+. Divalent cations also inhibit Ihyp when introduced extracellularly, in a concentration- and voltage-dependent manner. Ba2+ inhibits Ihyp with an apparent dissociation constant of 81 microM at -110 mV, and with an effective valence of 0.42. Ihyp is also inhibited reversibly by amiloride, with a dissociation constant of 0.4 mM. Ihyp is not affected significantly by changes in extracellular Na+, K+, or H+ concentration, or by EGTA injection. Also, it is unaffected by manipulations or mutations that suppress the depolarization-activated Ca2+ current or the various Ca(2+)-dependent currents of Paramecium. We suggest that Ihyp is mediated by a novel, hyperpolarization-activated calcium conductance that is distinct from the one activated by depolarization.  相似文献   

7.
Inositol glycerolipids make up less than 10% of total phospholipids of Paramecium tetraurelia cells. Unlike inositol lipids found in mammalian and other cell types, these lipids from Paramecium lack arachidonic acid. It was demonstrated that kinase and possibly phosphatase enzymes that interconvert phosphatidylinositol (PI), phosphatidylinositol phosphate (PI-P) and phosphatidylinositol-bis-phosphate (PI-P2) exist in ciliary membranes of this ciliate. When exogenous soybean PI and [gamma-32P]ATP were provided as substrates, isolated cilia preparations exhibited PI and PI-P kinase activities as demonstrated by the incorporation of radiolabel into PI-P and PI-P2. Kinase activity was activated by millimolar [Mg2+] and inhibited by millimolar [Ca2+]. Significant inhibition of kinase activity in the presence of unlabeled excess ATP suggested that ATP is the preferred phosphate donor for this reaction. Of 4 suborganellar fractions of isolated cilia, the membrane fraction had the greatest kinase activity indicating that the enzyme(s) is membrane-associated.  相似文献   

8.
In the present study we have investigated the effect of changes in the concentration of cytosolic free Ca2+ ([Ca2+]i) on the deacetylation-reacylation of PAF-acether (alkylacetylglycerophosphocholine, alkylacetyl-GPC) by rabbit platelets. Washed platelets were incubated with alkyl[3H]acetyl-GPC ([3H]acetyl-PAF) or [3H]alkylacetyl-GPC ([3H]alkyl-PAF) and [Ca2+]i was subsequently elevated by the addition of the ionophore A23187 or thrombin. The catabolism of PAF-acether was studied by measuring the release of [3H]acetate or the formation of [3H]alkylacyl-GPC. The ionophore inhibited the release of [3H]acetate and the formation of [3H]alkylacyl-GPC with no accumulation of lyso-[3H]PAF, indicating that the deacetylation of PAF-acether was blocked. The effect of ionophore on the deacetylation of PAF-acether was parallel with the increase of [Ca2+]i and could be reversed by the addition of EGTA. In contrast with the prolonged inhibition evoked by ionophore, thrombin, which induced a transient elevation of [Ca2+]i, merely delayed the deacetylation of PAF-acether. Since intact platelets failed to convert exogenous lyso-PAF, the effect of Ca2+ on its acylation was investigated by using platelet homogenates. These experiments showed that the acylation of lyso-PAF was inhibited by the exogenously added Ca2+, with a maximum effect at 1 mM. When the formation of endogenous lyso-PAF from the labelled pool of alkylacyl-GPC was examined, a prolonged increase in the concentration of lyso-PAF with a parallel and equally prolonged decrease in the cellular level of alkylacyl-GPC were observed after the addition of ionophore to intact platelets. The addition of EGTA reversed the effect of ionophore, thus permitting reacylation of lyso-PAF. In contrast, only a transient change in the level of lyso-PAF and alkylacyl-GPC was evoked by the addition of thrombin. Therefore we conclude that the inhibitory effect of Ca2+ on the deacetylation-reacylation of PAF-acether may have an important role in the regulation of its biosynthesis.  相似文献   

9.
A transient depolarization was recorded in response to the cooling of a deciliated Paramecium. The amplitude of the depolarization was almost proportional to the cooling rate. Therefore, the cells are sensitive to the rate of temperature change. The input resistance of the membrane transiently increased during the cooling. When constant current was applied to shift the resting membrane potential to a negative or positive level, the initial depolarization in response to cooling decreased, and the following hyperpolarization during cooling reversed to a gradual depolarization during a positive shift. The potential at which the reversal occurred was independent of K+ concentration and was slightly dependent on Ca2+ concentration (10 mV/log[Ca2+]o). The amplitude of the initial depolarization decreased with the increase in K+ and was not affected by Ca2+. These results are discussed in terms of changes in membrane conductances in response to cooling.  相似文献   

10.
Adenosine 3',5'-cyclic monophosphate (cAMP) and CaCl2 were injected by a fast and quantitative pressure injection technique into voltage-clamped, identified Helix neurons. Intracellular elevation of cAMP as well as of Ca2+ activated an inward current (IcAMP and IN). To identify the ionic fluxes during IcAMP and IN changes in [Na+]i, [K+]o, [H+]i, and [Cl-]i were measured with ion-selective microelectrodes (ISMs). Near resting potential, Na+ was the main carrier of IcAMP. K+, and less effectively Ca2+, could substitute for Na+ in carrying IcAMP. H+ and Cl- were excluded as current carriers for IcAMP by means of ISMs. Simultaneous to this action, cAMP decreased a K+ conductance. This decrease was associated with a reduction of the K+ efflux activated by long-lasting depolarizing voltage steps, as directly measured with ISMs located near the external membrane surface. The nearly compensatory increase and decrease of two membrane conductances in the same neuron left the cell input resistance unchanged despite the considerable depolarizing action of intracellularly elevated cAMP. IN was also of nonspecific nature. However, our findings indicate less selectivity for the Ca2+-activated nonspecific channels. Large cations such as choline, TEA, and Tris passed nearly as well as Na+ through the channels. Measurements with ISMs showed that [H+]i and [Cl-]i were unchanged during IN. IN was largest in bursting pacemaker neurons compared with other cells of similar size. It was found to be essential for the burst production in these cells. IcAMP, on the other hand, might be involved in the presynaptic facilitatory action of cAMP, which as yet was attributed solely to a reduction of a K+ conductance.  相似文献   

11.
1. Neurons with a receptor responded to FMRFamide (Phe-Met-Arg-Phe-NH2) were identified in the ganglion of Aplysia kurodai. Ionic mechanism and channel gating system of the FMRFamide-induced responses were investigated by current clamp and voltage clamp methods. 2. The reversal potential of FMRFamide-induced response exactly coincided with the equilibrium potential for K+. This proved that the response was produced by a specific increase in membrane permeability toward K+, exclusively. 3. The FMRFamide-induced response was not affected by the inhibitors for Ca2(+)-activated K(+)-current, i.e., TEA, apamin, and EGTA. This excluded a possibility that FMRFamide-activated K(+)-channel is a Ca2(+)-activated K(+)-channel. 4. Intracellular injection of pertussis-toxin (PTX) caused no change in either resting potential or conductance, but it irreversibly blocked the FMRFamide-induced outward current within 30 min. Similarly applied cholera toxin (CTX) showed no effect on the FMRF-amide response. 5. Intracellular application of guanosine 5'-0-(2-thiodiphosphate) (GDP beta S) caused no effect on either resting potential or conductance, but it blocked the FMRFamide-induced K(+)-current within 3 min. 6. Intracellular application of guanosine 5'-0-(3-thiotriphosphate) (GTP gamma S) alone induced a slowly developing, irreversible outward current associated with an increase in membrane conductance. However, repetitive applications of FMRFamide immediately after the start of GTP gamma S application markedly facilitated the effect of GTP gamma S on the resting membrane. 7. Intracellular application of either adenylate cyclase inhibitor (3'-deoxyadenosine) or A-kinase inhibitor (H-8) did not affect the FMRFamide-induced response. 8. It was concluded that the FMRFamide-induced K(+)-current is mediated by PTX-sensitive GTP-binding protein Gi, Go or Gk. It was also suggested that the FMRFamide-induced response is produced independently of the changes in intracellular Ca2+ or cyclic AMP.  相似文献   

12.
Summary Under voltage clamp, a mutant ofParamecium tetraurelia (teaB) shows a shift in the positive direction of the voltage sensitivity of the Ca conductance and the depolarization inactivation curve by 10 mV with no change in the total conductance. This effect can be mimicked in the wild type by the addition of external Ca2+ or Mg2+. The mutation also shifts the resting potential and the voltage sensitivities of the delayed rectification (depolarization-sensitive) K conductance and the anomalous rectification (hyperpolarization-sensitive) K conductance in the positive direction to a similar extent. This systematic shift of channel voltage sensitivities is best explained by the reduction of the surface negative charges of the membrane due to the mutation.  相似文献   

13.
Y You  D J Pelzer    S Pelzer 《Biophysical journal》1995,69(5):1838-1846
A key feature of trypsin action on ionic membrane currents including L-type Ca2+ current (ICa) is the removal of inactivation upon intracellular application. Here we report that trypsin also occludes the resting cytoplasmic free Ca2+ ([Ca2+]i)-induced inhibition of peak ICa in isolated guinea pig ventricular cardiomyocytes, using the whole-cell patch clamp in combination with the Fura-2 ratio-fluorescence technique. The effectiveness of trypsin to guard ICa against [Ca2+]i-induced inhibition was compared with that of forskolin, as cAMP-dependent phosphorylation had been suggested to confer protection against [Ca2+]i-induced inactivation. Intracellular dialysis of trypsin (1 mg/ml) augmented ICa by 7.2-fold, significantly larger than the threefold increase induced by forskolin (3 microM). Forskolin application after trypsin dialysis did not further enhance ICa. An increase in [Ca2+]i from resting levels (varied by 0.2, 10, and 40 mM EGTA dialysis) to submicromolar concentrations after replacement of external Na+ (Na(o)+) with tetraethylammonium (TEA+) resulted in monotonic inhibition of control ICa, elicited from a holding potential of -40 mV at 22 degrees C. AFter trypsin dialysis, however, ICa became less sensitive to submicromolar [Ca2+]i; the [Ca2+]i of half-maximal inhibition (K0.5, normally around 60 nM) increased by approximately 20-fold. Forskolin also increased the K0.5 by approximately threefold. These and accompanying kinetic data on ICa decay are compatible with a model in which it is assumed that Ca2+ channels can exist in two modes (a high open probability "willing" and a low open probability "reluctant" mode) that are in equilibrium with one another. An increase in [Ca2+]i places a larger fraction of channels in the reluctant mode. This interconversion is hindered by cAMP-dependent phosphorylation and becomes nearly impossible after tryptic digestion.  相似文献   

14.
The mean resting concentration of cytosolic free Ca2+ [( Ca2+]i) in parenchymal liver cells, as determined with the intracellular Ca2+ indicator quin2, was lowered by about 30% in hypothyroidism (0.17 microM vs. 0.27 microM in normal cells). The [Ca2+]i level in hypothyroid cells at 10 s following stimulation by noradrenaline (1 microM) was about 64% lower than in normal cells (0.33 microM vs. 1.0 microM). The response to noradrenaline in hypothyroid cells was slower in onset (significant at 5 s vs. 3 s in euthyroid cells), and the maximum of the initial [Ca2+]i increase was reached later (14 s vs. 8 s in normal cells). In hypothyroid hepatocytes the initial increase was followed by a slow but prolonged secondary increase in [Ca2+]i. With vasopressin similar results were found. Chelation of extracellular Ca2+ with EGTA immediately prior to stimulation had no effect on the initial [Ca2+]i increase. Treatment with T3 in vivo (0.5 micrograms/100 g body weight daily during 3 days) completely restored the basal and stimulated [Ca2+]i in hypothyroid cells. The half-maximally effective dose of noradrenaline was the same in euthyroid and hypothyroid liver cells (1.8 X 10(-7) M). Hypothyroidism had no significant effect on the number of alpha 1-receptors determined by [3H]prazosin labeling in crude homogenate fractions, while the Kd for [3H]prazosin was 21% lower than in the euthyroid group. These results show that thyroid hormone has a general stimulating effect on intracellular Ca2+ mobilization by Ca2+-mobilizing hormones, probably at a site distal to the binding of the agonist to its receptor. The results also support our idea that thyroid hormone may control metabolism during rest and activation, at least partially, by altering Ca2+ homeostasis.  相似文献   

15.
The endogenous protein kinases of isolated Paramecium tetraurelia cilia phosphorylated approximately 30 ciliary polypeptides in vitro. Labeling with [gamma-32P]ATP was not proportional to the amount of each protein in cilia; some minor polypeptides (e.g., 67,000 and 180,000 mol wt) were more heavily labeled than some major polypeptides. Certain of the endogenous substrates for protein kinase were localized in the ciliary membrane (130,000, 86,000, 67,000, and 45,000 mol wt); others were found in axonemes or in both fractions. With cilia from bacterized cultures in the undefined Cerophyl medium, the labeling of specific endogenous phosphate acceptors was altered by pH, cyclic AMP, and cyclic GMP, but the labeling pattern was not affected by the presence of Na+ or K+ (15 mM), Ba++ (5 mM), Ca++ (10(-5) or 10(-4) M), or EGTA. Very similar results were obtained with cilia from cells grown axenically in a semidefined medium; the molecular weights and the extent of phosphorylation of the phosphopolypeptides were comparable to those of cilia from bacterized Cerophyl cultures, although no significant cyclic nucleotide effects were observed in the axenic cilia. Most of the phosphopolypeptides labeled in vitro also turned over rapidly in vitro. The phosphoprotein phosphatase responsible for turnover was partially inhibited by 5 mM NaF. The pattern of ciliary polypeptides labeled in vivo was similar to that observed in the in vitro experiments, although the relative intensities of labeling differed. Six behavioral mutants of Paramecium, known to have defects in the excitable membrane that regulates the ciliary beat, showed normal patterns of ciliary protein phosphorylation in vitro, with and without added cyclic nucleotides, at both pH 6.0 and pH 8.0. The mutants also had apparently normal phosphoprotein phosphatase. The Paranoiac A mutant, however, showed a reduction in cyclic GMP-stimulated protein kinase activity.  相似文献   

16.
The Ca2+ current activated upon hyperpolarization of Paramecium tetraurelia decays over a period of 150-200 ms during sustained steps under voltage clamp. At membrane potentials between -70 and approximately -100 mV, the time course of this inactivation is described by a single exponential function. Steps negative to approximately -100 mV elicit currents that decay biexponentially, however. Three lines of evidence suggest that this current's inactivation is a function of intracellular Ca2+ concentration rather than membrane potential: (a) Comparing currents with similar amplitudes but elicited at widely differing membrane potentials suggests that their time course of decay is a sole function of inward current magnitude. (b) The extent of current inactivation is correlated with the amount of Ca2+ entering the cell during hyperpolarization. (c) The onset and time course of recovery from inactivation can be hastened significantly by injecting cells with EGTA. We suggest that the decay of this current during hyperpolarization involves a Ca(2+)-dependent pathway.  相似文献   

17.
A prolonged hyperpolarizing afterpotential (amplitude 5–20 mV, half decay time about 400 msec at 25°C) follows the action potential in myotubes and myosacs cultured from rat skeletal muscle. This slow hyperpolarizing afterpotential (hap) is mediated by an increase in membrane K conductance, because its reversal potential follows the Nernst potential for K and is not affected by other ions. The conductance increase measured during the hap (up to four times the resting input conductance) correctly predicts the time course of the slow hap. The slow hap is Ca dependent. Its amplitude decreases when bath [Ca] is lowered, and both amplitude and duration increase when bath [Ca] is raised. The slow hap is blocked by intracellular injection of the calcium chelator, EGTA. It is inhibited by solutions containing 2–4 mM manganese or 1–5 mM barium, but is not blocked by 5–20 mM tetraethylammonium. Myotubes bathed in zero [Na], high [Ca] solutions show calcium action potentials, which are inhibited by 2–10 mM manganese, nickel or cobalt. Myotubes bathed in isotonic Ca salts (or in 2 mM Ca plus 5 mM caffeine) show long-lasting (up to 10 sec) spontaneous hyperpolarizations accompanied by prolonged contractions. These hyperpolarizations are associated with a large increase in input conductance, and they reverse in sign near the K equilibrium potential. They appear to reflect activation of the Ca-sensitive K conductance by Ca released from intracellular stores. The observation that spontaneous hyperpolarizations usually occur with no prior depolarization argues that at least a portion of the slow, Ca-sensitive K conductance system can be activated by internal Ca alone, with no requirement for plasma membrane depolarization. Cultured myotubes also have a faster K conductance system, which is inhibited by 5–20 mM tetraethylammonium or 1–5 mM barium, and is not dependent on Ca for its activation.  相似文献   

18.
Cortex preparations isolated from Paramecium tetraurelia cells consist of surface with secretory organelles (trichocysts) still attached. In the absence of nucleotides, in media with a pCa of 5-5.5 and a pH of greater than or equal to 6.5, maximal exocytosis occurred when the Mg2+ concentration was lowered from 10 to 0.5 mM. ATP, as well as its non-hydrolysable analogues adenosine 5'-[gamma-thio]triphosphate (ATP[S]) and adenosine 5'[beta gamma-imido]triphosphate (App[NH]p), inhibited exocytosis at a concentration equivalent to that occurring in vivo (as determined by h.p.l.c.), but preincubation with ATP augmented the exocytotic response. GTP and its analogues only slightly stimulated exocytosis in vitro, but sensitivity to Ca2+ was increased significantly, in particular with GTP. These effects of nucleotides were rapidly reversible. Intracellular GTP concentrations (0.35 mM) would suffice for full activation with the pCai values assumed to occur in these cells during activation. On microinjection, ATP inhibited the secretagogue response in intact cells. Whereas microinjected GTP stimulated exocytosis (membrane fusion) without a secretagogue added, Gpp[NH]p remained without any effect; GTP[S] permanently abolished any triggered secretory response. Concomitantly, h.p.l.c. analysis of triggered and untriggered cells showed that GTP hydrolysis occurs immediately after synchronous (1 s) exocytosis in vivo. The precise site(s) of action of GTP during signal transduction in Paramecium cells remain to be determined.  相似文献   

19.
The effect of extracellular pH (pHo) on the duration of calcium-dependent chloride currents (ICl(Ca] was studied in voltage clamped AtT-20 pituitary cells. ICl(Ca) was activated by Ca2+ influx through plasma membrane Ca2+ channels, which were opened by step depolarization to voltages between -20 and +60 mV. Increasing pHo from 7.3 to 8.0 reversibly prolonged ICl(Ca) tail currents in perforated patch recordings from cells bathed in both Na(+)-containing and Na(+)-free solutions. This prolongation was prevented in standard whole cell recordings when the pipette solution contained 0.5 mM EGTA. The effects of raised pHo were not due to alteration of intracellular pH, since tail current prolongation still occurred when intracellular pH was buffered at 7.3 with 80 mM HEPES. The prolongation of ICl(Ca) at pHo 8 could not be accounted for by a direct action on Ca2+ channels, since tail currents were prolonged when pHo was changed rapidly during the tail current, after all Ca2+ channels were closed. The effects of increasing pHo on ICl(Ca) also could not be explained by a direct action on Cl- channels, since changing to pHo 8 did not prolong Cl- tail currents when intracellular Ca2+ concentration [( Ca2+]i) was fixed by EGTA in whole cell recordings. Raising pHo did, however, prolong depolarization-evoked [Ca2+]i transients, measured directly with the Ca2+ indicator dye, fura-2. Taken together, these data demonstrate the presence of a Na(+)-independent, pHo-sensitive mechanism for reduction of [Ca2+]i after influx through Ca2+ channels. This mechanism is associated with the plasma membrane, and is active on a time scale that is relevant to the duration of single action potentials in these cells. We suggest that this mechanism is the plasma membrane Ca2+ ATPase.  相似文献   

20.
The kinetics of the ionic regulation of an adenylate cyclase associated with the excitable ciliary membrane from Paramecium tetraurelia was examined. Glycerol (30%, v/v) stabilized the enzyme, and activated by an increase in Vmax. (3-fold) and a decrease in the apparent Km for MgATP (6-fold). Kinetic analysis of Mg2+ effects showed a stimulation via a single metal-binding site separate from the substrate site, with a dissociation constant, Ks, of 0.27 mM. Analysis of Ca2+ effects showed (i) an uncompetitive inhibition with respect to substrate MgATP, and (ii) dependence of the extent of inhibition on the free Mg2+ concentration. Ki values ranged from 4 to 130 microM-Ca2+ in the presence of 0.55-2 mM-Mg2+ respectively. This indicates competition between Mg2+ and Ca2+ at the metal-binding site. The Ca2+ effect was specific; Sr2+ and Ba2+ were almost without effect, and 100 microM-Ba2+ did not interfere with the Ca2+ inhibition. The actions of Ca2+ were readily reversible after addition of EGTA. K+ activated the adenylate cyclase at concentrations around 20 mM. The stimulatory potency of K+ was dependent on the free Mg2+ concentration. At 1 mM free Mg2+, 20 mM-K+ doubled the adenylate cyclase activity. The inhibitory Ca2+ and stimulatory K+ inputs were independent of each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号